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Abstract— Globally localizing a mobile robot in a known map
is often a foundation for enabling robots to navigate and operate
autonomously. In indoor environments, traditional Monte Carlo
localization based on occupancy grid maps is considered the
gold standard, but its accuracy is limited by the representation
capabilities of the occupancy grid map. In this paper, we address
the problem of building an effective map representation that
allows to accurately perform probabilistic global localization. To
this end, we propose an implicit neural map representation that
is able to capture positional and directional geometric features
from 2D LiDAR scans to efficiently represent the environment
and learn a neural network that is able to predict both, the
non-projective signed distance and a direction-aware projective
distance for an arbitrary point in the mapped environment.
This combination of neural map representation with a light-
weight neural network allows us to design an efficient obser-
vation model within a conventional Monte Carlo localization
framework for pose estimation of a robot in real time. We
evaluated our approach to indoor localization on a publicly
available dataset for global localization and the experimental
results indicate that our approach is able to more accurately
localize a mobile robot than other localization approaches
employing occupancy or existing neural map representations.
In contrast to other approaches employing an implicit neural
map representation for 2D LiDAR localization, our approach
allows to perform real-time pose tracking after convergence and
near real-time global localization. The code of our approach is
available at: https://github.com/PRBonn/enm-mcl.

I. INTRODUCTION

Estimating the state of a robot in terms of its position and
orientation in an environment is crucial to enable robots to
operate autonomously, but it is also a key requirement for
realizing autonomous navigation and planning. Localization
in a pre-built map is a common way to realize state estima-
tion for robotic systems, where probabilistic methods using
various map representations are often employed. In indoor
environments, localization via external sources of global
positioning information, such as GNSS data, is typically not
available, therefore, global localization must rely on onboard
sensors, like wheel odometry and 2D LiDAR sensors. A gold
standard approach for that is Monte Carlo localization [5].

In this paper, we investigate the problem of building an
effective map for achieving accurate and efficient global
localization and ego-pose tracking in indoor environments.
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Fig. 1: We learn a neural network to represent the surfaces of
environments. Our method achieves both efficiency and accuracy
for indoor localization by integrating our proposed efficient neural
map representation into a Monte Carlo localization system. We
show the average runtime for each method in sequence 1 of the
in-house dataset.

Specifically, we aim to build a map representation that can be
used for implementing an accurate and computationally ef-
ficient probabilistic localization approach, where we employ
a conventional Monte Carlo localization (MCL) and use our
map representation for an efficient observation model.

A classical approach to build an effective map repre-
sentation is occupancy grid mapping [23] often used to
realize MCL [7], [8], [31] in indoor environments. Recently,
several approaches [11], [24] investigated the usage of novel
implicit neural map representations to replace the commonly
employed occupancy grid maps due to promising prospects
regarding representing scene details continuously with a
comparably small memory footprint and scene completion
capabilities [28]. While these approaches demonstrate the
advantages of an implicit map representation over conven-
tional occupancy maps, they typically require significant
computational resources for training and deployment in
global localization, especially in large-scale environments.

To address these key limitations of current implicit neural
map representation-based global localization methods [11],
[24], we propose a novel approach that improves the ef-
ficiency of using the map representation in an MCL-based
localization, while simultaneously increasing the localization
accuracy at the same time, as we show in Fig. 1.

https://github.com/PRBonn/enm-mcl


The main contribution of this paper is a novel implicit map
representation, which we call efficient neural map (ENM),
that allows to learn the surface information of a mapped envi-
ronment through a dense feature grid combined with a light-
weight neural network enabling efficient global localization
in large indoor environments with a large number of parti-
cles. The light-weight neural network learns an approximate
regular (non-projective) signed distance field (SDF), but is
also able by incorporating information of the ray direction to
accurately predict a direction-aware projective SDF (PSDF)
capturing both, geometric and directional features of the
environment. We integrate our ENM representation into the
existing MCL framework by replacing the occupancy grid
map used to compute a beam end point-based observation
model [23], resulting in the approach we call ENM-MCL.
Our experimental evaluation on multiple publicly available
sequences for indoor localization indicates that our ENM-
MCL is able to more accurately localize a mobile robot than
other probabilistic localization approaches employing occu-
pancy or so far used neural representations. Furthermore,
the results show that ENM-MCL is able to perform real-
time pose tracking after convergence, while allowing near
real-time global localization.

In sum, we make three key claims: (i) Our map represen-
tation, ENM, used by ENM-MCL achieves more accurate
global localization compared to other localization approaches
employing conventional occupancy grid maps or neural map
representations; (ii) Our ENM-MCL system operates at real
time for pose tracking but also enables efficient global local-
ization even with a large number of particles; (iii) Our ENM-
MCL converges quickly to the correct pose estimate enabling
fast and reliable localization in indoor environments. We will
publish the source code of our ENM-MCL.

II. RELATED WORK

Pose tracking and global localization for mobile robots are
key research areas in robotics as determining the location
of a robot in a given map is crucial for many downstream
tasks. Regarding global localization for mobile robots, Monte
Carlo localization is a gold standard method, which exploits
a particle filter to estimate the robot’s state in a probabilistic
manner and has been implemented with various sensors,
such as 2D LiDARs [5], [8], [22] and cameras [2], [30].
To improve the efficiency of the MCL algorithm, Fox et
al. [8] propose an adaptive sampling strategy, which adapt
the size of the sample set on the fly. Traditionally, MCL
methods for LiDAR-based localization often rely on occu-
pancy grid maps [4], [8], [31] for 2D LiDARs, but also for
3D LiDARs [3], [13].

The representational capacity of occupancy maps is con-
strained by their pre-defined grid resolution, where simply
increasing the resolution can substantially increase memory
consumption. To overcome this limitation of a fixed reso-
lution, some approaches for LiDAR-based localization have
been proposed to construct a multi-resolution map [6] or
learn continuous implicit map representations via Gaussian
processes [16], [26], reproducing kernel Hilbert maps [20].

Nonetheless, these methods are quite time-consuming and
challenging to directly apply to real-world scenarios.

Recently, implicit neural map representations have gained
popularity due to their compactness and continuous repre-
sentational capacity. These representations have been used
to model complex geometric information, such as learning
a radiance field [1], [15], [21] from images to representing
the 3D world [17], [19]. Consequently, NeRFs have been
employed for visual localization tasks, such as global lo-
calization [14] or re-localization [12]. Other methods [17],
[19] learn a signed distance field from LiDAR or RGB-D
camera as a more accurate geometric representation of the
environment. Moreover, some works [25], [27] use the neural
network not only to encode the geometry or appearance of
the scene, but also the semantics of the environment. Due to
their high representational capacity of the employed neural
network, several works [11], [24] use a single MLP to rep-
resent the entire scene and integrate the implicit neural map
representation into an observation model of MCL to achieve
global localization. Although these methods exhibit good
map representation capabilities, the reconstruction process
is very time-consuming and the time needed to querying the
representation does not meet the required efficiency for real-
time localization.

To address the challenge with respect to efficiency, re-
cent works [18], [28], [29] have introduced feature fields
combined with shallow MLPs as a representation of the
environment. This approach not only accelerates convergence
of training process but also enhances the quality and capacity
of the map representation. However, these methods have
primarily been applied to 3D reconstruction tasks and have
not yet been efficiently deployed in 2D indoor localization
scenarios.

In this work, we leverage the high capacity of neural net-
works to learn both the non-projective SDF and a direction-
aware projective SDF by encoding the ray direction of 2D
LiDAR into the neural map representation. Additionally, we
propose a novel implicit representation based on a dense
feature grid combined with a light-weight neural network,
which substantially reduces computational cost, especially
for querying the neural map representation. Our novel im-
plicit neural map representation enables more detailed mod-
eling of the environment while improving the accuracy and
efficiency of global localization using 2D LiDAR scans.

III. OUR APPROACH FOR GLOBAL LOCALIZATION

The goal of our approach is to accurately localize a
mobile robot in a given map by learning an efficient neural
map representation of the environment. More specifically,
we propose to represent the environment via a feature grid-
based representation, which is learned from 2D LiDAR scans
recorded in a mapping session and allows to predict the
signed distance to the surface at an arbitrary position via
a shallow multi-layer perceptron (MLP), see Sec. III-A. For
learning the implicit neural map representation, we supervise
learnable features of the feature grid and the weights of the
employed MLP with real measurements from a 2D LiDAR as



Occupied
Area

Truncated 
Area

Free Area

SDFPSDF

Ray Direction

Robot Position

Sample

Location EncoderFeature Grid SDF Head

Direction-Aware
Encoder

PSDF Head
Concatenate

SDF

PSDF

Positional
Encoding

Fig. 2: Overview of our approach for jointly predicting the non-projective SDF and direction-aware projective SDF values using our
proposed efficient neural map representation. We sample several positions along a LiDAR ray and input the 2D position p = (x, y)> as
well as the corresponding ray direction d = (dx, dy)

> into our ENM model to estimate the SDF and PSDF. The predictions of the SDF
and PSDF values by the neural network are supervised with the ground truth SDF/PSDF values from 2D LiDAR measurements.

presented in Sec. III-B. After that, we use the efficient neural
map representation in an MCL-based localization approach,
where we use the estimated SDF for an observation model
to update the weights of the particles, as described in more
detail in Sec. III-C.

A. Efficient Neural Map Representation

For our map representation, we want to leverage a neural
representation that allows for estimating the signed distance
to the surface in the environment. More specifically, we
propose an implicit neural surface representation, which is a
function FΘ,G that takes the 2D location vector p = (x, y)>

and 2D Cartesian unit vector d = (dx, dy)> as inputs, and
predicts the corresponding non-projective signed distance
field (SDF) value s and direction-aware projective signed
distance field (PSDF) value s̄. The SDF value represents the
shortest distance from the point p to the nearest surface in
the environment and the PSDF is the distance from a point
p to the surface along the specific ray direction d. Formally,
we have the following:

s, s̄ = FΘ,G(p,d). (1)

We represent FΘ,G by a MLP, where Θ represents the
weights of the MLP and G corresponds to a dense grid of
learnable feature vectors. By combining a light-weight net-
work with a dense feature grid, we can substantially reduce
the computation-cost meanwhile maintaining the quality of
the map model, which supports to use it with a particle filter
for localization in real time.

Our dense feature grid G has a given grid resolution ∆G.
Each grid corner at the location coordinate (i, j) stores
a D-dimensional feature vector cgi,j ∈ RD. During operation,
the input 2D location p is first encoded into a location feature
fp ∈ RD by performing bilinear interpolation on the dense
feature grid G. We use the neural network to estimate the
SDF s and PSDF s of input 2D location p and ray direction
d, which consist of two branches, as shown in Fig. 2.

In the SDF branch, the location feature fp is first pro-
cessed by an encoder Fp, a 3-layer MLP, to extract the

positional embedding fpembed. Then, fpembed is decoded into
the s value of the input location by the SDF head Hsdf, which
is a 1-layer MLP. Formally, we have the following:

fpembed = Fp(f
p), (2)

s = Hsdf(f
p
embed). (3)

In the PSDF branch, the extracted positional embed-
ding fpembed is concatenated with the positional encoding of
the directional vector dγ and fed into another 3-layer MLPs
Fd, to extract the direction-aware embedding fdembed, and
then predict the s̄ value of the input location and direction by
a PSDF head Hpsdf, which is also a 1-layer MLP, as follows:

fdembed = Fd(f
p
embed ⊕ dγ), (4)

s̄ = Hpsdf(f
d
embed), (5)

where ⊕ is the concatenation of two vectors. To enable the
model to capture high-frequency geometric features of the
ray direction, we encode the directional vector d via a posi-
tional encoding γ, where we apply γ to each component [15],
i.e., dγ = (γ(dx), γ(dy))>. The positional encoding function
γ : R 7→ R2L+1 is defined as:

γ(d) =
(
d, sin(20d), cos(20d), . . . , sin(2L−1d), cos(2L−1d)

)
,

(6)

where L is the number of frequency bands used.
The networks Fp and Fd are shallow MLPs. Each hidden

layer has D neurons and D+ 2(2L+ 1) neurons for Fp and
Fd, respectively. D is the dimension of the feature vector
from G and L is the bandwidth of γ. In our model, we set
D = 4 and L = 4, and each layer is followed by a ReLU
activation. These shallow MLPs enable our model to run in
real-time, even with a large number of particles.

B. Learning the ENM from 2D LiDAR Data

We learn our ENM representation using 2D LiDAR data
from scans recorded in a mapping run. Given a posed 2D
LiDAR scan with a set of rays B = {(rj ,dj)}, where dj are



ray directions and rj are range readings, we sample positions
on these rays for a training set S for each scan.

We sample training data by selecting points along each Li-
DAR ray within three regions: the truncated space, occupied
space, and free space, see Fig. 2 left. The truncated space
is the area in front of the surface, and the occupied space
is the area behind the surface. For each ray, we randomly
sample Mt samples in the truncated space, denoted as St,
and fewer Mo samples in the occupied space, denoted as
So, to encourage the model to learn the surface features.
Furthermore, we sample a small number of Ms samples in
the free space, denoted as Sf , as these areas contribute less
to learn the fine geometric details. The set of sampled points
along each ray of a single LiDAR scan is then given by
S = St∪So∪Sf . Fig. 2 shows the sampling process visually.

To optimize the weights and learnable feature vectors
of FΘ,G, we supervise the predicted s and s̄ values using the
generated ground truth from the training samples. Regarding
the PSDF loss Lpsdf, we can directly generate the ground-
truth projective SDF values from the range readings of each
LiDAR ray. Let p be a sample on the LiDAR ray, then the
ground-truth PSDF value ˆ̄s is given by the distance between
real measured distance r and the distance between p and the
LiDAR origin o:

ˆ̄s = r − ‖p− o‖2. (7)

The loss Lpsdf for the projected SDF is then computed
using only the sampled points near the surface, St ∪ So, as:

Lpsdf =
1

|St|+ |So|
∑

(p,d)∈St∪So

|s̄− ˆ̄s|, (8)

where d is the corresponding ray direction of sample p and s̄
is the predicted PSDF from FΘ,G(p,d).

Regarding the SDF loss Lsdf, we activate the predicted
SDF values using a sigmoid function σ, and minimize a bi-
nary cross-entropy loss as the SDF objective Lsdf, formulated
as:

Lsdf = − 1

|S|
∑

(p,d)∈S

(
σ(ŝ) log σ(s)

+ (1− σ(ŝ)) log(1− σ(s))
)
, (9)

where s = FΘ,G(p,d) is the predicted signed distance value
for the input sample, and σ(ŝ) ∈ [0, 1] is the ground-truth
value indicating the probability of the point being inside
or outside the surface. Since we cannot directly obtain the
non-projective SDF value from LiDAR range readings, we
supervise the SDF prediction in an approximate manner, i.e.,
σ(ŝ) ≈ σ(ˆ̄s), inspired by prior work [28].

Additionally, we incorporate an Eikonal loss Leikonal to
regularize the SDF [18], [28]. The Eikonal loss ensures that
the gradient of the predicted SDF ∇s satisfies the Eikonal
equation ‖∇s‖ = 1, which helps to enforce SDF smoothness
and prevents the SDF from unrealistic deformations, leading
to a more accurate neural map representation. The Eikonal

Real Measurement

Positive
Particle

Negative
Particle Likelihood

Fig. 3: The observation model based on the ENM representation. We
estimate the SDF and PSDF values for all beam end-points of the
particles using the ENM model, and update the particles’ weights
by computing the likelihood based on the SDF and PSDF values
of the beam end-points. The positive particle has higher likelihood
which scans are aligned with the zero level of distance field.

loss Leikonal is defined as:

Leikonal =
1

|St|+ |So|
∑

(p,d)∈St∪So

(‖∇si‖ − 1)
2
. (10)

By minimizing this loss, we ensure that the predicted
SDF adheres to the properties of a signed distance function,
improving both stability and accuracy in the learned map
representation. To sum up, our final loss objective is:

Lfinal = Lsdf + Lpsdf + βLeikonal. (11)

We optimize the loss function of the ENM model using
the Adam optimizer [10] with a learning rate of 0.001, and
we use β = 0.1 for the Eikonal loss. S. We sample Mt = 6
positions in the truncated space, Mo = 4 positions in the
occupied space, and Mf = 5 positions in the free space. The
training process runs for 5,000 iterations, at each iteration
we randomly sample batch of rays from all training LiDAR
scans with a batch size of 2,048.

C. Efficient Neural Map-based MCL

Given our new map representation, we need to integrate
it into MCL as our localization approach, ENM-MCL. We
want to estimate the SE(2) state xt = (x, y, θ)>t of the
robot at time t defined by the 2D position (x, y)> and
the orientation θ ∈ [−π, π]. To this end, we estimate
the posterior p(xt|zt,m) of the robot state xt at time t
with observations zt and map m using a recursive Bayes
filter [23], which is realized in MCL [5] via a particle filter.
The particle filter approximates p(xt|zt,m) by a set of
particles N = {(xnt , wnt )}, |N | = N , where each particle
is a hypothesis of the robot’s state xnt = (xnt , y

n
t , θ

n
t )> with

its corresponding weight wnt . The weights wnt are updated
based on the likelihood p(zt|xnt ,m) of the observation zt,
commonly called observation model.

We use as observation model the conventional beam end-
point model of MCL, but adapt it to employ our map
representation. Here, we want to achieve that the observation
model results in a higher likelihood if a particle hypothesis is
closer to the real robot state, which means that the beam end
points have the small SDF and PSDF values with our map
representation. Specifically, we transfer the measured LiDAR



scan to a particle’s state xnt at time t and then check the SDF
and PSDF value of end-point zit for each ray (rit,d

i
t) ∈ Bt,

formally as:
zit = Rn

t (ritd
i
t) + tnt , (12)

where Rn
t ∈ R2×2 is the 2D rotation matrix for angle θnt ,

and tnt = (xnt , y
n
t )>. Then, we exploit our ENM model FΘ,G

to estimate the SDF value sit of zit, and the PSDF value s̄it
of (zit,R

n
t d

i
t) as:

sit, s̄
i
t = FΘ,G(zit,R

n
t d

i
t), (13)

where Rn
t d

i
t is i-th the ray direction in the reference frame

of the particle. Then, the likelihood of zit is given by:

p(zt | xnt , FΘ,G) ∝ exp

−λ 1

|Bt|

|Bt|∑
i=1

|sit|+ |s̄it|
2

 . (14)

Similar to other localization systems [9], we compute an
average alignment for each scan to the map. Furthermore, we
average the predictions from the ENM model since it reduces
the impact of noise or inaccuracies in either sit or s̄it, resulting
in a more robust and consistent likelihood estimation.

IV. EXPERIMENTAL EVALUATION

The focus of this work is an efficient MCL system using an
efficient and accurate neural map representation. We present
our experiments to show the capabilities of our method. The
results of our experiments support our key claims, which
are: (i) the method achieves high accuracy in localization
by representing the environment with the ENM model; (ii)
our ENM-MCL system operates in real-time at pose tracking
but also enables efficient global localization even with large
numbers of particles; (iii) our algorithm converges quickly
to the correct pose estimation to support rapid and reliable
localization.

A. Experimental Setup

We evaluate our global localization results using the in-
house dataset, previously used in prior work [11], [24]. It
was collected with a KuKa YouBot equipped with a UTM-
30LX 2D LiDAR and an upward-facing camera (not used for
localization). The ground-truth robot poses were generated
by localizing a large number of AprilTags on the ceiling
detected by the upward-facing camera, as described in our
prior work [11], providing a reference trajectory as near
ground truth with a global position error around 1 cm, often
even better. The dataset covers different indoor scenes such
as offices, a kitchen, and a long corridor. It contains a 31,608-
frame mapping sequence for training ENM and five test
sequences averaging 1,419 frames for localization evaluation.

To demonstrate the localization accuracy of our method,
we compare with four existing LiDAR-based localization
algorithms: AMCL [8], SRRG-Loc [9], IRMCL [11], and
LocNDF [24]. AMCL and SRRG-Loc are both occupancy
grid map-based methods. The AMCL is a widely used global
localization method from the standard ROS1 implementation.
The SRRG-Loc [9] is developed by the Sapienza Robust

Seq Method Location Yaw Success
Rate (%)RMSE (cm) ↓ RMSE (degree) ↓

1

AMCL 12.24 ± 0.33 2.08 ± 0.08 40.0
SRRG-Loc 5.33 ± 0.02 0.75 ± 0.00 100.0

IRMCL 5.35 ± 0.07 1.06 ± 0.01 100.0
LocNDF 4.06 ± 0.06 0.60 ± 0.00 60.0

ENM-MCL 1.96 ± 0.07 0.41 ± 0.00 100.0

2

AMCL 10.28 ± 0.00 0.86 ± 0.00 100.0
SRRG-Loc 6.59 ± 0.02 1.09 ± 0.00 100.0

IRMCL 5.53 ± 0.06 0.82 ± 0.01 60.0
LocNDF 4.06 ± 0.93 0.62 ± 0.03 80.0

ENM-MCL 4.18 ± 0.06 0.60 ± 0.01 100.0

3

AMCL - - 0.0
SRRG-Loc - - 0.0

IRMCL 4.70 ± 0.13 0.77 ± 0.04 100.0
LocNDF 3.85 ± 0.13 0.72 ± 0.01 100.0

ENM-MCL 3.05 ± 0.03 0.74 ± 0.01 100.0

4

AMCL - - 0.0
SRRG-Loc - - 0.0

IRMCL 11.72 ± 0.31 1.57 ± 0.12 100.0
LocNDF 10.89 ± 0.55 1.55 ± 0.16 60.0

ENM-MCL 5.82 ± 0.12 0.97 ± 0.08 100.0

5

AMCL - - 0.0
SRRG-Loc 6.29 ± 0.06 1.03 ± 0.05 100.0

IRMCL 6.12 ± 0.03 1.26 ± 0.01 100.0
LocNDF - - 0.0

ENM-MCL 2.40 ± 0.02 0.54 ± 0.01 100.0

TABLE I: Quantitative results of global localization on the in-house
dataset. We report the ATE for both location and orientation RMSE,
along with the success rate of each method over five runs. The ATE
is only reported if at least one run was successful; otherwise, ‘-’
indicates failure.

Robotics Group (SRRG), which is a well-designed MCL im-
plementation by Giorgio Grisetti and is based on occupancy
grid maps. In contrast, IRMCL and LocNDF are two state-
of-the-art methods based on implicit neural representations.

B. Global Localization Performance

The first experiment evaluates the performance of our
approach and its outcomes support the claim that our method
achieves the state-of-the-art accuracy for global localization.

Regarding the parameters of our MCL system, we use a
large particle number N = 80,000 during the initialization
phase, where particles are uniformly distributed across the
map with random orientations for global localization, and
reduce it to N = 1,000 for efficient pose tracking after con-
vergence. This adaptive adjustment for the particle number
balances the trade-off between reliability and computational
cost for the MCL system. To evaluate the localization results,
we compute the absolute trajectory error (ATE) between the
predicted and ground-truth trajectories. It includes the RMSE
of translation (in centimeters) and orientation (in degrees).
To reduce the sensitivity to randomness in the particle filter,
we run five times with different random seeds, and take the
average as the final ATE for each sequence.

The comparison results are shown in Tab. I. Our method
demonstrates better accuracy compared to the baseline meth-
ods across all sequences. Even in challenging scenarios, such
as sequence 3 where the robot starts in a corridor, our method
substantially outperforms other approaches, leading to a
35.7% improvement over IRMCL. Meanwhile occupancy
grid map-based methods failed entirely without parameter
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Fig. 4: Qualitative global localization results of ENM-MCL on
all five sequences of the in-house dataset. We show the predicted
trajectories after convergence. The predicted trajectories are mostly
aligned with the ground truth, indicating the high accuracy and
reliability of our method.

tuning in this sequence. Furthermore, the results highlight
that our method is more robust than the baselines, achieving
a 100% success rate on all five sequences. This indicates that
our model offers a better geometric representation to support
more reliable localization in complex indoor environments.
The predicted trajectories of our method are shown in Fig. 4.

C. Runtime Analysis

The second experiment evaluates the runtime for both
training and localization, illustrating the efficiency of our
approach. Specifically, we measure the runtime during per-
forming MCL in initialization and pose tracking phase, and
also propose the average frame rate on sequence 1 of the
in-house dataset. We compare our method with IRMCL [11]
and LocNDF [24], two other implicit representation-based
MCL methods. Since all these methods are based on neural
networks to build implicit representations, our results support
the claim that the ENM architecture can reduce computation
costs for real-time applications. We test all approaches on a
desktop computer with a 3.7 GHz CPU and 64 GB memory,
and a NVIDIA Quadro RTX 5000 GPU with 16 GB memory.

As shown in Tab. II, the runtime performance of the tested
methods demonstrates the efficiency of our approach. We
keep the default settings of the number of particle to each
method for fair comparison. Specifically, our ENM-MCL
outperforms the other methods in both initialization and
pose tracking phases on the dataset. During pose tracking,
ENM-MCL achieves 180.2 fps using 1,000 particles, making
it suitable for real-time operation. Although our method
requires more particles during the initialization phase (80,000
particles), it still reaches a speed of 4 Hz, showcasing its
efficiency even with larger particle sets.

D. Convergence Analysis

Finally, we analyze our method with respect to its ability
for rapid and reliable global localization. For fair compari-
son, we compare the convergence speed of localization with
baseline methods in sequence 1 of the dataset, as it is a
relatively simple scenario where all baselines succeed, and
the trajectory of the sequence is shown in Fig. 4.

The location RMSE error curves of all methods are
shown in Fig. 5. The occupancy grid map-based methods
converge slowly in the sequence because of many similar
offices in the environment and the occupancy grid map does
not include enough geometric details to quickly distinguish
similar rooms. In contrast, the implicit representation-based

Method
Localization Speed [FPS]

Initialization Pose Tracking Average Speed
(#Particles) (#Particles) on Sequence 1

IRMCL 1.2 Hz (100,000) 27.0 Hz (5,000) 9.1 Hz
LocNDF 0.5 Hz (100,000) 2.8 Hz (10,000) 2.1 Hz

ENM-MCL 4.0 Hz (80,000) 250.0 Hz (1,000) 180.2 Hz

TABLE II: Runtime comparison of different methods. We report the
frame rate for the initialization and pose tracking phase of MCL
under the default parameters of baselines. We also report average
frame rate of both phases over the complete sequence.
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Fig. 5: The error curves of location RMSE on the Sequence 5 of
the in-house dataset.

methods quickly converge and our ENM-MCL maintains a
fast convergence time of only 3.6 seconds.

In summary, our evaluation suggests that our method is
highly efficient and robust, which is suitable for efficient
global localization. At the same time, our method maintains
high accuracy and reliability. Thus, we supported all our
claims with this experimental evaluation.

V. CONCLUSION

In this paper, we presented a novel approach to robot
localization using an efficient and effective implicit neural
representation. Our map representation is capable of learning
both, the non-projective signed distance fields and direction-
aware projective distance fields from 2D LiDAR data, which
stores both positional and directional geometric features of
the environment. Our method exploits a learnable dense
feature grid combined with a light-weight neural network as
the map representation model. This allows us to successfully
integrate the implicit representation into a Monte Carlo lo-
calization framework to improve the accuracy and efficiency
for implicit representation-based MCL. We evaluated our
approach on a public dataset and provided comparisons
to other existing methods and supported all claims made
in this paper. The experiments suggest that by leveraging
neural representations, we can not only improve the quality
of map, but also reduce the computation costs of MCL to
perform real-time pose tracking and enable efficient global
localization with a large number of particles.
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