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Abstract— The problem of estimating the positions of land-
marks using a mobile robot equipped with a camera has
intensively been studied in the past. In this paper, we consider
a variant of this problem in which the robot should estimate
the locations of observed landmarks based on a sparse set
of geo-referenced images for which no heading information is
available. Sources for such kind of data are image portals such
as Flickr or Google Image Search. We formulate the problem of
estimating the landmark locations as an optimization problem
and show that it is possible to accurately localize the landmarks
in real world settings.

I. INTRODUCTION

Popular Internet resources such as Flickr or Google Image

Search offer a large amount of real world imagery. Many of

these images contain geo-references, i.e., the locations where

the photographs have been taken in longitude and latitude

coordinates as well as manual annotations such as marked

image regions and a tag word like “cathedral”. Currently,

Flickr offers millions of tagged images, a trend which is

likely to continue given the growing popularity of mobile de-

vices, GPS receivers and specialized integrated systems. The

question of how this large amount of freely available data can

be used to infer quantitative knowledge about the world was

our main motivation for this work. On a comparably small

spatial scale, systems such as Microsoft’s Photo Tourism [13]

process sets of images of the same location to yield a dense

3D model of the local environment, which is capable of

producing artificial views and virtual fly-throughs. In this

paper, we deal with the problem of localizing a discrete set

of distinct landmarks on a larger spatial scale, like a town or a

campus environment. Concretely, our task can be formulated

as follows. Given a set of geo-referenced photographs of

an environment annotated with labels for distinct landmarks,

how can we recover the locations of the landmarks in the

world? Aside from the noisy geo-reference coordinates and

inaccurate label placements, the main difficulty lies in the

missing information about the camera headings.

A robot that is able to utilize a so far unused source of

information offers new ways for building models of places

it has not observed directly. It furthermore allows a robot to

also refine or annotate exiting models. Consider, for example,

a mobile tour guide robot deployed to a city center or to an

archaeological site. Given the localized landmarks and the

corresponding imagery, the system could offer a large range

of location-dependent information without requiring a human

expert to collect and formalize this knowledge.
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Fig. 1. The goal of the work presented in this paper is to estimate the
locations of the set of distinct buildings (here enclosed by rectangles) using
geo-referenced photographs taken while walking through the city.

In this paper, we consider the problem of estimating

the positions of landmarks given a set of geo-referenced

photographs. The longitude and latitude information of the

locations from which the photos have been taken are as-

sumed to be known approximatively by means of a standard

consumer GPS device. By combining this data with labeled

regions in the photos referring to objects, such as buildings,

our approach is able to localize these buildings and to

determine the direction in which the photo has been taken.

In contrast to bearing-only SLAM, our approach does not

require an image stream from a camera. We furthermore

assume to have no knowledge about the orientation of the

camera at any point in time. We address this problem by

formulating it as an optimization problem. As we show in the

experiments, we are able to accurately localize the labeled

buildings based on photos taken in an urban environment.

Figure 1 depicts the downtown area of Freiburg including

several distinct landmarks enclosed by rectangles. The goal

of this work is to estimate the positions of such land-

marks based on photographs taken while walking or moving

through the city center.

The remainder of this paper is organized as follows.

After discussing related work, we present a mathematical

formulation of our problem and derive an objective function

that needs to be minimized to solve the estimation problem.

In Section IV, we then explain two optimization procedures

that are used throughout this work. Finally, we present real

world as well as simulation experiments that illustrate the

performance of our method.



II. RELATED WORK

The problem of estimating the poses of landmarks based

on observations has been intensively studied in the past.

Several researchers studied the landmark-based simultaneous

localization and mapping (SLAM) problem [1], [9], [8], [12],

[4], [7]. In the literature, one distinguishes between SLAM

approaches that are designed to operate on proximity sen-

sors and those operating on bearing-only (typically vision)

sensors. For example, Davison et al. [2] presented a vision-

based 6 DoF SLAM system that extracts features from a

monocular camera and creates a sparse map of high-quality

stable features. The locations of the features are tracked by

applying an EKF. Lemaire et al. [6] focused on the problem

of how to initialize landmarks in the context of EKFs and

bearing-only observations.

Approaches to bearing-only SLAM, however, consider

that the robot constantly perceives the environment with its

camera. As a result, a continuous stream of images and thus

feature observations is provided so that the landmarks can be

tracked over time. Furthermore, the robot is often assumed

to roughly know the relative change in its orientation while

moving from odometry. These two assumptions are not made

in the work presented in this paper.

Recently, related approaches to this paper have been

presented. The most prominent one is probably Microsoft’s

Photo Tourism [13]. This approach considers a set of images

of the same place and generates a dense 3D model of the

local environment. It is capable of producing artificial views

and virtual fly-throughs. In contrast to this, we deal with the

problem of localizing a discrete set of distinct landmarks on

a larger spatial scale, for example in a town or a campus

environment.

The MIT City Scanning Project [14] addresses the problem

of building models from city environments with a mobile

robot. This approach focuses on the textured 3D reconstruc-

tion of buildings in the environment. In the so-called “4D-

Cities” project, Dellaert and colleagues [3], [11] address the

problem of building spatial-temporal models of cities. They

use current and historical photographs to reconstruct city

scenes at different points in time. The temporal ordering can

be inferred from the images by formulating it as a constraint

satisfaction problem. This allows for time travels in cities.

III. LANDMARK AND CAMERA POSE ESTIMATION

We consider the problem of estimating the camera poses

and the locations of observed landmarks given a labeled set

of camera images. In the remainder of this paper, we use the

following notation.

A. Problem Formulation

Let Pi = (XPi
, YPi

, θPi
)T be the position and orien-

tation of the camera when recording image i. Let Lj =
(XLj

, YLj
)T be the position of landmark j in the Cartesian

space. Each observation of landmark j seen in image i
recorded at position Pi is a horizontal angle αij that de-

scribes the location of the landmark relative to the optical

axis of the camera when recording the image.

In this paper, we assume that the 2D locations (XPi
, YPi

)

at which the camera images have been recorded are approxi-

mately known since images are supposed to be geo-reference.

This information can be obtained from a low cost consumer

GPS device. However, the orientation information θPi
is

unknown. Given the observations αij , the goal is to estimate

the landmark locations Lj as well as the orientations of the

cameras θi. In addition to that, we improve the estimate of

the locations of the cameras as delivered by the GPS device.

We consider the landmarks as uniquely identifiable. The

problem of extracting appropriate features to identify them

is not the focus of this work. We furthermore assume that

the roll angle of the camera during image recording is zero.

By means of low cost attitude sensors used together with the

cameras, images can easily be corrected by a simple rotation.

Other information such as the focal length of the lens while

taking the image can be obtained from the EXIF tags stored

in the images.

Note that we assume to have no direct information about

the orientations of the cameras. As a result, images that

only contain a single landmark have no influence on the

estimate because the landmark can be located anywhere.

This makes our approach different from typical bearing-

only SLAM techniques which, in general, assume to have an

estimate about the orientation of the camera that is typically

computed from an image stream recorded by the camera or

by using odometry information.

B. Objective Function

In our approach, we solve the described location esti-

mation problem by means of optimization. To apply an

optimization procedure, one needs to define an objective

function. In our scenario, the objective function can be

defined as the error between the obtained observations and

the estimated positions of the landmarks.

Let the variables indicated by ·̂ refer to the estimated quan-

tities. In case the estimated camera and landmark positions

are consistent with the observations, we obtain

tan(θ̂Pi
+ αij) =

ŶLj
− ŶPi

X̂Lj
− X̂Pi

. (1)

In practice, we want to minimize the position error of

the landmarks. Our observations, however, only provide

bearing information. Thus, the error to be minimized can

be specified by the difference between the estimated land-

mark location (L̂j) and the line of sight starting from

the camera position (P̂i) in the direction of the observed

landmark (θ̂Pi
+ αij) (see Figure 2 for an illustration).

One can easily compute the arc length Eij between

the estimated landmark location (L̂j) and the line of sight

resulting from the observation. It can be computed as

Eij = eijrij , (2)

where

eij = atan2(ŶLj
− ŶPi

, X̂Lj
− ŶPi

) − θ̂Pi
− αij (3)



eij

L̂j

rij

Eij

P̂i

Ljobs

αij

X

θ̂Pi

ob
se

rv
at

io
n

Fig. 2. Illustration on how to compute the estimated error Eij . P̂i refers
to the pose of the camera looking in the direction indicated by the dotted
line. The dashed line is the line of sight on which the landmark is located

given the observation. L̂j is the estimated landmark location and eij is the
angular error between the estimated and the observed landmark. rij is the
Euclidean distance between the camera and the estimated landmark.

is the angular error in radians between the estimated and the

observed landmark computed from Eq. (1) and

rij =

√

(X̂Pi
− X̂Lj

)2 + (ŶPi
− ŶLj

)2 (4)

is the Euclidean distance between camera i and esti-

mated landmark j. The function atan2(∆Y,∆X) refers to

arctan(∆Y/∆X) but explicitly considers the four quadrants.

In our scenario, we assume that the locations of the

cameras are measured with a consumer GPS device. Thus,

these positions can be regarded as globally correct with a

bounded noise term. As a result, the optimization approach

should be allowed to locally modify them if this reduces

the overall error. Therefore, we add a penalty term f(x)
that allows for local corrections only. This function is a

differentiable barrier function that goes to infinity as x
approaches the maximum assumed GPS error, but is near

zero close to the measured location. Such an approach is

frequently applied to cope with GPS errors [15]. As a result,

the objective function E turns into

E =
∑

i,j

Eij
2 +

∑

i

f(||P̂i − P̃i||), (5)

where P̃i refers to the locations of the cameras as provided

by the GPS observation.

C. Gradient for Optimization

Most optimization techniques either directly rely on gradi-

ent information or can be sped up significantly by incorporat-

ing knowledge about the gradient of the objective function.

In our model, the gradient of the error function E as stated

in Eq. (5) is given by

∇E =
∑

i,j

∇Eij
2 +

∑

i

∇f(||P̂i − P̃i||) . (6)

The gradient consists of the partial derivatives with respect
to the individual variables we want to optimize, namely

θ̂Pi
, X̂Lj

, ŶLj
, X̂Pi

, and ŶPi
. By applying a series of

mathematical derivations, we obtain

∂E

∂θ̂Pi

= −2
∑

j

eijrij
2

(7)

∂E

∂X̂Lj

= 2
∑

i

eij
2(X̂Lj

− X̂Pi
) − eij(ŶLj

− ŶPi
) (8)

∂E

∂ŶLj

= 2
∑

i

eij(X̂Lj
− X̂Pi

) + eij
2(ŶLj

− ŶPi
) (9)

∂E

∂X̂Pi

= 2
∑

j

eij(ŶLj
− ŶPi

) + eij
2(X̂Pi

− X̂Lj
)

+
∂

∂X̂Pi

f(||P̂i − P̃i||) (10)

∂E

∂ŶPi

= 2
∑

j

eij
2(ŶPi

− ŶLj
) − eij(X̂Lj

− X̂Pi
)

+
∂

∂ŶPi

f(||P̂i − P̃i||). (11)

Note that the penalty term f(||P̂i − P̃i||) only affects

the partial derivatives with respect to the estimated camera

locations X̂Pi
and ŶPi

.

We have specified the objective function for our problem

as well as its partial derivatives. After randomly sampling an

initial guess, we can now apply gradient-based optimization

techniques to compute a solution.

IV. OPTIMIZATION

Optimization refers to the task of systematically choosing

the values of variables to minimize or maximize an objective

function E. For our problem, the objective function is given

in Eq. (5). This section briefly introduces gradient descent

and RPROP from a general point of view. Both methods are

applied in this work.

A. Gradient Descent

Gradient descent is a frequently used iterative optimization

technique. Starting from an initial parameter setting x0, it

alternates between (a) computing the gradient ∇E of the

objective function E w.r.t. its parameters and (b) changing

the parameter vector in the direction opposing the gradient.

More formally, we set

xn+1 = xn − ε · ∇E , (12)

where ε is a scale factor that specifies the change in the vari-

ables according to the gradient. This update-rule is iterated

until convergence or until a maximum number of iterations

has been carried out.

Standard gradient descent is easy to implement, provided

that the gradient of the objective function E is known. The

scale factor ε, however, is hard to choose in practice and

there is no general rule on how to determine it. If ε is

chosen too small, the resulting small steps cause convergence

to be slow. Too big values for ε, however, can lead to

oscillation or even divergence. In short, standard gradient

descent converges rather slowly and has no convergence

guarantee in the general case.



B. RPROP

Resilient backpropagation (RPROP) [10] was originally

proposed as a learning algorithm for artificial neural net-

works. The goal was to overcome the weaknesses of standard

gradient descent outlined above. In contrast to standard

gradient descent, RPROP neglects the absolute value of the

derivative. Instead, it considers the changes of signs of the

individual partial derivatives. The update rule of RPROP

consists of two steps. First, the so-called update value ∆k
n

for each dimension k is computed in each iteration n as

∆k
n =











η+∆k
n−1 , if ∂E

∂xk

n−1 ∂E
∂xk

n
> 0

η−∆k
n−1 , if ∂E

∂xk

n−1 ∂E
∂xk

n
< 0

∆k
n−1 , else,

(13)

where 0 < η− < 1 < η+ and ∂E
∂xk

n
is an abbreviation for

∂E
∂xk (xk

n). Based on this update value ∆k
n, the update rule

can be specified as

xn+1 = xn +







−∆k
n , if ∂E

∂xk

n
> 0

+∆k
n , if ∂E

∂xk

n
< 0

0 , else.

(14)

According to Eqs. (13) and (14), if the sign of a partial

derivative changes with respect to the previous iteration, the

step size is decreased by a constant factor η−. If the sign

does not change, the step size is increased by the factor η+.

The former is done in order to prevent the algorithm from

jumping over local minima, whereas the latter is done to

accelerate convergence in shallow regions.

Despite its comparably fast convergence, RPROP is rather

easy to implement. Compared to gradient descent, it does

not depend on a fixed scale factor ε which is hard to

determine. RPROP adapts its scale factors automatically and

thus leads to more robust and flexible optimization, which

does not require manual parameter tuning. As we will show

in the experimental section, RPROP is a suitable technique

for solving our estimation problem and clearly outperforms

gradient descent.

Note that other optimization approaches such as

Levenberg-Marquardt or scaled conjugate gradient can be

used as alternatives to gradient descent or RPROP. However,

as we illustrate in the experimental evaluation, the concep-

tually simpler and easy to implement RPROP already leads

to highly satisfactory results.

V. EXPERIMENTS

We performed a series of simulation and real world

experiments to test our method. Simulated experiments allow

us to compare the solution of our algorithm versus the ground

truth, whereas the real world experiments show that our

technique is able to solve the addressed problem in realistic

settings.

A. Real World Experiments

For data acquisition, we used a standard digital photo

camera and a consumer GPS logger (XAiOX iTrackU SiRF

III). We walked through the city of Freiburg and took a series

of photos from different locations. We then manually labeled

a set of buildings in the images to obtain the correspondences

between the images. Note that the data association problem

is not addressed in the paper. To get an estimate of the

quality of our approach in real applications, we compared

the estimated landmark locations to the ones obtained from

satellite images. We furthermore mounted a compass to the

camera in order to compare the estimated orientation of

the camera to the angle indicated by the compass (analog,

accurate up to ∼ 3 deg).

To determine the horizontal angle in which objects are ob-

served, the camera needs to be calibrated. Such a calibration

is a mapping between pixel coordinates and bearing angles

and accounts for lens distortion and other camera specific

parameters. To achieve the necessary calibration, one could

either use appropriate databases for consumer cameras or

accurately calibrate it using chessboard patterns [5].

We collected two datasets, one in Freiburg downtown

and one on the campus of the computer science department

of the University of Freiburg. In the city center, the land-

marks were located in an area of approximately 1.5 km by

1 km (distance camera-landmarks: 180 m to 2.5 km) and on

the campus in an area of approximately 320 m by 300 m

(distance camera-landmarks: 10 m to 300 m). Whereas the

left image in Figure 3 shows the Freiburg downtown area,

the right image depicts the campus area including the es-

timated landmark locations as well as the true positions.

Additionally, Figure 4 illustrates the absolute error for the

individual landmarks based on the campus experiment. The

true landmark locations were measured manually using high-

resolution satellite images. To further analyze the robustness

of our methods, we carried out 300 optimization runs in

both real world experiments and randomly initialized the

landmark locations and camera heading angles. In all runs,

our approach converged towards the same solution which

illustrates its robustness.

We also compared the estimated camera orientations to

the ones measured with a compass. It turned out that all

estimated orientations differ from the ones measured with

the compass by less than 3 deg, which is approximately the

measurement accuracy of our analog compass. In the future,

a digital compass could be used to automate this task.

B. Simulated Experiments

Simulated experiments allow us to analyze our method in

a controlled environment. We examine the evolution of the

real error during the process of optimization. We also provide

a comparison of the performance of our approach using

RPROP and the same approach applying standard gradient

descent.

As explained above, we assume that the locations where

the images were taken are roughly known from a GPS device.

Like all measurements, GPS observations are distorted by

noise. Hence, in our simulation experiments, we simulate

the noise by sampling from a Gaussian with a standard

deviation σ = 10 m. Furthermore, we assume a horizontal

opening angle of the cameras of 65 deg.



Fig. 3. True and estimated landmark locations in Freiburg downtown overlayed on a street map (left) as well as for the Freiburg campus experiment
overlayed on a building plan (right). Note that due to copyright reasons, we do not visualize the results using the original satellite images.
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Fig. 4. Individual estimation errors of the different landmarks in the campus
experiment. The landmarks are sorted by their errors for better visibility.

In the first simulation run, we used six images to esti-

mate the positions of six partially visible landmarks. We

applied our algorithm using RPROP and gradient descent.

We applied gradient descent in two settings, using ε = 0.01
and ε = 0.001. Figure 5 shows the evolution of the real

error versus the number of iterations in a typical run of

the experiment. As can be seen, RPROP shows the best

performance: the algorithm converges quickly to the correct

configuration (zero error). In contrast to this, gradient descent

with ε = 0.001 converges significantly slower. We repeated

the experiment with a value of ε = 0.01. In this setting,

the optimization oscillates and does not converge to the

correct solution. This illustrates the sensitivity of the factor ε
in gradient descent. In contrast to this, RPROP yielded a

substantially better performance without the need to man-

ually choose parameters. RPROP adapted these parameters

automatically and was able to converge to the correct config-

uration quickly. To provide a statistical evaluation, Figure 6

depicts the results of the experiment with different configu-

rations averaged over 10 runs. The error bars show the 95%
confidence intervals. As can be seen in Figure 7, a similar

convergence behavior can be observed when increasing the

size of the scene as well as the number of cameras and

landmarks.

While RPROP is guaranteed to always converge to a

solution, it is still a local optimization approach that might
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Fig. 5. Convergence behavior of a single optimization run, during which
six partially visible landmarks have been observed from six geo-referenced
camera locations using gradient descent with two different scale factors (ε)
and RPROP. The figure illustrates that an improperly chosen ε parameter
leads to oscillation.
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Fig. 6. Empirical evaluation of the convergence behavior of gradient
descent versus RPROP. The error-bars in this plot give the 95% confidence
interval for 10 runs. On a 2 GHz laptop computer, the average computation
times per iteration of RPROP and gradient descent were 35 µs and 8 µs,
respectively.

yield a local minimum. However, we found that the starting

point of the optimization is not a critical choice. With

randomly chosen starting locations, our approach converged

in all our real world experiments to the same solution.

A more crucial precondition for success is the amount of

images and landmarks and their spatial arrangement. Obvi-

ously, if only a single landmark is detected by each camera

or less than two landmarks are common between different
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Fig. 8. Influence of the x/y-position error (resulting from the GPS) on
the estimate of the landmark locations evaluated over 10 runs. The black
line shows the performance of a run with a Gaussian noise of σ = 10 m
without optimizing the camera positions, while the blue line indicates the
error when also optimizing the camera locations. The red line shows the
result if the camera poses are error-free. As can be seen, our approach
is able to compensate for this position error. The performance of the full
optimization (blue) approaches the error-free model (red).

images, the system is under-constrained geometrically and

cannot be solved. In our real world experiments and also

in a large variety of simulated scenarios, enough geometric

constraints are present to find a close to optimal solution.

Figure 8 depicts a statistical experiment which illustrates

that our approach can easily compensate for the GPS inaccu-

racies of the geo-referenced photographs. As in all simulated

experiments, we added a Gaussian noise with σ = 10 m in

the x and y-positions of the cameras. As can be seen from

the diagram, our approach compensates for this noise and

converges to the same estimate as if no noise was present.

VI. CONCLUSIONS

In this paper, we presented an approach to estimate the po-

sitions of landmarks based on a set of labeled, geo-referenced

photographs, under absence of any camera heading informa-

tion. We believe that such an approach is a first step towards

allowing a mobile robot to use additional, publicly available

sources of information like the image portal Flickr or Google

Image Search. Our technique formulates the problem of

estimating the positions of photographed objects, such as

buildings in a city, as an optimization problem and uses the

resilient backpropagation (RPROP) algorithm to solve it. We

implemented our method and used it to estimate the locations

of different buildings based on photographs taken in the city

of Freiburg, Germany. Our experiments show that RPROP

significantly outperforms gradient descent in this task.

Despite this encouraging results, there is further space

for optimizations. To actually use image databases in a

completely autonomous way, our system needs means to

robustly eliminate outliers and to build representations of

objects for determining correspondences. So far, we assumed

the labels to be known.

To summarize, we presented an approach that is able to

localize labeled objects based on geo-referenced photographs

and to simultaneously estimate the unknown camera head-

ings. This is a first step towards making such information

available to robots allowing them to improve their service

for applications in which spatial knowledge about the envi-

ronment is required.
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