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Abstract— LiDAR odometry is essential for many robotics
applications, including 3D mapping, navigation, and simulta-
neous localization and mapping. LiDAR odometry systems are
usually based on some form of point cloud registration to
compute the ego-motion of a mobile robot. Yet, few of today’s
LiDAR odometry systems consider domain-specific knowledge
or the kinematic model of the mobile platform during the
point cloud alignment. In this paper, we present Kinematic-
ICP, a LiDAR odometry system that focuses on wheeled mobile
robots equipped with a 3D LiDAR and moving on a planar
surface, which is a common assumption for warehouses, offices,
hospitals, etc. Our approach introduces kinematic constraints
within the optimization of a traditional point-to-point iterative
closest point scheme. In this way, the resulting motion follows
the kinematic constraints of the platform, effectively exploiting
the robot’s wheel odometry and the 3D LiDAR observations.
We dynamically adjust the influence of LiDAR measurements
and wheel odometry in our optimization scheme, allowing the
system to handle degenerate scenarios such as feature-poor
corridors. We evaluate our approach on robots operating in
large-scale warehouse environments, but also outdoors. The
experiments show that our approach achieves top performances
and is more accurate than wheel odometry and common LiDAR
odometry systems. Kinematic-ICP has been recently deployed
in the Dexory fleet of robots operating in warehouses worldwide
at their customers’ sites, showing that our method can run in
the real world alongside a complete navigation stack.

I. INTRODUCTION

Accurate ego-motion estimation is crucial for any mobile
robot operating in an unknown environment. Traditional
LiDAR odometry pipelines estimate the pose of the robot
incrementally using some variant of the iterative closest
point (ICP) algorithm, originally introduced by Besl and
McKay [2] to register static 3D shapes. Consequently, Li-
DAR odometry systems based on ICP alignment are typically
agnostic to mobile robot kinematics. This often results in an
unnatural motion estimation for the platform at hand, for
example, instantaneous small motions along the local z-axis
for a wheeled mobile robot. At the same time, it is a common
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Fig. 1: Given the locally consistent but globally drifting wheel
odometry of a mobile robot, our approach refines the odometry
using LiDAR data and a kinematic model of the platform. The
depicted trajectory computed by our approach is roughly 10 km.

practice to assume that the odometry can drift over time, but
is continuous, meaning that the pose of a mobile platform in
the odometric frame always evolves in a smooth way, without
discrete jumps. This is standardized in the REP-1051

In this paper, we introduce Kinematic-ICP, a LiDAR
odometry system that explicitly incorporates robot kinemat-
ics into the ICP optimization. We target a motion estimation
system, which is more consistent given the motion of robots.
In particular, we focus on wheeled mobile robots operating
on planar surfaces, as these are widely used in real-world
applications, especially indoors. Our system builds upon
KISS-ICP [31] and it uses a standard point-to-point error
metric in the optimization. We use the wheel odometry of
the robot as an initial guess and constrain the optimization to
output a pose that follows the robot’s specific kinematics. Our
approach can be used on different wheeled mobile robots.
Furthermore, we investigate an adaptive way to adjust the
relative importance of LiDAR odometry vs. wheel odometry
in the optimization to handle challenging scenarios such as

1https://www.ros.org/reps/rep-0105.html



feature-deficient corridors or wheel odometry inaccuracies.
The main contribution of this paper is a novel 3D LiDAR

odometry system that is tightly coupled with the kinematic
model of a wheeled mobile robot. Our system estimates
the robot pose accurately and faster than the sensor frame
rate, even in challenging scenarios where current state-of-
the-art systems do not perform well. We claim that our
approach can (i) correct the wheel odometry of a mo-
bile robot while enforcing kinematic constraints on the
estimated motion; (ii) compute the odometry with a level
of accuracy on par or better than state-of-the-art LiDAR
odometry systems; (iii) can dynamically adjust the weight-
ing between LiDAR measurements and wheel odometry
readings, improving robustness and accuracy in diverse and
challenging environments. All claims are backed up by the
paper and our experimental evaluation and we provide an
open-source implementation at: https://github.com/
PRBonn/kinematic-icp.

II. RELATED WORK

There are many practical solutions proposed for LiDAR
odometry in the context of mobile robotics [7], [8], [9],
[12], [20], [24], [31], [37]. Most of these methods build
upon the ICP algorithm [2], [5] to align consecutive LiDAR
point clouds with robust kernels [4] for outlier handling
to estimate the ego-motion of the sensor. Although some
algorithms include proprioceptive sensors to improve the es-
timation [34], [35], [36], LiDAR odometry approaches often
do not systematically consider the kinematics of wheeled
mobile robots. Our work aims to change this.

A common way to introduce domain-specific knowledge
into LiDAR odometry systems is to assume that the surface
the robot is moving on, and thus the robot’s motion, is planar.
In this way, one can extract ground points in a pre-processing
step of the pipeline. LeGO-LOAM [25] computes planar and
edge features and employs a two-step optimization by first
estimating the platform’s alignment with the ground given
the planar features. The result of this step is then used as an
initial guess to estimate the planar motion using the edge fea-
tures. Based on this, Seo et al. [23] investigate the effect of
ground segmentation and propose a robust ground-optimized
LiDAR odometry system. Lately, Casado Herraez et al. [3]
estimate the ground plane for an additional point-to-plane
matching in radar-only odometry. Our approach focuses on
wheeled mobile robots operating on a planar surface, and our
estimate is purely planar. In contrast to the aforementioned
methods, we do not model the planar environment based on
ground segmentation, but restrict the estimated motion to
follow the kinematics of the platform.

Another way to estimate the motion of ground robots is
to fuse multiple sources of information in a factor graph
optimization framework [1], [11], [17], [19], [27], [33]. GR-
LOAM [27] fuses LiDAR scans’ feature alignment, inertial
measurement unit (IMU), and wheel encoder readings in a
single factor graph, combining exteroceptive and proprio-
ceptive information. GCLO [33] jointly optimizes odometry
and ground alignment factors to impose planarity of motion.

Okawara et al. [19] proposes a LiDAR-IMU system that
integrates wheel odometry factors based on a kinematic
model with an online calibration of the model parameters.
These approaches estimate the robot’s pose in a smoothing
framework by considering multiple sensor cues simultane-
ously. We in contrast follow a different approach and include
domain knowledge about the robot’s motion by constraining
the pose estimation from the kinematic perspective in our
optimization framework.

The kinematics of mobile robots for odometry estimation
have already been explored in visual odometry research.
Li et al. [15] aims to improve the accuracy of visual inertial
odometry by exploiting a velocity-control-based kinematic
model without the need for odometry encoders. The mo-
tion model is calibrated online while simultaneously es-
timating the sensor pose using factor graph optimization.
Zheng et al. [38] parameterize the motion of a ground robot
equipped with a camera in SE(2) but include the out-of-
SE(2) perturbations in SE(2)-landmark constraints. Instead
of adding soft kinematic constraints that still allow for
3D motions, other odometry approaches directly estimate
the kinematic motion of a ground robot. Scaramuzza [22]
shows that by exploiting a restrictive Ackermann model for
visual odometry, the number of correspondences for motion
estimation can be reduced to one by only estimating the yaw
angle around the instantaneous center of rotation. To account
for modeling errors, Jordan et al. [14] estimate the motion of
a differential drive robot from images while falling back to
full SE(2) parameterization if the model can not sufficiently
explain the motion of the platform. These approaches work
with camera images, whereas ours estimates the odometry
from LiDAR point clouds. Furthermore, in these methods,
the robot kinematics is only included to reduce the search
space for data association or as an additional cue to the
optimizer. Similar to Scaramuzza [22], our approach directly
includes kinematics in the optimization loop, ensuring that
each motion estimate is feasible for a wheeled mobile robot.

III. LIDAR ODOMETRY USING POINT-TO-POINT ICP

Our approach integrates the kinematic model of a wheeled
robot into the registration scheme to sequentially estimate its
motion. The main components are built upon KISS-ICP [31],
which we briefly review in this section for completeness and
to introduce the notation.

To obtain the pose Tt ∈SE(3) of the robot in the odometry
frame at time t, we first pre-process the incoming point
cloud P = {pi |pi ∈R3} expressed in the sensor frame by
de-skewing and voxel downsampling resulting in P̂∗. We
then transform this point cloud to the body frame by means
of the extrinsic calibration C∈ SE(3) between the sensor and
the body frame, resulting in a point cloud S = {si | si ∈R3}.
Given the previous estimate of the robot pose Tt−1 and a
relative odometry measurement Ot ∈SE(3), we compute an
initial guess for the current robot pose as

T̂t = Tt−1 Ot. (1)
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We then refine this estimate by using the point-to-
point ICP algorithm. At each iteration, we obtain a set of
correspondences between the source S and our local map
points Q= {qi | qi ∈R3} which are stored in a voxel grid
as in KISS-ICP [31]. We define the residual r between the
point q and the point s transformed by T as

r(T) = Ts− q. (2)

We then define our point-to-point cost function as:

χ(T̂t) =
1

|C|
∑

(s,q)∈C

∥∥∥r(T̂t
)∥∥∥2

2
, (3)

where C is the set of nearest neighbor correspondences,
and |C| is the number of such correspondences. We can then
minimize Eq. (3) in a least squares fashion as:

∆u = argmin
∆u

χ(T̂t � ∆u), (4)

where ∆u is the ICP correction vector, and � applies the
correction vector to the current pose estimate. This process,
including nearest neighbor correspondence search and least
squares optimization, is repeated until convergence, resulting
in the new pose estimate Tt. After convergence, we update
the map with a downsampled version of the registered scan.

IV. INTRODUCING KINEMATIC CONSTRAINTS IN ICP

Given a correction vector ∆u∈RN coming from one ICP
iteration, we can update our pose estimate T̂t using:

T̂t � ∆u = T̂t Exp(f(∆u)), (5)

where f :RN→R6 represents the integrated kinematic
model [26] of the mobile platform in use, and Exp is the
exponential mapping of SE(3). The function f is used
to correct the initial guess T̂ coming from the platform
odometry. As such, one can potentially use a kinematic
model which is different than the physical configuration of
the mobile platform, as in fact we are modeling a motion
correction, and not the relative motion between the two
scans. Intuitively, ∆u ∈ RN represents the N integrated
control inputs that need to be applied to the robot to correct
the motion. While our framework can be applied to any
robot kinematics, we want to focus on the unicycle-based
correction, as this can be widely applied to most wheeled
mobile robots [26], humanoids [6], and even boats [32]. In
this case, ∆u= [∆x,∆θ]> ∈ R2 represent the linear and
angular displacements and

f(∆u) =
[
∆x sin(∆θ)

∆θ+ε ∆x 1−cos(∆θ)
∆θ+ε 0 0 0 ∆θ

]>
,

(6)
where ε is a small constant, typically set to the minimum
positive number that can be represented as floating point.

When solving Eq. (4) in a least squares fashion, we need to
compute the Jacobian of Eq. (2) with respect to the correction
vector ∆u. Looking at Eq. (5) this Jacobian can be computed
using the chain rule as:

J(T̂t) =
∂r(T̂t � ∆u)

∂∆u

∣∣∣
∆u=0

=
∂T̂t Exp(∆x) s

∂∆x

∣∣∣
∆x=f(0)︸ ︷︷ ︸

Jicp

∂f(∆u)

∂∆u

∣∣∣
∆u=0︸ ︷︷ ︸

Jkinematic

= R̂t

[
I −[s]×

]
Jkinematic,

(7)

where R̂t is the rotation part of T̂t, I∈R3×3 is the iden-
tity matrix, and [s]× ∈R3×3 is the skew symmetric matrix
computed from the point s ∈ R3. In the case of the
unicycle-based correction expressed through Eq. (6), we can
compute Jkinematic ∈R6×2 as:

Jkinematic =

[
1 0 0 0 0 0
0 0 0 0 0 1

]>
, (8)

In wheeled mobile robot systems, the rotation estimate
is often noisier than the translation due to factors like
wheel slippage, mechanical wear, or uneven surfaces. Wheel
encoders often provide reliable translation estimates but tend
to be less reliable for rotation, especially in the presence of
external disturbances. In practice, we would like our LiDAR
correction to focus more on the rotational part of the estimate
while trusting the translational part coming from the wheel
encoders more. This can help the system in degenerate sce-
narios in which LiDAR scans cannot completely determine
the robot pose, e.g., moving in a straight featureless corridor
or entering through a narrow passage into a previously
unseen part of the environment. This knowledge can be
introduced in the optimization by adding a regularization
term to the cost function as:

S(T̂t) = χ(T̂t) +
1

βt

∥∥∥Logt

(
Tt−1 Ot T̂

−1

t

)
︸ ︷︷ ︸

Dt

∥∥∥2

2
, (9)

where Dt ∈ SE(3) is the deviation of the current estimate
from the wheel odometry initial guess, and Logt(Dt) extract
the translation part of Dt. Eq. (9) is a highly non-linear cost
function, but we can approximate it, by elegantly regularizing
the translational part of ∆u as:

G(T̂t � ∆u) = χ(T̂t � ∆u) +
1

βt
∆x2, (10)

where ∆x∈R is the translational part of ∆u, and βt is
inversely proportional to the amount of regularization that we
want to impose on ∆x. In our case, we would like to have
a large value of βt in scenarios where the wheel odometry
is unreliable, and thus the system should focus more on the
LiDAR measurement. Conversely, we would like to have a
small value of βt when the system should trust the wheel
odometry more. To achieve this behavior while avoiding
manual parameter tuning, we compute the value of βt in
a data-driven fashion as:

βt = χ(Tt−1 Ot), (11)



which means we evaluate Eq. (3) at the wheel odometry
initial guess, effectively considering the consistency between
the wheel odometry and the LiDAR measurements. As
we demonstrate in the experiments, the introduction of βt
improves the system’s robustness, particularly in degenerate
scenarios, while improving the accuracy of the system.

V. EXPERIMENTAL EVALUATION

The main focus of this paper is a LiDAR odometry system
that incorporates a kinematic model on the pose optimization
to better estimate the motion of wheeled mobile robots. The
experiments reported here support our key claims, which are
that our approach can (i) correct the wheel odometry of a
mobile robot while enforcing kinematic constraints of the
estimated motion; (ii) compute the odometry with a level
of accuracy on par or better than state-of-the-art LiDAR
odometry systems; (iii) dynamically adjust the weighting
between LiDAR measurements and wheel odometry read-
ings, improving robustness and accuracy in diverse and
challenging environments.

A. Experimental Setup

We test our approach on two different platforms and two
different environments to demonstrate its effectiveness and
applicability to different wheeled mobile robots.

1) Datasets: First, we run our method on data collected
in a real warehouse, by the Dexory robot, which features an
extendable 12 m tower. The robot has a differential drive with
caster wheels in the front and the back. It is equipped with
a 90 °× 360 ° hemispherical 32-beam Bpearl LiDAR from
Robosense that stream point clouds at 10 Hz. It also provides
odometry from the wheel encoders. The data collection was
conducted in three real-world warehouse environments of
varying sizes: a small site measuring 0.35 ha, a medium-
sized site of 2.3 ha, and a large logistics site spanning
9.45 ha. The characteristics of the sequences are summarized
in Tab. I. The data was recorded without interrupting ongo-
ing operations, resulting in sequences containing numerous
dynamic objects, including forklifts and operators. Due to
the considerable size of these warehouses and operating in
production, it was not feasible to install motion capture
systems or other reference systems for evaluation purposes.
Nevertheless, to quantitatively assess the performance of our
approach, we use the industry-standard Cartographer [13], a
widely adopted SLAM framework, which provides accurate
mapping and localization in complex environments as a
reference to our open-loop trajectory estimation.

The second platform we use to evaluate our approach is
a Clearpath Husky A200, which is a four-wheeled with skid
steering. The robot provides a wheel odometry estimate using
its wheel encoders and is equipped with a Hesai LiDAR
XT32, which records data at 10 Hz. We drive and record data
on a wide and flat pavement on our campus and in a park in
front of the Poppelsdorf Palace in Bonn, which consists of
uneven and rough terrain such as grass and curb walks. Note
that this second location is challenging because it does not
strictly follow our assumption of operating on a flat surface.

Leica Total Station MS60

Clearpath Husky

Hesai LiDAR
Tracking Prism

Fig. 2: Leica total station prose tracking reference system

Sequence Scans [#] Duration Area Path Length

Small 13K 22 min 70 m×50 m 464 m
Mid 50K 80 min 210 m×110 m 4120 m

Large 110K 180 min 450 m×210 m 9500 m

TABLE I: Warehouse datasets used for evaluation

To evaluate the accuracy of our approach, we mount a
reflective prism on the robot and track the prism with a Leica
Nova MS60 total station as shown in Fig. 2. The total station
and the robot are initially time-synchronized. The prism can
be tracked with an angular accuracy of 0.0003 ◦ and a range
accuracy of 3 mm or better. This type of reference system
has been previously used to accurately track the pose of a
robot [28], [29], [30].

We point out that our system estimates the ego-motion in a
robot-centric fashion, as it consider the motion model of the
platform. It is essential that the extrinsic calibration between
the LiDAR scanner and base frame of the robot is available
when computing the odometry using Kinematic-ICP.

2) Baselines: We evaluate our method against the orig-
inal version of KISS-ICP [31] and with two variants that
incorporate the robot’s wheel odometry as an initial estimate
for point cloud registration. In the first variant, we estimate
the full 6-degree-of-freedom pose in 3D space, referred to
as WO + 3D KISS-ICP. In the second variant, the motion is
constrained to a 2D plane, simplifying the estimation process.
This is denoted as WO + 2D KISS-ICP.

In addition to comparing our method with various KISS-
ICP [31] variants, we further evaluate its performance by
benchmarking it against two widely used state estimation
methods in the robotics industry [16]. Specifically, we focus
on integrating the most effective KISS-ICP [31] variant,
WO + 2D KISS-ICP, with the Fuse framework [16] and
the robot localization package [18]. The Fuse framework
is a fixed-lag smoother that optimizes a pose graph by
incorporating wheel odometry, LiDAR odometry, and kine-
matic constraints to estimate the robot’s position. Meanwhile,
robot localization is an extended Kalman filter (EKF) that
fuses sensor data to estimate the robot’s state.



Campus 0 Campus 1 Campus 2 Palace Warehouse Warehouse Warehouse
Small Mid Large

Method RPE ATE RPE ATE RPE ATE RPE ATE RPE ATE RPE ATE RPE ATE

Wheel Odometry 4.93 3.25 4.71 6.52 2.63 1.87 2.98 4.66 2.35 1.74 0.89 16.62 4.86 108.11
KISS-ICP [31] 4.90 0.31 5.37 0.50 8.82 0.29 3.75 0.69 59.70 7.36 18.99 54.70 164.78 23.50

WO + 3D KISS-ICP 4.64 0.34 3.82 0.32 5.97 0.31 4.14 0.29 5.32 5.40 5.85 28.71 1.48 17.52
WO + 2D KISS-ICP 4.43 0.32 3.94 0.26 6.77 0.25 4.63 0.29 2.02 1.01 1.01 6.48 1.13 4.11

EKF 6.28 0.47 5.84 1.61 6.13 0.38 4.98 0.78 0.87 0.86 0.90 9.53 0.85 13.85
Fuse 4.16 0.30 6.69 0.85 3.92 0.30 3.23 0.69 0.61 0.40 0.69 9.18 1.36 4.99

Kinematic-ICP 2.97 0.28 2.93 0.42 2.13 0.22 2.38 1.56 0.53 0.26 0.46 4.44 0.39 4.42

TABLE II: Quantitative of our approach in different environments. We report the RPE in [%] and the ATE in [m]. The best results are
in bold, and the second best are underlined.

These two approaches involve computing LiDAR odome-
try and then fusing it with the wheel odometry. In contrast,
our method directly processes both wheel odometry and
LiDAR scans to produce the new pose in a single streamlined
process. This approach generally uses less CPU and memory,
reducing latency during live operation on the robot.

3) Metrics: To evaluate the different methods, we use
the average translation error from the KITTI Odometry [10]
benchmark, which calculates the average relative error over
various trajectory lengths in percent. This metric is com-
monly used in autonomous driving, where the segment
lengths for evaluation are considerably large for a wheeled
mobile robot. To address this, we use smaller interval lengths
of 1, 2, 5, 10, 20, 50, and 100 m. Additionally, we report
the root mean squared absolute translation error (ATE) after
alignment as a measure of the global drift in the estimated
trajectories.

B. Qualitative Results in Large Indoor Warehouses
The first experiment demonstrates the capability of our

approach to correct the wheel odometry of a mobile robot
while enforcing the kinematic constraints of the platform.
We qualitatively assess the shape of the resulting trajectories
by knowing that the robot moved in rectangular racks. For
reasons of space, we show a portion of the Warehouse Small
map, but the results are equally impressive for the other two
sequences used for evaluation.

We first show on the top left the raw wheel odometry
in Fig. 3, which follows the kinematic model of a differential
drive but does drift over time. Next, we compare the result
with two modified versions of KISS-ICP to account for
the planar motion, and we observe that the racks become
more visible, but the trajectories still bend. Note that the
publicly available implementation of KISS-ICP will fail on
this sequence due to the sparseness of the sensor [21].
Besides that, the estimated trajectory is not smooth, which is
unreasonable for a 12 m tall robot that weighs approximately
500 kg. Finally, using our proposed approach, the estimation
is globally more accurate and still smooth. This is a direct
consequence of enforcing the kinematic constraints in the
optimization, which guarantees mathematically that the pro-
duced pose is always smooth and locally consistent.

C. Quantitative Results
In this section, we support our second claim, namely

that our approach can estimate the odometry with a level

of accuracy on par or better than state-of-the-art LiDAR
odometry systems. Tab. II showcases the results. First, one
can see that our approach consistently achieves better results
than the wheel odometry in terms of RPE and ATE due to
our proposed correction using the LiDAR data.

We also achieve better results than KISS-ICP [31] on
all sequences, which is a state-of-the art LiDAR odometry
system. Both relative and absolute errors of the KISS-
ICP estimate are very large for the indoor warehouse en-
vironments, which shows how challenging these scenarios
are due to the ambiguity of LiDAR-only measurements in
featureless and repetitive corridors. Even when adding the
wheel odometry as an initial guess, all the variants of KISS-
ICP still underperform compared to other baselines. This can
be explained by the fact that these approaches do not use
a kinematic model for the optimization resulting in higher
relative errors compared to our system.

The EKF and Fuse baselines perform well by combining
LiDAR and wheel odometry, with Fuse often ranking second.
However, our approach consistently outperforms both in
terms of ATE and RPE by directly processing the data
and incorporating a kinematic model. Additionally, as noted
earlier, our method is more computationally efficient since it
optimizes wheel odometry and LiDAR corrections directly
rather than fusing two different sources of odometry. For
comparison, our system runs at 100 Hz on a single-core CPU,
while Fuse runs at approximately 10 Hz.

In the outdoor Palace sequence, our approach success-
fully corrects wheel odometry but performs slightly worse
than KISS-ICP and its variants, see Tab. II. This sequence,
recorded in a park with uneven terrain, challenges our
assumption of a planar surface, as our kinematic model
cannot account for factors like wheel slippage, rolling, or
pitching. Despite these limitations, our method still provides
reasonable odometry estimates and remains robust even in
non-ideal, uneven conditions.

D. Ablation on Regularization

Finally, our last experiment supports our third claim that
our approach can dynamically adjust the influence of Li-
DAR scans and wheel odometry measurements, improving
robustness and accuracy. To this end, we perform an ablation
study comparing Kinematic-ICP with five different hand-
picked values of β in Eq. (10), our adaptive regulariza-
tion Eq. (11), and without regularization. We selected Palace



Wheel Odometry WO + 2D KISS-ICP

Kinematic-ICPWO + 3D KISS-ICP

Fig. 3: Qualitative comparison of odometry methods on Warehouse Small. Wheel odometry (top left) is smooth but drifts over time.
WO + 3D KISS-ICP (bottom left) lacks smoothness and accuracy. WO + 2D KISS-ICP (top right) improves consistency but remains
inaccurate. Our approach (bottom right) combines sensor data for smooth and accurate odometry estimation

and Warehouse Small datasets for this experiment, as they
are particularly challenging as demonstrated in Sec. V-C. In
Palace, the robot moves on grass and rough terrain where
the planarity assumption does not hold, while Warehouse
Small is a sequence with mostly racks, resulting in a largely
featureless environment.

Tab. III presents the results of our ablation study. First,
in these challenging scenarios, regularization is essential for
accurate odometry estimation. This is particularly evident
in the Warehouse Small dataset, a featureless environment
where removing regularization causes the odometry accuracy
to degrade by nearly an order of magnitude. Second, our
adaptive regularization strategy consistently achieves strong
results without requiring any fine-tuning of the β parameter.
While some fixed β values yield the best performance, our
method of computing it according to Eq. (11) remains highly
competitive. This highlights the robustness and flexibility of
our approach, which performs well across different datasets
without the need for manual adjustments, making it more
flexible and widely applicable.

VI. CONCLUSION

In this paper, we present Kinematic-ICP, a novel LiDAR
odometry approach that explicitly incorporates the kinematic
constraints of mobile robots into the classic point-to-point
ICP algorithm. Our approach exploits the knowledge of the
unicycle motion model to estimate an odometry that is more
consistent with the natural motion of a wheeled mobile
platform. An adaptive regularization mechanism allows the
system to adjust to degenerate conditions, ensuring robust

Palace Warehouse Small
Regularization RPE ATE RPE ATE

Fixed β = 0.01 2.39 1.70 0.39 0.20
Fixed β = 0.1 1.79 1.41 1.81 0.59
Fixed β = 1.0 2.56 0.44 3.00 0.62
Fixed β = 10.0 3.71 0.33 3.03 1.75
Fixed β = 100.0 3.99 0.31 4.36 1.30
No Regularization 3.72 0.34 3.77 1.59
Kinematic-ICP 2.38 1.56 0.53 0.26

TABLE III: Ablation study on different regularization schemes for
the optimization. We report the RPE in [%] and the ATE in [m].
The best results are in bold, and the second best are underlined.

performance even in scenarios challenging for traditional
LiDAR odometry systems, such as feature-sparse environ-
ments. Our method provides accurate motion estimates by
using kinematic constraints in the optimization to combine
3D LiDAR observations and wheel odometry. We imple-
mented and evaluated our approach in outdoor and large-
scale warehouse environments, provided comparisons with
existing state-of-the-art LiDAR odometry systems, and sup-
ported all the claims made in this paper. Our results demon-
strate that Kinematic-ICP outperforms wheel odometry and
existing LiDAR odometry techniques, delivering state-of-
the-art accuracy. Kinematic-ICP has been deployed in the
Dexory fleet of robots operating in warehouses worldwide
in production.
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