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Abstract— Crop inspection is a critical part of modern
agricultural practices that helps farmers assess the current
status of a field and then make crop management decisions.
Current crop inspection methods are labour-intensive tasks,
which makes them rather slow and expensive to apply. In this
paper, we exploit recent advancements in implicit mapping to
tackle the challenging context of agricultural environments to
create dense maps of crop rows with high enough fidelity to
be useful for automated crop inspection. Specifically, we map
strawberry and sweet pepper crop rows using RGB images
captured by a wheeled mobile field robot inside a greenhouse
and then use this data to build 3D maps to document the
development of plants and fruits. Our Target-Aware Implicit
Mapping system (TAIM) uses a SLAM-based pose initialization
strategy for robust pose convergence, an efficient information-
guided training sample selection framework for faster loss
reduction, and focuses on exploiting training samples for fruit
regions of the scene, which are critical for crop inspection tasks,
to create more accurate maps in less time.

I. INTRODUCTION

Crop inspection is a key part of an informed agricultural

operation, where farmers quantify critical characteristics of

their fields and crops. Thorough crop inspection empowers

optimal decision making, such as selecting harvest times and

scheduling appropriate disease treatment plans [4]. How-

ever, traditional methods for crop inspection are manually

intensive, which can make the procedure slow, expensive,

and prone to human error. Even modernized methods rely

on equipment such as terrestrial laser scanners, which are

cumbersome, expensive, and require manual operation from

specially-trained users. Researchers had success in using

UAVs for automated crop inspection tasks such as disease

diagnosis [7], yield estimation [2], weed detection [19],

[18]. However, these methods rely on distant observations

from UAVs high above the relevant crops, which can limit

effectiveness. New methods for on-the-ground agricultural

field navigation [1] and view planning [37] allow for closeup

measurements of crops for automated inspection. Despite

this progress, many on-the-ground inspection methods [8],
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Fig. 1: Right: Our robot capturing images of crop rows inside a
greenhouse. Left: Qualitative view synthesis results of our method,
TAIM, compared to a baseline, BARF. We achieve higher-fidelity
view synthesis, especially on fruit regions of the scene.

[9], [25] generate inspection results from one-shot sensor

measurements, rather than using all sensor measurements to

create a refined crop model.

Recent works on neural rendering [24] and implicit map-

ping [31] have shown impressive results in using RGB

images to model 3D scenes with high enough fidelity such

that we believe these technologies could be useful in auto-

mated crop inspection tasks when paired with recent crop

reconstruction approaches [20], [21], [22]. In this paper,

we propose an implicit mapping system able to tackle

the challenging context of agricultural field environments.

Specifically, we attempt to make high-fidelity maps of straw-

berry and sweet pepper crops inside greenhouses from RGB

images captured by a mobile robot, as shown in Fig. 1. These

scenes have large amounts of visual repetition, are only seen

from limited view points, require high precision to capture

the small fruits, and contain noise from motion blur effects

as the wheeled robot drives over uneven terrain [15].

The majority of existing works propose methods for

implicit mapping systems on images without known poses,

which removes a significant barrier for real-world appli-

cations. However, these pose learning strategies often are

susceptible to convergence to local minima on complex

scenes with repeated visual texture. Additionally, to the
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Fig. 2: A system overview of TAIM. All fruits within the input images are detected. A classical visual SLAM system is used to compute
approximate initial image poses. In the training loop, a loss distribution over all images is estimated and used, in combination with the
fruit detections, to compute a training sampling probability for each pixel, such that pixels inside fruit regions with high loss have the
highest probability of being sampled during training. Training pixels are drawn from the sampling probability distribution, encoded using
Gaussian positional encoding, and fed to the network.

best of our knowledge, no implicit mapping system uses

application-specific knowledge to map certain regions of

interest with higher fidelity than others, thereby creating a

more accurate map of relevant regions in less time.

The main contribution of this paper is a method to

implicitly map large and complex agricultural scenes with

high fidelity in key fruit regions. During training, we use

a fast method for estimating a dense loss over all training

images and efficiently sample training pixels from high-loss

regions. This results in learning more information per train-

ing sample and leads to convergence in fewer iterations. We

also use application-specific knowledge to sample training

pixels more densely from fruit regions of the scene, for

agricultural crop inspection. Lastly, we use a classical SLAM

system to initialize image poses and then continuously refine

the poses during training. This reduces the chances that

our pose estimates converge to local minima and increases

convergence speed. Our experiments suggest that we have:

(i) an efficient dense loss estimation framework over input

images for focusing the training on high-loss regions and

fruits regions of the scene, resulting in view synthesis with

better quality, (ii) a system for sampling more densely from

fruit regions of the input images during training that results

in higher fidelity 3D fruit mapping, and (iii) a pose learning

strategy that is initialized by a classical SLAM system and

then refined in parallel with the scene during training to

improve convergence accuracy and robustness.

II. RELATED WORK

Most classical robot mapping systems use representations

such as point clouds [12] or voxel grids [27] to represent

the output 3D structure of the mapped scene. The unordered

structure of a point cloud can represent a shortcoming to

represent objects such as fruits and plants, which are highly

spatially correlated. Voxel grids, on the other hand, are

limited by the discretization to a hard-coded resolution and

the prohibitive memory consumption when scaled to large

scenes. In contrast, learning-based approaches that implicitly

represent the scene do not lose accuracy due to discretization

and efficiently embed the contents of the scene within the

weights of the network.

Indirect mapping methods [5], [34] use keypoints as a

sparse abstraction for stitching together dense map segments,

but the keypoints can sometimes fail to be discriminative,

such as in textureless scene regions, whereas neural networks

can distinguish relevant features directly from image data

for robust alignment. Direct methods [3], [6], [28] improve

performance in textureless regions, but often still split pose

estimation and scene estimation into two distinct processes,

as popularized by Klein et al. [13], which can lead to less-

coherent results compared to implicit approaches that use the

same photometric loss to simultaneously learn scene contents

and refine pose estimates. An alternative approach is the use

of neural rendering to represent the 3D scene, so called im-

plicit models. Mildenhall et al. [24] use MLPs to learn spatial

contents of a scene from RGB images. Some recent works

remove the known-pose requirement by learning image poses

through a typical SLAM framework [31], [38], which unlock

realtime mapping capabilities, but result in only approximate

scene reconstructions which are often too over-smoothed for

many high-precison applications.

Other recent systems use longer training times for higher

fidelity map results while learning image poses from

scratch [16], [35], [36], but are sensitive to repeated visual

texture in the scene leading to pose convergence to local

minima or make assumptions about the scene that limits

real-world application of the systems. Some works make

additional efforts to bring implicit mapping pipelines to fully



unconstrained real-world settings, such as accommodating

input images taken in different lighting conditions [23], [32],

but still often require multiple days of training to converge.

III. OUR APPROACH - TAIM

Our system architecture is inspired by BARF [16], a

recent and impressive implicit mapping pipeline proposed

by Lin that adds pose learning capabilities to the original

NeRF system [24]. It extends BARF and improves results

in agricultural environments for crop inspection, as outlined

in Fig. 2. Instead of initializing our pose estimates to the

identity transform, we use a classical SLAM system for

pose initialization to reduce the risk that the pose estimation

converges to a local minimum. Using pose initialization

also means that we do not need as wide of a basin of

convergence for pose estimation, which allows us to replace

BARF’s coarse-to-fine positional encoding with Gaussian

positional encoding [33], a more principled approach to the

original NeRF positional encoding that leads to faster scene

convergence that is still smooth enough for our initialized

poses to converge accurately to the true poses. We replace

BARF’s uniform training pixel sampling strategy with an

efficient loss-targeted strategy that samples more often from

complex regions that are not yet mapped with high fidelity.

We also target fruit regions of the scene during training

sampling, such that those regions of the scene are mapped

with higher fidelity than non-fruit regions.

A. Pose Initialization

Our crop row datasets have a large amount of repeated

visual structure, such as clusters of strawberries, that often

attract image pose estimates into local minima. The long

and narrow shape of the crop rows also delays learning the

scene since poses must follow the visual gradient over a large

distance before accurate learning of the scene’s contents can

begin. To avoid these issues, we use a classical SLAM system

to compute approximate poses of all our input images and

use these approximate poses to initialize our system. We then

further refine these initial pose estimates during training.

For pose initialization, we use ORB-SLAM [26], a well-

known classical visual SLAM pipeline that uses ORB fea-

tures [29] to co-register keyframes for tracking and has

shown impressive results in many challenging environments.

B. Pose Learning

BARF removes the requirement for known image poses

from NeRF by using coarse-to-fine positional encoding to

learn image poses in parallel with the contents of the scene.

Only low-frequency spatial information is learned early on in

training, which creates smooth visual gradients over which

image poses can converge using the same view-synthesis-

based loss as the original NeRF system. Unlike BARF, TAIM

removes the coarse-to-fine encoding and instead uses Gaus-

sian positional encoding and initializes pose estimates from

a classical SLAM system. In previous works, the Gaussian

positional encoding strategy [33] has been shown to lead

to faster convergence during training. Gaussian positional

encoding requires encoding the input 3D coordinates with a

matrix B of a chosen size and initialized by drawing values

from a standard normal distribution multiplied by a chosen

scale parameter. The objective for simultaneous pose and

scene optimization, as formulated by BARF and used by our

system, is

min
p1:M ,Θ

M
∑

i=1

∑

u

∥

∥

∥
Î(u;pi,Θ)− Ii(u)

∥

∥

∥

2

2

, (1)

where {Ii}
M

i=1
and {pi}

M

i=1
are the images and associated

poses, u is the set of all pixels in all training images, Î is

the rendering function, and Θ is the network parameters. The

rendering function is differentiable and thus allows gradients

to be traced end-to-end from the computed loss back to the

pose and scene parameters, which are updated during training

to encode the optimized poses of the input images and the

high-fidelity spatial contents of the scene.

C. Loss-Targeted Sampling

The complexity of our scene is highly irregular, with a mix

of extremely low-complexity regions, such as large solid-

black plant boxes, and extremely high-complexity regions,

such as fruits or vines. A simple uniform sampling strategy

for selecting image pixels s to train on

s ∼ U

(

1

|u|

)

(2)

results in inefficiently over-sampling from the low-

complexity regions, and under-sampling from the high-

complexity regions. To correct this problem, Sucar et al. [31]

propose estimating an approximate loss distribution, L, over

an 8×8 pixel grid in each training image, and then sampling

training pixels proportionally to this distribution

s ∼
L

|u|
. (3)

We found that this strategy still resulted in over-sampling

from low-complexity regions that were in the same grid

section as high-complexity regions, and vice-versa, due to the

low resolution of the loss estimate. Additionally, we found

this method to be prohibitively computationally expensive

due to the large number of pixels being rendered on every

training iteration just to estimate the loss distribution.

We propose a loss distribution estimation method that

results in a pixel-level resolution loss estimate without need-

ing any additional scene render computations. On the first

training iteration, we sample uniformly over all training

images, then set the loss estimate to a flat distribution of

the average loss of all samples. On every subsequent training

iteration we sample training pixels proportionally to a lightly

blurred version of the loss estimate, render those samples as

we normally would, and then update the loss estimate at

those pixel locations to the loss values we just computed.

Since we already compute loss during training, this system

does not add additional computation. We sample from a

blurred version of the loss estimate so that each pixel in the

loss estimate can propagate local effects to nearby regions.



Fig. 3: Qualitative view synthesis results on our 3 meters strawberry dataset with over 200 fruits. During view synthesis, TAIM results
have crisp edges, while BARF tends to over-blur, and NERF is susceptible to high-frequency noise.

In practice, the loss estimate can become stale in some ex-

tremely low-loss regions that are not sampled for many thou-

sands of training iterations. Therefore, we use an exploration-

exploitation framework to balance between sampling high-

loss regions to learn the contents of the scene and sampling

low-loss regions to update our loss estimate. We implement

this by imposing a minimum probability for sampling any

pixel, smin, using a variable, α, that tunes the ratio between

the highest sampling probability and the lowest sampling

probability. In other words, smax = α smin. Therefore, we

sample training pixels such that

s ∼
L 1−α

Lmax
+ α

|u|
, (4)

where Lmax is the maximum value in the loss estimate. The

numerator scales the loss estimate distribution, L, between α

and 1−α and the denominator normalizes it to a probability

distribution. An example training image and the resulting

blurred loss estimate in Fig. 2 show that complex scene

regions, such as regions with large gradients, are clearly

detected as having high loss and thus sampled more.

D. Fruit-Targeted Sampling

Fruits are a key focus of the crop inspection process so we

aim to map them with higher fidelity than non-fruit regions

of the scene. To accomplish this, we use a neural network

for image segmentation to create a mask of all fruit pixels

in our training images. We then slightly dilate this mask to

ensure that all edges of the fruits are captured and then apply

Gaussian blurring to create a smooth transition from fruit

regions to non-fruit regions. This results in a distribution F

over all pixels in our training images that describes how

fruity each pixel is. An example training image and the

resulting fruit mask are in Fig. 2. We scale F to be between 1

Strawberry

Whole Scene PSNR Fruit Only PSNR

# Training Iters. 10k 30k 50k 10k 30k 50k

NERF [24] 19.83 21.60 22.36 18.34 20.55 21.53
BARF [16] w/ pose 16.58 20.34 21.41 12.47 18.39 19.93

TAIM (ours) 21.07 23.36 24.25 21.03 24.50 26.05

Sweet Pepper

Whole Scene PSNR Fruit Only PSNR

# Training Iters. 10k 30k 50k 10k 30k 50k

NERF [24] 17.51 18.66 19.15 19.44 20.86 21.19
BARF [16] w/ pose 14.37 16.94 17.73 15.22 18.50 19.40

TAIM (ours) 17.61 18.93 19.44 20.24 21.91 22.73

TABLE I: Quantitative view synthesis results. PSNR quantifies the
similarity between rendered images and ground truth images.

Whole Scene Fruit Only

precision recall f-score precision recall f-Score

NERF [24] 46.25 65.70 54.29 10.87 39.65 17.06
BARF [16] w/ pose 44.31 73.62 55.32 16.36 53.24 25.03

TAIM (ours) 58.08 77.00 66.22 16.34 63.32 25.98

TABLE II: Quantitative 3D scene reconstruction results.

and β and then modify our loss-targeted sampling procedure

to weigh each pixel’s loss according to its fruityness

s ∼

(

L 1−α
Lmax

+ α
)

(F (β − 1) + 1)

|u|
, (5)

where β can be tuned to set how much more often fruit

regions should be sampled compared to non-fruit regions.

We found that increasing β improves the fidelity of fruit-

regions of the map, though with increasingly diminishing

returns, at the cost of lower non-fruit region fidelity.



Fig. 4: Qualitative view synthesis results on 5 meters long sweet pepper dataset. TAIM synthesizes views with crisp and accurate edges,
whereas BARF produces blurred edges and NERF renderings have a large amount of high-frequency noise.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is to robustly and accurately

map strawberry and sweet pepper crop rows. The experi-

ments presented here support our key claims, i.e., that we

propose (i) a framework for focusing the training on high-

loss regions of the scene, resulting in better quality view

synthesis, (ii) a system for sampling most densely from fruit

regions, resulting in higher fidelity 3D fruit mapping, and (iii)

a classically-initialized pose learning strategy that is refined

in parallel with the scene during training to improve conver-

gence accuracy and robustness. Our experiments qualitatively

and quantitatively evaluate our ability to synthesize 2D views

and reconstruct 3D scenes compared to BARF and NERF.

A. Experimental Setup

We evaluate our implicit mapping pipeline on strawberry

and sweet pepper crop rows inside a greenhouse near Bonn,

Germany. For the sweet pepper, we used a part of the

BUP20 dataset [8], [30] consisting of 200 images with

over 50 prominent fruits. We collect our own strawberry

dataset consisting of 146 images with over 200 prominent

fruits. For the strawberry dataset, we additionally obtained

a high-precision point cloud using a terrestrial laser scanner

that we use as ground truth. Fruits within the ground truth

strawberry point cloud are hand labeled such that points

belonging to fruits can be isolated from the rest of the point

cloud to compute fruit-only and whole-scene reconstruction

metrics. Since BARF without pose initialization converges

to extremely incorrect pose estimates, we compare TAIM to

BARF with pose initialization in the following experiments.

B. Implementation Details

Similar to BARF, our MLP uses four, 256-node hidden

layers with ReLU activation and we use the Adam optimizer

to compute updates for both scene and pose parameters.

We use a scene learning rate of 10−3. Since our pose

parameters are initialized with an approximate guess, we use

a lower pose learning rate of 10−6. Our Gaussian positional

embedding matrix is 3 × 256 and is initialized using a

scale of 12. For fruit detection in our training images, we

use two Mask R-CNN networks [10] with the ResNet50

architecture [11] pretrained on the COCO dataset for object

segmentation [17] and then refined to segment strawberries

or sweet peppers using about 200 images each.

C. 2D View Synthesis

The first experiment shows that our loss estimation frame-

work results in better quality of the synthesized views. We

compare the ability of TAIM to synthesize views against the

NERF and BARF baselines. We also qualitatively compare

view synthesis results in Fig. 3 and Fig. 4, which show

that we achieve higher synthesis quality on both color and

depth renderings, especially in fruit regions of the scene,

compared to BARF and NERF. TAIM generalizes well to

both strawberries and peppers despite extreme differences in

fruit size, texture, and color. We use peak signal to noise

ratio (PSNR) to quantify the similarity between rendered

images and ground truth images. Tab. I shows that TAIM

achieves higher PSNR on whole-image and fruit-only regions

at every evaluated training iteration interval compared to

both NERF and BARF, due to its efficient sampling during

training. At the final training iteration of the strawberry

dataset, TAIM improves fruit-only PSNR by 21% and 31%

compared to NERF and BARF, respectively. NERF is able to

outperform BARF on these metrics due to BARF’s coarse-

to-fine encoding, which delays the schedule at which the

network can learn high-frequency contents of the scene.



Fig. 5: Segments of the point clouds from TAIM and BARF compared to the ground truth. Relative to BARF, TAIM achieves a noticeably
more well-defined reconstruction that better matches the ground truth in both the whole scene (left) and the fruit-only regions (right).

Fig. 6: Pose estimation of BARF and TAIM on the strawberry
dataset with and without pose initialization from a SLAM system.
Pose initialization is necessary for convergence to accurate poses.

D. 3D Scene Reconstruction

We evaluate the 3D mapping performances on the straw-

berry dataset by extracting a point cloud after training

and comparing it to ground truth. We extract whole-scene

point clouds by unprojecting each pixel of the RGB and

depth renderings from every input training image into the

scene and obtain fruit-only point clouds by filtering based

on fruit detection on images. A qualitative comparison

of cropped ground truth, TAIM, and BARF point clouds

is shown in Fig. 5, which shows that TAIM generates

clearer reconstructions with less blurring than BARF. For

quantitative evaluation, following Knapitsch et al. [14], we

compute precision, recall, and f-score on the point cloud

reconstructions from NERF, BARF, and TAIM relative to

the ground truth. As shown in Tab. II, compared to both

BARF with pose initialization and NERF, TAIM improved

the combined f-score metric on both the whole scene and

the fruit-only scene. The achieved f-scores of NERF, BARF,

and TAIM were 17.06, 25.03, and 25.98, respectively. BARF

achieved a very slightly higher precision score on the fruit-

only scene, which is sensitive to depth bleeding effects.

E. Pose Convergence

To show that pose initialization is necessary for our

challenging agricultural scene, we qualitatively evaluate the

pose estimation of BARF and TAIM with and without

pose initialization on the strawberry dataset. Fig. 6 shows

that BARF with pose initialization and TAIM have pose

estimates that closely resemble the pose estimates provided

by a classical SLAM system, which indicates that the pose

estimates have converged to approximately correct values.

However, the pose estimates for BARF and TAIM without

pose initialization do not resemble the estimates from the

SLAM system, indicating convergence to incorrect values.

While the initial pose estimates are of good quality, we

found that further pose refinement during training was still

necessary to ensure crisp mapping without “doubled” edges.

V. CONCLUSION

In this paper, we presented a novel approach to implicit

mapping in agricultural environments. Our system leverages

a novel loss estimation method over all training images to

efficiently focus training on high-information complex scene

regions. Our method places additional training focus on

fruit regions of the scene, a key part of agricultural crop

inspection, to map them with higher fidelity than non-fruit

regions. Additionally, our system uses a classical SLAM

system to initialize pose estimates for each input image,

which are then refined in parallel with scene mapping during

training. We evaluated our system on data from strawberry

and sweet pepper rows inside a greenhouse and compared its

ability to do 2D view synthesis and 3D scene reconstruction

against BARF, a state-of-the-art implicit mapping system,

and its well-known predecessor, NERF. Our experiments sug-

gest that TAIM produces higher-fidelity synthesized views

and more accurate scene reconstructions than both BARF

and NERF, especially in critical fruit regions of the scene.

Potential areas for further improvement include the use of

multi-camera platforms with different viewing angles for

more accurate depth estimation, and targeting critical regions

beyond just fruits during training, such as leaves and vines,

whose intricate structure is challenging to map with high

fidelity.
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