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Abstract—In the past, there has been a tremendous advance
in the area of simultaneous localization and mapping (SLAM).
However, there are relatively few approaches for incorporating
prior information or knowledge about structural similarities
into the mapping process. Consider, for example, office build-
ings in which most of the offices have an identical geometric
layout. The same typically holds for the individual stories of
buildings. In this paper, we propose an approach for generating
alignment constraints between different floors of the same
building in the context of graph-based SLAM. This is done
under the assumption that the individual floors of a building
share at least some structural properties. To identify such
areas, we apply a particle filter-based localization approach
using maps and observations from different floors. We evaluate
our system using several real datasets as well as in simulation.
The results demonstrate that our approach is able to correctly
align multiple floors and allows the robot to generate consistent
models of multi-story buildings.

I. INTRODUCTION

Learning maps of environments, commonly denoted as

simultaneous localization and mapping (SLAM), is a sub-

stantially researched area in mobile robotics. A large variety

of solutions to this problem have been proposed in the past.

Efficient and robust solutions exist especially for mapping

environments where a planar 2D map is suitable for robot

navigation. However, the question of how to incorporate

global constraints or prior knowledge within SLAM algo-

rithms is to a large extend unsolved. Consider, as an exam-

ple, multistory buildings in which typically a considerable

amount of similarities can be found. Obviously, symmetries

or repetitive structures introduce additional constraints to the

mapping problem. While state-of-the-art mapping algorithms

may be able to consistently map each floor of such a

building, the correct alignment of the individual floor maps

can typically not be derived such that the overall map is

globally consistent. A typical example of this problem is

illustrated in Fig. 1.

In this paper, we present an approach to mapping multi-

story building and to identifying global constraints within

maps that help to learn more consistent maps. Our approach

is based on the assumption that most real-world buildings

show structural similarities and we especially focus on simi-

larities between the individual stories of multistory buildings.

We propose an approach to identify such similarities based
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Fig. 1. With standard SLAM techniques the correct alignment of separate
floor maps can not be derived in general (top). Our approach, in contrast,
generates constraints between the individual floors of a building that result
in a correct alignment of the individual floors (bottom).

on global localization and describe how the resulting con-

straints can be incorporated within a graph-based formula-

tion of the SLAM problem. In particular, the contribution

of this paper is a novel approach to SLAM for multi-

floor buildings. Our method generates inter-floor constraints

within one building based on a localization approach. In

our current implementation, these constraints are generated

using a global localization method based on the Monte-Carlo

localization (MCL) approach. We evaluate our method using

several real-world datasets as well as in simulation.

II. RELATED WORK

There is a large variety of SLAM approaches available in

the robotics community. Common techniques apply extended

and unscented Kalman filters [12], [14], sparse extended

information filters [2], particle filters [16], and graph-based,

least square error minimization approaches [5], [9], [15],

[17].

A graph-based formulation of SLAM has been introduced

by Lu and Milios [15]. In recent years, a variety of algorithms

have been proposed to efficiently solve constraint networks

in the context of SLAM. Frese et al. presented the treemap

approach which employs multilevel relaxation [4] similar to

Paskin’s TJTF method [18]. A stochastic gradient descent

method is proposed by Olson et al. [17] which further has

been extended by Grisetti et al. [7] using an efficient tree

parameterization. These general optimization frameworks



have also been successfully applied to datasets containing

simulated multi-level buildings [6], [7]. Please note, however,

that in these datasets constraints between floors have not

been generated from sensor measurements but have been

generated from the simulated ground truth.

So far, there exist only very few methods that explicitly

model the relation between separate floors of an environment.

One such approach has been presented by Iocchi et al. [11].

A set of separate 2D floor maps is used to model the

environment. In contrast to the approach presented in this

paper, the floor maps need to be generated by a single robot

which is able to derive the floor alignment by employing a

precise visual odometry method. Consequently, this approach

cannot be applied in a multi-robot scenario and will fail to

provide a correct alignment if floor maps are not mapped

consecutively or if the transition of floors is not visually

salient.

The generation of constraints between different but similar

floors is related to the problem of loop-closing within one

floor and map merging in multi-robot systems. Howard et

al. [10] present a graph-based SLAM approach that is able

to merge the maps of several exploring robots once they

meet and recognize each other. In [13], a multi-robot SLAM

approach is presented. The relative positions of the robots

are initially unknown and estimated by localizing each robot

in the maps of the other robots. Hypotheses are actively

verified by employing a rendezvous strategy. This approach

is similar to the approach presented in this paper in that it

uses a localization method to generate constraints. In contrast

to our approach, however, it does not address the problem

of multistory buildings. Furthermore, a physical verification

can not be performed in such a scenario.

III. GRAPH-BASED SLAM

The graph-based formulation of the SLAM problem mod-

els the poses of the robot as nodes in a graph (the pose

graph). Spatial constraints between poses resulting from

observations or from odometry are encoded in the edges

between the corresponding nodes.

Solving the SLAM problem in this formulation can be

seen as a two-step process. The so-called SLAM front-end

interprets the sensor data of a robot and computes constraints

between poses. The SLAM back-end then typically applies

optimization techniques to estimate the most-likely configu-

ration of the nodes given these constraints. The contribution

of our approach is an extension to existing SLAM front-ends

in that it generates constraints between different floors of a

building to improve the overall consistency of the resulting

map.

A. SLAM Back-end

The aim of the SLAM back-end is to find the configuration

of the nodes that maximizes the likelihood of the observa-

tions. Let x = (x1 · · · xn)T be a vector of parameters which

describes a configuration of the nodes. Let furthermore δji

and Ωji be the mean and the information matrix of an

observation of node j seen from node i. Finally, let fji(x) be

a function that computes a zero noise observation according

to the current configuration of the nodes j and i. Given a

constraint between node j and node i, we can define the

error eji introduced by the constraint as

eji(x) = fji(x)− δji (1)

as well as the residual rji = −eji(x). Let C be the set of

pairs of indices for which a constraint exists. The goal of a

ML approach is to find the configuration of the nodes that

minimizes the negative log likelihood of the observations.

Assuming the constraints to be independent, this can be

written as

x∗ = argmin
x

∑
〈j,i〉∈C

rji(x)T Ωjirji(x). (2)

To solve (2), different techniques can be applied. Our work

applies the approach of Grisetti et al. [8] which itself can be

seen as an extension of the approach of Olson et al. [17]. It

applies a stochastic gradient descent method to compute the

most likely configuration of the nodes in the network. The

approach minimizes (2) by iteratively selecting a constraint

and modifying the configuration of nodes in the pose graph

in order to decrease the error introduced by the selected

constraint. For more details, we refer the reader to [8].

B. SLAM Front-end

The SLAM back-end focuses on correcting a pose graph

given all constraints. In contrast to that, the SLAM front-

end aims at extracting constraints from sensor data. In this

paper, we apply a rather standard approach for obtaining

constraints. First, we incrementally align the laser range

scans using a gradient descent-based scan matcher. The

information matrix Ωji is determined using the covariance

matrix returned by the scan matching method. In addition

to that, we seek for loop closures with a similar procedure

considering the pose uncertainty of the robot.

The contribution of this paper is an extension to this stan-

dard SLAM front-end that allows for identifying constraints

between different floors of a building. Under the assumption

that different floors share at least some common structural

parts (e.g., stairways, elevators, or support shafts) our system

can identify similar areas and in this way align different

floors and perform map corrections as we will demonstrate

in the experiments.

IV. MAPPING OF MULTI-FLOOR BUILDINGS

The algorithm presented in this paper solves the problem

of mapping buildings with several floors where the alignment

of the floors is initially noisy or unknown. We assume that

different floors share at least some structural elements such as

stairways, elevators, or corridors. Once such similarities are

identified, a set of inter-floor constraints is generated. These

constraints are used in a graph formulation of the SLAM

problem to estimate a consistent model of the complete

building.

To identify structurally similar areas among the individual

floor maps, we use a global localization method based on



the Monte-Carlo localization (MCL) approach [1]. MCL

estimates the distribution of the robot pose xt in map m

at timestep t given all previous observations z1:t and actions

u1:t−1:

p(xt | z1:t, u1:t−1,m) =

η p(zt | xt,m)

∫
p(xt | ut−1, xt−1)

p(xt−1 | z1:t−1, u1:t−2,m) dxt−1 (3)

Here, the term p(xt | ut−1, xt−1) is usually referred

to as the motion model and p(zt | xt,m) as the sensor

model while η is a normalizer which ensures that p(xt |
z1:t, u1:t−1,m) sums up to one. For all quantities, we use

the standard models described in [20].

As a central data structure for representing the map and the

perceived data, our approach uses a pose graph g in which

each node stores a pose of the robot and the corresponding

laser observation. Let nk be a node in such a graph with

nk = 〈pk, zk〉, where pk is the pose of the robot during data

acquisition and zk the corresponding laser observation. This

data structure is attractive since it allows us to render a grid

map using mapping with known poses while maintaining all

sensor observations at the same time. In this way, the laser

readings recorded in one floor can be localized in another

floor using the same data structure.

Our method to generate inter-floor constraints is summa-

rized in Algorithm 1. The algorithm is initialized by choosing

a reference floor gref randomly among the individual floors.

A global localization is performed using the map computed

from gref and the sensor observations recorded at the remain-

ing floors. To start the global localization, the particles are

initialized uniformly in the freespace of the reference map.

The algorithm then replays the observations from each

floor i using the data stored in graph gi and updates the

particle filter accordingly. In every step of the algorithm,

we check whether the filter has converged to an unimodal

distribution. This is achieved by verifying if 99% of the

probability mass is inside a small predefined area (in our

current implementation set to a circle with a radius of 0.5m).

Whenever the filter has converged to a pose estimate x, we

obtain a hypothesis of a correspondence between floors.

Note that a pose estimate x, obtained by localizing a

sequence of d observations starting from zk recorded in

floor i within the map of the reference floor, will not

be equivalent to a pose corresponding to a node in gref .

Therefore, we select the pose q that corresponds to a node

in gref with the smallest distance to the pose estimate x

computed via MCL. Using the pose q and the pose pk that

corresponds to zk in gi together with an given vertical offset

∆z to account for the height difference between both floors,

we compute an inter-floor constraint as

c = (q p−1
k ) + (0, 0,∆z)

T . (4)

In principle, one could now add these constraints to

the pose-graph connecting the so-far unconnected graphs

representing the individual floors. The described procedure,

however, is likely to generate outliers. Adding such outliers

to the SLAM optimization procedure used to compute the

global map is likely to lead to a catastrophic failure. In

contrast to that, it is typically not critical to omit a correctly

identified constraint between floors. Therefore, we introduce

two further tests in order to reduce the risk of adding wrong

constraints.

The first test considers the sensor measurement likelihoods

obtained when evaluating the sensor model. We compute the

average observation likelihood lt of a measurement zt over

all N particles as

lt =
1

N

N∑
j=1

p(zt | x
(j)
t ,m), (5)

where x
(j)
t denotes the pose hypothesis of particle j.

High values of lt indicate that the measurement can be

explained well by the map m while low values may indicate

that the particles have actually converged to a position in

the environment that does not correspond to a likely pose

in the map. Thus, we use a heuristic threshold criterion and

discard the hypothesis if lt < lmin . The threshold lmin can be

learned by evaluating the sensor model for localization while

building the map of the current floor (the map corresponds to

the floor from which the observations are taken). If lt exceeds

the threshold, the corresponding hypothesis c is added to a

candidate set Ci. Then, the filter is reset and the procedure

is restarted.

In addition to this heuristics, we apply RANSAC [3] on

the candidate sets Ci to eliminate outliers. RANSAC is an

iterative algorithm that estimate parameters of a model from

a set of observed data which contains outliers. In our system,

the model corresponds to an alignment of floor maps which

can be described by a planar translation and rotation around

the vertial axis. Using the RANSAC notation, the alignment

hypotheses in Ci serve as observations of this alignment.

In this way, RANSAC will determine the maximum set of

consistent inter-floor constraints.

Algorithm 1 Constraint generation via MCL

Require: {g0..gn}, set of floor graphs
1: ref ← random (0..n) // select reference floor

2: for all gi ∈ {g0..gm}\{gref } do
3: Ci ← ∅
4: for k = 1 to sizeof (gi) do

5: if x← MCL (gref , zk:k+d) then

6: k ← k + d

7: q ← findNearestNeighbor (gref , x)
8: c← computeConstraint (q, pk,∆z)
9: Ci = Ci ∪ {c}
10: end if

11: end for

12: Ci ← RANSAC (Ci)
13: end for

14: mergeGraphs({g0..gn}, {C0..Cn})

After adding the set of constraints verified with the



RANSAC, the graph-based optimization approach will align

the individual floors and thus lead to a consistent model of

the building with high likelihood.

Note that the minimal amount of inter-floor constraints

that is necessary to correctly map a building depends on the

input data. In theory and under the assumption that individual

floors are consistently mapped, a single constraint will be

sufficient to align two floors maps and RANSAC would not

have to be used. In practice, however, floor graphs contain

erroneous local constraints due to measurement noise and

odometry errors. Thus, the overall model of the building

will be improved by multiple inter-floor constraints. For this

reason, our current implementation requires at least three

constraints to be found for each floor.

An Illustration of the overall approach can be found in the

multimedia attachment of this paper.

V. LIMITATIONS OF THE APPROACH

As we will illustrate in the experimental section, the

approach works well in typical real world buildings. Even

if different floors share only few common structures, our

approach is able to align them.

Buildings with strong symmetries may, however, pose a

problem to the described approach. In such cases, the global

localization method will most likely converge to a multi-

modal distribution and thus no constraints can be generated.

Our approach will furthermore not be successful for a

building whose floors do not share any similarities. These

building occur rarely in real world but do exist. One such

building is the Stata Center at MIT. Here, our approach

was unable to find constraints between the third and the

eighth floor. This comes as no surprise, since even a manual

alignment of the floor maps is nearly impossible without

background knowledge.

In both cases described above, our system behaves like a

standard graph-based SLAM approach.

VI. EXPERIMENTS

Our approach was evaluated using several real world

datasets as well as simulated data. The experiments are

designed to investigate whether the proposed approach is

able to correctly model real world buildings. Furthermore, we

also evaluate whether the overall mapping error is reduced

and to what extend mapping errors in one of the floors can

be corrected using the maps of other floors. All real world

datasets were recorded using a Pioneer2 robot equipped with

a SICK laser scanner.

A. Typical Office Building with four Floors

This dataset was recorded in building 106 on the computer

science campus in Freiburg (see Fig. 2). The building consists

of four floors that share a similar structure, most prominently

in the area around the elevator. The floors differ mainly

in the area around the staircase. Additional differences are

introduced by open doors and furniture.

The floor maps aligned by our approach can be seen in

Fig. 3. By visual inspection of an overlay of all four maps

(see Fig. 4) there is no apparent alignment error.

Fig. 2. Building 106 on Freiburg Campus

Fig. 3. Aligned floors of building 106 on Freiburg Campus

B. Building with Long Corridors

A more challenging dataset was recorded in building 051

on the computer science campus in Freiburg. The floors

of this three-story building essentially consist of two long

corridors meeting at an elevator in the middle of the building.

With all office doors closed the elevator area and a

staircase on either end of the building are the main structural

features. Using the proposed approach, constraints were

found in those salient areas and a correct alignment was

obtained. In Fig. 5 two of the three already aligned floors

are depicted in an three-dimensional illustration.

C. Building with Few Structural Similarities

Building 101 on the computer science campus in Freiburg

features a modern architecture with large glass constructions

(see Fig. 6). Its three floors do not share a lot of structural

Fig. 4. Overlay of the four floors of building 106 on Freiburg Campus



Fig. 5. Two correctly aligned floors of building 051. To illustrate the
alignment, occupied cells found in both floor maps have been connected.

Fig. 6. Building 101 on Freiburg Campus

features, the only exception being an elevator shaft and a

short corridor leading to the restrooms.

The MCL-based approach successfully generated inter-

floor constraints in the similar areas around the elevator but

failed to generate further constraints in other parts of the

building. For this reason, the alignment achieved for this

dataset is not as good as in the previous experiments. A small

but noticeable rotational error remains and can be seen in the

overlay of two of the resulting floor maps depicted in Fig. 7.

D. Quantitative Evaluation Using a Simulated Building with

Ten Floors

To quantitatively evaluate the alignment obtained using our

approach, we created a virtual dataset consisting of ten floors

Fig. 7. Top: two floor maps of building 101 with few similarities. Bottom:
overlay of the floors with alignment found by our approach. The blue arrow
indicates a minor inconsistency.

Fig. 8. Left: Floor graphs of a simulated building with ten floors before
alignment. Right: a merged graph has been computed and each of the floor
graphs has been correctly aligned against the reference floor.
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Fig. 9. Average alignment error with confidence intervals according to a
t-test with 95% confidence computed for 9 different experiments with 10
floors each.

taken from a real world dataset. To this end, we extended the

dataset of building 106. The top three floors were duplicated

twice while the first floor was used once only. A Gaussian

rotational error was added to each floor graph to simulate

pose uncertainty across floors. The variance of this error

relates to the rotational error observed in experiments in

which a robot entered an elevator, turned on the spot, and left

the elevator again. The graphs of the individual floor without

connecting constraints as well as the corrected and merged

graph generated by our approach are shown in Fig. 8.

Figure 9 depicts a statistical analysis of the alignment

error. For this experiment, we manually selected the first

floor as the reference floor and aligned each of the following

floor graphs against it using our approach. By choosing

the reference floor in this way, an unrealistic overfitting is

avoided since matchings between duplicated (virtual) floors

are not considered. The graph optimization was then carried

out with and without the inter-floor constraints found by

our system. We manually determined the correct alignment

of the floors and computed the deviation of this to the

alignment obtained by the SLAM approaches. This was done

in nine different experiments with ten floors. As can be

seen from the average alignment error and the confidence

intervals, using inter-floor constraints significantly reduces

the alignment error of the floors.

E. Correction of Systematic Mapping Errors

In this experiment, we evaluate to what extend the pre-

sented approach can be used to correct for systematic sensor

errors in one of the floors. Such errors may, for example, be

induced by lighting conditions in the case of vision sensors



Fig. 10. Simulated environment with long corridors. a) simulated floor A.
b) simulated floor B with few structural features. c) floor B mapped using
the standard approach without inter-floor constraints. There is an average
error in length of 14.2%. d) floor B after applying our approach. The average
remaining error in length is 5.8%.

or by long, featureless corridors in the case of laser scanners.

To evoke such an error, we simulated an environment based

on building 051 that consists of two different corridors with

a length of 130m as depicted in Fig. 10. Floor A features

a similar geometrical structure as the original building but

was extended by copying parts of the corridors. Floor B is

identical to floor A with the exception that it does not contain

any significant structure within the corridors. However, both

floors still share the elevator area and the two staircases also

present in the original map.

The standard SLAM front-end was able to generate a

consistent map of floor A. The featureless corridor of floor B,

however, posed a problem to the scan matcher. The maximum

measurement range of 30m was not sufficient to measure

structurally salient regions or the limiting walls at the ends

of the corridor at all times. For this reason, the corridor

of floor B was shortened by the scan matching leading to

a shortened corridor in the resulting map (see Fig. 10 c).

This is a typical effect of short range proximity sensors [19].

We measured the error in the corridor length over ten runs

of the experiment. On average, this shortening amounted to

14.2% of the original length (corresponding to 18.5m). The

results in significant according to a t-test performed with a

confidence level of 5%.

The proposed MCL-based approach was able to find inter-

floor constraints at the structurally identical staircases at both

ends of the simulated floors. Using those constraints and the

floor graphs of floor A and floor B, our approach was able to

generate a merged graph of both floors. The resulting map of

floor B can be seen in Fig. 10 d. The average residual error

in length was 5.8% (corresponding to 7.5m).

VII. CONCLUSION

This paper presented an approach to simultaneous localiza-

tion and mapping that extracts alignment constraints between

different floors of buildings and utilizes these constraint

to generate more accurate maps of multistory buildings.

Our approach uses Monte Carlo localization and performs

a global pose estimation to seek for potential constraints

between the individual floors. The selected constraints are

then integrated into a graph-based optimization approach to

address the SLAM problem. We evaluated our system using

different real world datasets. The results indicate that the

overall approach is quite robust and allows for the generation

of multistory maps that are more accurate than those obtained

with an approach not considering global constraints between

the individual floors.
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