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Abstract—Robots operating in domestic environments need to
deal with a variety of different objects. Often, these objects
are neither placed randomly, nor independently of each other.
For example, objects on a breakfast table such as plates,
knives, or bowls typically occur in recurrent configurations. In
this paper, we propose a novel hierarchical generative model
to reason about latent object constellations in a scene. The
proposed model is a combination of a Dirichlet process and
beta processes, which allows for a probabilistic treatment of the
unknown dimensionality of the parameter space. We show how
the model can be employed to address a set of different tasks in
scene understanding including unsupervised scene segmentation
and completion of partially specified scenes. We describe how
to sample from the posterior distribution of the model using
Markov chain Monte Carlo (MCMC) techniques and present an
experimental evaluation with simulated as well as real-world data
obtained with a Kinect camera.

I. INTRODUCTION

Imagine a person laying a breakfast table and the person
gets interrupted so that she cannot continue with the breakfast
preparation. A service robot such as the one depicted in Fig. 1
should be able to proceed laying the table without receiving
specific instructions. It faces a series of questions: how to
infer the total number of covers, how to infer which objects
are missing on the table, and how should the missing parts
be arranged? For this, the robot should not require any user-
specific pre-programmed model but should ground its decision
based on the breakfast tables it has seen in the past.

In this paper, we address the problem of scene under-
standing given a set of unlabeled examples and generating
a plausible configuration from a partially specified scene. The
key contribution of this paper is the definition of a novel
hierarchical nonparametric Bayesian model to represent the
scene structure in terms of object groups and their spatial
configuration. We show how to infer the scene structure in
an unsupervised fashion by using Markov chain Monte Carlo
(MCMC) techniques to sample from the posterior distribution
of the latent scene structure given the observed objects.

In our model, each scene contains an unknown number
of latent object constellations or meta-object instances. In
the breakfast table example, a place cover can be seen as a
latent meta-object instance of a certain type that, for example,
consists of the objects plate, knife, and cup. An instance of
a different type might consist of a cereal bowl and a spoon.
The meta-object instances are sampled from a distribution over
object constellations (Fig. 2). Thus, not all instances are the

Fig. 1. A scene typically contains several observable objects and the task
is to infer the latent meta-objects where a meta-object is considered to be
a constellation of observable objects. At a breakfast table, for example, the
meta-objects might be the covers that consist of the observable objects plate,
knife, fork, and cup.

same, they differ in the sense that some objects may be missing
and that the objects may not be arranged in the same way.

When specifying a generative model for our problem, we
have the difficulty that the dimensionality of the model is part
of the learning problem. This means, that besides learning
the parameters of the model, like the pose of a meta-object,
we additionally need to infer the number of involved meta-
objects, meta-object parts, etc. The standard solution would
be to follow the model selection approaches, for example,
learning several models and then choosing the best one.
Such a comparison is typically done by trading off the data
likelihood with the model complexity as, for example, done for
the Bayesian information criterion (BIC). The problem with
this approach is the huge number of possible models, which
renders this approach intractable in our case.

To avoid this complexity, we follow another approach,
motivated by recent developments in the field of hierarchical
nonparametric Bayesian models based on the Dirichlet process
and the beta process. These models are able to adjust their
complexity according to the given data, thereby sidestepping
the need to select among several finite-dimensional model
alternatives. Based on a prior over scenes, which is updated
by observed training scenes, the model can be used for
parsing new scenes or completing partially specified scenes
by sampling the missing objects.

Whereas in this paper, we consider the problem of learning
the object constellations on a breakfast table as depicted in
Fig. 1, our model is general and not restricted to this scenario.



Fig. 2. A meta-object type is a distribution over object constellations. It
is modeled as a collection of parts, each having a Gaussian distribution, a
multinomial distribution over object types, and a binary activation probability.

II. RELATED WORK

In this section we describe the relevant works on unsuper-
vised scene analysis. A first family of approaches, and the
most related to our model, employs nonparametric Bayesian
models to infer spatial relations. Sudderth et al. [15] introduced
the transformed Dirichlet process, a hierarchical model which
shares a set of stochastically transformed clusters among
groups of data. The model has been applied to improve
object detection in visual scenes, given the ability of the
model to reason about the number of objects and their spatial
configuration. Following his paper, Austerweil and Griffiths
[2] presented the transformed Indian buffet process, where
they model both the features representing an object and their
position relative to the object center. Moreover, the set of
transformations that can be applied to a feature depends on
the objects context.

A complementary approach is the use of constellation
models [3, 4, 11]. These models explicitly consider parts
and structure of objects and can be learned efficiently and
in a semisupervised manner. The star model [4], which is the
more efficient variant of constellation models, uses a sparse
representation of the object consisting of a star topology con-
figuration of parts modeling the output of a variety of feature
detectors. The main limitations of these methods, however,
lies in the fact that the number of objects and parts must
be defined beforehand and thus cannot be trivially used for
scene understanding and object discovery. Ranganathan and
Dellaert [11] used a 3D constellation model for representing
indoor environments as object constellations. A closely related
approach [10] to constellation models uses a hierarchical rule-
based model to capture spatial relations. It also employs
a star constellation model and a variant of the expectation
maximization (EM) algorithm to infer the structure and the
labels of the objects and parts.

Another family of approaches relies on discriminative learn-
ing and unsupervised model selection techniques. One ap-
proach is to automatically discover object part representa-
tions [13]. In this work, the authors introduced a latent con-
ditional random field (CRF) based on a flexible assembly of
parts. Individual part labels are modeled as hidden nodes and
a modified version of the EM algorithm has been developed

for learning the pairwise structure of the underlying graphical
model. Triebel et al. [19] presented an unsupervised approach
to segment 3D range scan data and to discover objects by the
frequency of the appearance of their parts. The data is first
segmented using graph-based clustering, then each segment is
treated as a potential object part. The authors used CRFs to
represent both the part graph to model the interdependence of
parts with object labels, and a scene graph to smooth the object
labels. Spinello et al. [14] proposed an unsupervised detection
technique based on a voting scheme of image descriptors.
They introduced the concept of latticelets: a minimal set of
pairwise relations that can generalize the patterns connectivity.
Conditional random fields are then used to couple low level
detections with high level scene description. Jiang et al. [8]
used an undirected graphical model to infer the best placement
for multiple objects in a scene. Their model considers several
features of object configurations, such as stability, stacking,
and semantic preferences.

A different approach is the one of Fidler and Leonardis [5].
They construct a hierarchical representation of visual input
using a bottom-up strategy. They learn the statistically most
significant compositions of simple features with respect to
more complex higher level ones. Parts are learned sequen-
tially, layer after layer. Separate classification and grouping
technique are used for the bottom and top layers to account
for the numerical difference (sensor data) and semantical ones
(object category).

The novelty of the approach presented in this paper lies
in the combination of a Dirichlet process and beta-Bernoulli
processes which provides us with a prior for sampling or
completing entire scenes.

III. GENERATIVE SCENE MODEL

In this section, we describe the proposed generative scene
model. We assume that the reader is familiar with the basics
of nonparametric Bayesian models [6], especially with the
Chinese restaurant process (CRP) and the Dirichlet process
(DP) [16], the (two-parameter) Indian buffet process (IBP) and
the beta process (BP) [7, 18], and the concepts of hierarchical
[17] and nested [12] processes in this context.

In the following, we consider a scene as a collection of
observable objects represented as labeled points in the 2D
plane. The 2D assumption is due to our motivation to model
table scenes. However, the model is not specifically geared
towards 2D data and could in principle also be applied to
3D data. Basically, we assume that each scene contains an
unknown number of latent object constellations (place covers).
An object constellation is called a meta-object instance (or
simply meta-object) and corresponds to a sample from a meta-
object type, which is a distribution over object constellations
and is represented as a part-based model with infinitely many
parts. As illustrated in Fig. 2, each part has a binary activation
probability, a Gaussian distribution over the relative object
position, and a multinomial distribution over the object type
(knife, fork, etc.). To sample from a meta-object type, one first
samples the activation of each part. For each activated part,
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Fig. 3. Basic structure of our model: The Indian buffet processes (IBP) on top
are nested within the tables (represented as circles) of the Chinese restaurant
process (CRP) below them. The blocks within the IBP frames represent the
relevant part of the IBP matrix (see Fig. 4). Clusters in the scenes are meta-
object instances and objects (colored/gray points) of the clusters need to be
associated to entries in the IBPs shown on top. This is explicitly shown for
one cluster in the first scene. For visibility reasons, the rest of the associations
are drawn as a single thick line. At the lowest level, each scene has a meta-
object IBP (shown on the left) and a noise IBP (on the right) from which the
meta-object instances and the noise objects of a scene are drawn.

one then samples the relative position and the object type to be
generated at this location. Each activated part generates exactly
one object per meta-object instance. Thus, the objects of a
scene can be grouped into clusters. Each cluster corresponds
to a meta-object instance and the objects of a cluster can be
associated to the parts of the corresponding meta-object type.

A. Description of the Generative Process

Following the example given in the introduction, imagine
that our robot’s goal is to set a table for a typical family
breakfast. At the beginning, it enters a room with an empty
breakfast table and an infinite number of side tables, each hold-
ing a prototypical cover. It estimates the area A of the breakfast
table surface and boldly decides that n ∼ Poisson(Aλ) covers
are just right. The robot chooses one of the side tables and
finds a note with the address of a Chinese restaurant where
it can get the cover. Arriving there, it sees again infinitely
many tables each corresponding to a particular cover type
and each displaying a count of how often someone took a
cover from this table. It is fine with just about any cover type
and decides randomly based on the counts displayed at the
tables, even considering a previously unvisited table. At that
table there is another note redirecting to an Indian restaurant.
In this restaurant, it is being told that the cover needs to be
assembled by choosing the parts that make up this cover. The
robot randomly selects the parts based on their popularity and
even considers to use a few parts no one has ever used before.
For each chosen part its relative position is sampled from
the part’s Gaussian distribution and then the robot samples

Fig. 4. A more detailed view on a part IBP representing a meta-object type.
This would correspond to one of the IBPs at the very top in Fig. 3. The rows
represent customers and the columns represent dishes (parts). The customers
of this IBP are the meta-object instances associated to this meta-object type
in any of the scenes. The objects of the instances must be associated to one of
the parts. They thereby update the posterior predictive distribution (illustrated
at the bottom) over the objects of a new customer. Remember, that the actual
part parameters are integrated out due to the usage of conjugate priors.

the object from the part’s multinomial distribution over types
(plate, knife, fork, etc.). Having assembled the cover this way,
the robot returns to the breakfast table and puts it randomly
on it. The process is then repeated for the remaining n − 1
covers. See Fig. 3 for an overview of the model structure.

More formally, we have a hierarchical model with a high-
level Dirichlet process DPt, a low-level beta process BPc and
a further independent beta process BPε. First, we draw Gt
from the high-level DPt

Gt ∼ DPt(αt,BPp(cp, αp,Dir×NW)), (1)

where the base distribution of DPt is a beta process BPp
modeling the parts’ parameters. This is done only once and
all scenes to be generated will make use of the same draw Gt.
This draw describes the distribution over all possible meta-
object types (cover types) and corresponds to the Chinese
restaurant mentioned above. The base distribution of the beta
process is the prior distribution over the part parameters. The
parameters are a 2D Gaussian distribution over the relative
location and a multinomial over the observable object types.
The parameters are sampled independently and we use their
conjugate priors in the base distribution, i.e., a (symmetric)
Dirichlet distribution Dir for the multinomial and the normal-
Wishart distribution NW [9] for the 2D Gaussian. The mass
parameter αp of BPp is our prior over the number of activated
parts of a single meta-object instance and the concentration
parameter cp influences the total number of instantiated parts
across all instances of the same type. Likewise, the parameter
αt influences the expected number of meta-object types.
Each scene s has its own meta-object IBP and the meta-



object instances are determined by a single draw from the
corresponding beta-Bernoulli process as follows:

G(s)
c ∼ BPc(1, |As|αc, Gt × U(As × [−π, π]))

(2)

{Gtj , Tj}j ∼ BeP(G(s)
c ) (3)

{µk,Σk,γk}k ∼ BeP(Gtj ) for each j (4)
{x,ω} ∼ p(z | µk,Σk,γk, Tj) for each k (5)

In Eq. (2), the concentration parameter is irrelevant and
arbitrarily set to one. The mass parameter |As|αc is the
expected number of meta-object instances in a scene. The base
distribution of BPc samples the parameters of a instance j:
its type tj and its pose Tj . The type tj is drawn from the
distribution over meta-object types Gt from Eq. (1). The pose
Tj is drawn from a uniform distribution U over the pose space
As×[−π, π] where As is the table area. Each atom selected by
the Bernoulli process in Eq. (3) corresponds to a meta-object
instance and this selection process corresponds to the side table
metaphor mentioned above. The meta-object type tj basically
references a draw Gtj from the nested beta process in Eq. (1)
which models the parts of a meta-object type. Thus, in Eq. (4)
we need another draw from a Bernoulli process to sample the
activated parts for this instance, which yields the Gaussians
(µk,Σk) and the multinomials (γk) for each active part k.
Finally, in Eq. (5) we draw the actual observable data from the
data distribution as realizations from the multinomials and the
(transformed) Gaussians, which yields an object z = {x, ω}
on the table with location x and type ω for each activated part.

Each scene has an additional independent beta process BPε

G(s)
ε ∼ BPε(1, αε,M × U(As)) (6)

{xi, ωi}i ∼ BeP(G(s)
ε ) (7)

that directly samples objects (instead of meta-objects) at ran-
dom locations in the scene. Here, M is a multinomial over the
observable object types and U(As) is the uniform distribution
over the table area As. This beta-Bernoulli process will mainly
serve as a “noise model” during MCMC inference to account
for yet unexplained objects in the scene. Accordingly, we set
the parameter αε to a rather low value to penalize scenes with
many unexplained objects. Figs. 3 and 4 illustrate the overall
structure of the model.

B. Posterior Inference in the Model

In this section, we describe how to sample from the posterior
distribution over the latent variables {C,a} given the obser-
vations z. We use the following notation. The observations are
the objects of all scenes and a single object zi = {xi, ωi} has
a 2D location xi on the table and a discrete object type ωi.
A meta-object instance j has parameters Cj = {Tj , tj ,dj},
where Tj denotes the pose and tj denotes the meta-object
type, which is an index to a table in the type CRP, and dj
denotes part activations and associations to the observable
objects. If dj,k = 0 then part k of meta-object instance j
is inactive, where k is an index to a dish in the corresponding
part IBP (which is nested in the CRP table tj). Otherwise, the

part is active and dj,k 6= 0 is a reference to the associated
observable object, i.e., dj,k = i if it generated the object zi.
Next, for each scene we have the associations a to the noise
IBP, i.e., the list of objects currently not associated to any
meta-object instance. For ease of notation, we will use index
functions [·] in an intuitive way, for example, t[−j] denotes
all type assignments except the type assignment tj of meta-
object j, and T[tj ] denotes all poses of meta-objects that have
the same type tj as meta-object j, and z[d] are all observations
referenced by the associations d, etc.

We employ Metropolis-Hastings (MH) moves to sample
from the posterior [1], which allows for big steps in the state
space by updating several strongly correlated variables at a
time. In the starting state of the Markov chain, all objects are
assigned to the noise IBP of their respective scene and thus are
interpreted as yet unexplained objects. We sample for a fixed
yet sufficiently high number of iterations to be sure that the
Markov chain converged. We use several types of MH moves,
which we will explain in the following after describing the
joint likelihood.

Joint Likelihood: p(C,a, z) = p(T, t,d,a, z). The joint
likelihood is

p(C,a, z) =

(
S∏
s=1

p(ns,ε)p(ns,m)

)
p(t)

(
nt∏
t=1

p(d[t] | t)

)

p(T)

(
nt∏
t=1

Kt∏
k=1

p(z[d[t,k]] | T[t],d[t,k], t)

)
. (8)

Here, ns,m is the number of meta-object instances and ns,ε
is the number of noise objects in scene s. Each dish param-
eter of the noise IBP directly corresponds to the parameters
zi = {xi, ωi} of the associated noise object, as we assumed
that there is no data distribution associated with these dishes.
The base distribution for the dish parameters consists of
independent and uniform priors over the table area and the
object types, and so each dish parameter has the likelihood
(nω |As|)−1, where nω is the number of observable object
types and |As| is the area of the table in scene s. Thus,
the probability of the objects z[a[s]] associated to a scene’s
noise IBP only depends on the number of noise objects
and not on the particular type or position of these objects.
However, it would be straightforward to use a non-uniform
base distribution. Denoting the Poisson distribution with mean
λ as Poi(· | λ) we thus have

p(ns,ε) = p(z[a[s]],a[s]) = ns,ε! Poi(ns,ε | αε)(nω |As|)−ns,ε .
(9)

Next, p(ns,m) = ns,m! Poi(ns,m | αm |As|) is the prior
probability for having ns,m meta-objects in scene s. The dish
parameters of a meta-object IBP are the meta-object param-
eters Cj , consisting of the pose, type, and part activations.
The likelihood for sampling a pose p(Tj) = (|As| 2π)−1 is
uniform over the table surface and uniform in orientation,
hence p(T) =

∏S
s=1(|As| 2π)−ns,m . Next, p(t) is the CRP

prior for the meta-object types of all meta-object instances.
The factors p(d[t] | t) are the IBP priors for the part activations



for all meta-object instances of type t and there are nt different
types currently instantiated. During MCMC sampling, we will
only need the conditional for a single meta-object j

p(tj ,dj | t[−j],d[−j]) = p(dj | d[−j,tj ], t)p(tj | t[−j]). (10)

Here, p(tj | t[−j]) is the CRP predictive distribution

p(tj = i | t[−j]) =

{
ni

αc+
∑
i′ ni′

i is an existing type
αc

αc+
∑
i′ ni′

i is a new type
,

(11)
and ni is the number of meta-object instances of type i (not
counting instance j) and αc is the concentration parameter
of the CRP. Further, p(dj | d[−j,tj ], t) is the predictive
distribution of the two-parameter IBP, which factors into
activation probabilities for each of the existing parts and an
additional factor for the number of new parts, denoted as n+.
An existing part is a part that has been activated by at least one
other meta-object instance of this type in any of the scenes.
The activation probability for an existing part k is

p(dj,k 6= 0 | d[−j,tj ], t) =
nk

ntj + cp
, (12)

where cp is the concentration parameter of the part IBP, nk is
the number of meta-object instances that have part k activated
in any of the scenes, and ntj is the total number of meta-object
instances of type tj in all scenes (the counts exclude the meta-
object j itself). The probability for having n+ associations to
new parts is

p(d[j,+] | d[−j,tj ], t) = n+! Poi

(
n+

∣∣∣∣ cpαp
ntj + cp

)
, (13)

where αp is the mass parameter of the part IBP, and d[j,+]

denotes the associations to new parts.
As stated in Eq. (8), the data likelihood p(z[d] | T,d, t) for

the objects associated to meta-objects factors into likelihoods
for each individual part k. Further, it factors into a spatial
component and a component for the observable object type.
As the meta-object poses T are given, we can transform the
absolute positions x[d[t,k]] of the objects associated to a certain
part k of meta-object type t into relative positions x̃[d[t,k]]

with respect to a common meta-object reference frame. The
relative positions are assumed to be sampled from the part’s
Gaussian distribution which in turn is sampled from a normal-
Wishart distribution. As the Gaussian and the normal-Wishart
distribution form a conjugate pair, we can analytically integrate
out the part’s Gaussian distribution which therefore does not
have to be explicitly represented. Hence, the joint likelihood
for x̃[d[t,k]] of part k is computed as the marginal likelihood
under a normal-Wishart prior. During MCMC inference, we
only need to work with the posterior predictive distribution

p(x̃[dj,k] | x̃[d[−j,tj ,k]]
) = tν(x̃[dj,k] | µ,Σ) (14)

for a single relative position given the rest. This is a multivari-
ate t-distribution tν with parameters µ,Σ depending both on
x̃[d[−j,tj ,k]]

and the parameters of the normal-Wishart prior –
for details see [9]. Similarly, the part’s multinomial distribution

over the observable object types can be integrated out as it
forms a conjugate pair with the Dirichlet distribution. The
posterior predictive distribution for a single object type is

p(ω[dj,k] | ω[d[−j,tj ,k]]
) =

nω + αω∑
ω′(nω′ + αω′)

, (15)

where nω is the number of times an object of type ω has been
associated to part k of this meta-object type tj , and αω is
the pseudo-count of the Dirichlet prior. When describing the
MCMC moves, we will sometimes make use of the predictive
likelihood for all objects z[dj ] associated to a single meta-
object instance j. This likelihood factors into the posterior
predictive distributions of the individual parts and their spatial
and object type components, as described above. In the fol-
lowing, we will describe the various MCMC moves in detail.

Death (birth) move: (Tj , tj ,dj ,a)→ (a?). A death move
selects a meta-object j uniformly at random, adds all of its
currently associated objects to the noise process and removes
the meta-object j from the model. The proposal probability
for this move is qd(C−j ,a

? | Cj ,C−j ,a) = (nm)−1 where
nm denotes the number of instantiated meta-objects in this
scene before the death move. To simplify notation, we will
just write qd(Cj) for the probability of deleting meta-object
j. The reverse proposal is the birth proposal qb(C?j ,C−j ,a

? |
C−j ,a, z) that proposes new parameters C?j = {T ?j , t?j ,d

?
j}

for an additional meta-object: the pose T ?j , the type t?j , and the
associations d?j . The new meta-object may reference any of
the objects previously associated to the noise process and any
non-referenced noise objects remain associated to the noise
process. We will describe the details of the birth proposal in
detail later on. To simplify notation, we will just write qb(Cj)
for the birth proposal. Plugging in the model and proposal
distributions in the MH ratio and simplifying we arrive at the
acceptance ratio of the death move

Rd =
1

p(z[dj ] | z[d[−j,tj ]]
,T[tj ],d[tj ], t)p(tj ,dj | t[−j],d[−j])

1

p(Tj)

p(nm − 1)

p(nm)

p(nε + nj)

p(nε)

qb(Cj)

qd(Cj)
. (16)

The counts nj , nm, and nε refer to the state before the death
move, and nm denotes the number of meta-objects in this
scene, nj are the number of objects currently associated to
meta-object j, and nε is the number of noise objects. The
ratio of a birth move is derived similarly.

Switch move: (Tj , tj ,dj ,a)→ (T ?j , t
?
j ,d

?
j ,a

?). This move
is a combined death and birth move. It removes a meta-object
and then proposes a new meta-object using the birth proposal.
Thus, the number of meta-objects remains the same but one
meta-object simultaneously changes its type tj , pose Tj , and
part associations dj . The death proposals cancel out and the
acceptance ratio of this move is

Rs =
p(z[d?j ] | z[d[−j,t?

j
]], T

?
j ,T[−j,t?j ],d

?
j ,d[−j,t?j ], t

?
j , t[−j])

p(z[dj ] | z[d[−j,tj ]]
, Tj ,T[−j,tj ],dj ,d[−j,tj ], tj , t[−j])

p(t?j ,d
?
j | t[−j],d[−j])p(T

?
j )p(n?ε )qb(Cj)

p(tj ,dj | t[−j],d[−j])p(Tj)p(nε)qb(C
?
j )
. (17)



Shift move: (Tj)→ (T ?j ). This move disturbs the pose Tj
of a meta-object by adding Gaussian noise to it while the type
and part associations remain unchanged. The acceptance ratio
depends only on the spatial posterior predictive distributions
of the objects associated to this meta-object. The proposal
likelihoods cancel due to symmetry and the final ratio is

RT =
p(x[dj ] | x[d[−j,tj ]]

, T ?j ,T[−j,tj ],d[tj ], t)p(T ?j )

p(x[dj ] | x[d[−j,tj ]]
, Tj ,T[−j,tj ],d[tj ], t)p(Tj)

. (18)

Association move (existing part): (dj ,a)→ (d?j ,a
?). This

move samples the part activation and object association of an
existing part k of a single meta-object j. In the IBP metaphor,
this corresponds to sampling the selection of a single existing
dish (part) for a single customer (meta-object instance). If the
existing part is already associated with an object, we consider
this object to be temporarily re-associated to the noise process
(such that there are now nε noise objects). We then use Gibbs
sampling to obtain one of nε + 1 possible associations: either
the part k is inactive (dj,k = 0) and not associated with any
object, or it is active (dj,k 6= 0) and associated with one out
of nε currently available noise objects (e.g. zi when dj,k = i).
The probabilities for these cases are proportional to

p(dj,k = i) ∝
p(dj,k = 0 | d[−j,tj ,k], t)p(nε) i = 0

p(zi | z[d[−j,tj ,k]]
,T[tj ], dj,k,d[−j,tj ,k], t)

p(dj,k 6= 0 | d[−j,tj ,k], t)p(nε − 1)
i 6= 0

(19)

Association move (new parts): (dj ,a) → (d?j ,a
?). This

move samples the associations of objects to new parts. For this,
we use two complementary MH moves: one move increases
the number of new parts by one by assigning a noise object
to a new part, while the other move decreases the number of
new parts by one by assigning an associated object (of a new
part) to the noise process. The acceptance ratio for removing
object zi from a new part k of meta-object j that currently
has n+ new parts is

R− =
1

p(zi | Tj , dj,k)

p(d?[j,+] | d[−j,tj ], t)

p(d[j,+] | d[−j,tj ], t)

p(nε + 1)

p(nε)

q+

q−
(20)

The proposal q− = (n+)−1 chooses one of the new parts to
be removed uniformly at random, while the reverse proposal
q+ = (nε + 1)−1 chooses uniformly at random one of then
nε + 1 noise objects to be associated to a new part. The MH
move that increases the number new parts is derived similarly.

Birth proposal: qb(Tj , tj ,dj). The birth, death, and switch
moves rely on a birth proposal that samples new meta-object
parameters Cj = {Tj , tj ,dj}. The general idea is to sample
the pose Tj and type tj in a first step. We then proceed to
sample the associations dj given Tj and tj , i.e., the potential
assignment of noise objects to the parts of this meta-object.

Sampling Tj and tj is done in either of two modes: the
object mode or the matching mode. In object mode, we choose
an object uniformly at random and center the meta-object pose
Tj at the object’s location (with random orientation) and add

Gaussian noise to it. The type tj is sampled from the current
predictive distribution of the type CRP. In contrast, the match-
ing mode was inspired by bottom-up top-down approaches
and aims to propose Tj and tj in a more efficient way by
considering the currently instantiated meta-object types in the
model. However, in contrast to the object mode, it cannot
propose new meta-object types (new tables in the type CRP).
It selects two objects and associates them to a suitable part
pair. This suffices to define the pose Tj as the corresponding
transformation of these parts into the scene. In detail, we
first sample one of the objects zi at random and choose
its nearest neighbor zj . We match this ordered pair 〈zi, zj〉
against all ordered part pairs 〈ki′ , kj′〉 of the meta-object types
to obtain their matching probabilities pm with respect to the
parts’ posterior predictive means, µi′ and µj′ , of the spatial
distribution, and their posterior predictive distributions, Mi′

and Mj′ , over the observable object types ωi and ωj

pm(〈ki′ , kj′〉 | 〈zi, zj〉) ∝N (d∆ |0, σ2
m)Mi′(ωi)Mj′(ωj).

(21)
Here, d∆ = ‖xi − xj‖ − ‖µi′ − µj′‖ is the residual of the
objects’ relative distance w.r.t. the distance of the posterior
means and σ2

m is a fixed constant. We then sample a part
pair 〈ki′ , kj′〉 according to its matching probability to define,
together with the objects zi and zj , the pose Tj . Finally, we
add Gaussian noise to Tj . The sampled part pair implicitly
defines the meta-object type tj .

After having sampled Tj and tj using either of these two
modes, the next step is to sample the associations dj . For
this, we randomly choose, without repetition, a noise object
and use Gibbs sampling to obtain its association to either: (a)
a yet unassociated part of the meta-object instance; (b) a new
part of the meta-object instance; or (c) be considered a noise
object. The probabilities for (a) and (b) are proportional to the
spatial and object type posterior predictive distributions of the
respective parts, while (c) is based on the noise IBP’s base
distribution.

Besides sampling from the proposal distribution we also
need to be able to evaluate the likelihood qb(Cj) for sampling
a given parameter set Cj . For this, we need to marginalize
over the latent variables of the proposal, e.g. the binary mode
variable (object mode or matching mode), the chosen object
zi, and the chosen part pair of the matching mode.

IV. EXPERIMENTS

We tested our model on both synthetic data and real-world
data acquired with a Kinect camera.

A. Synthetic Data

In the synthetic data experiment, table scenes were gener-
ated automatically using a different, hand-crafted generative
model. We generated 25 training scenes ranging from two to
six covers. The cover types represent two different breakfast
types. The first type consists of a cereal bowl and a spoon,
while the second type consists of a plate with a glass, a fork
and a knife. A fork can be randomly placed at the right or the
left of a plate or being absent.



(a) Examples of parsed scenes of the synthetic data set. (b) Examples of parsed scenes of the real-world data set.

Fig. 5. The inferred meta-objects with their part relationships. Each picture shows a different scene from a different MCMC run (best viewed in color).
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Fig. 6. Examples of spatial posterior predictive distributions of several parts
of a cover type and their activation probabilities and most likely observable
object types. The cover type on the left was learned on synthetic data, while
the one on the right was learned on the real-world data set.
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Fig. 7. Segmentation (left) and classification (right) results on the point
cloud segments visualized in the Kinect image.

The latent parameters are inferred using all the generated
training scenes and setting the hyperparameters to αε = 0.5,
cp = 0.25, αp = 2.5, αt = 5, and αc = 1. As a first test,
we wanted to show that the model is able to segment the
scenes in a consistent and meaningful way. The results of
this test are shown in Fig. 5a. A set of different scenes are
segmented by using the learned model. We see that each scene
has been segmented with the same cover types and objects are
correctly clustered. Note that the color (gray-scale value) of
the meta-objects and of the parts can change in every run,
since the ordering of types and meta-objects is not relevant
in our model. What is important is that the topological and
metrical configuration are respected.

A second test is to see if the model can infer the meta-
objects in incomplete scenes and if it is able to complete them.
To this end, we artificially eliminated objects from already
generated scenes and segmented the altered scene again using
the learned model. We discovered that the approach was able

plate?

(a) Incomplete scene of the synthetic data set.

plate?

(b) Incomplete scene of the real-world data set.

Fig. 8. Inferred meta-objects in an incomplete scene of (a) the synthetic data
set and (b) the real-world data set (best viewed in color). The color (gray-
scale value) of the spheres indicate the meta-object type and the line colors
(gray-scale values) indicate the part of the meta-object type. In both scenes
one plate has been removed. The model is still able to correctly segment the
incomplete scenes and infer the missing objects. To enhance readability the
pictures have been modified with human readable labels.

to infer the correct cover type even in the absence of the
missing object. As can be seen in Fig. 8a, the approach
correctly segmented and recognized the meta-objects and is
aware of the missing plate (the red branch of the hierarchy
that is not grounded on an existing object). The missing object
can then be inferred by sampling from the part’s posterior
predictive distribution over the location and type of the missing
object, as the one shown in Fig. 6 (left).

B. Real-world Data

We used a Microsoft Kinect depth camera to identify the
objects on the table by, first, segmenting the objects by
subtracting the table plane in combination with a color-based
segmentation. Second, we detect the objects based on the
segmented pointcloud using a straight forward feature-based
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Fig. 9. The plots depict the log-likelihood, the total number of meta-object
parts (summed over all meta-object types), and the number of meta-object
types as they evolve during MCMC sampling. The red (dark gray) lines
corresponds to the synthetic data set and the blue (light gray) lines to the
real-world data set.

object detection system with a cascade of one-vs-all classifiers.
An example for the segmentation and object identification is
shown in Fig. 7. Note that there are likely to be better detection
systems, however, the task of detecting the objects on the table
is orthogonal to the scientific contribution of this paper.

The same set of tests performed on the synthetic data
have been performed also in this case, showing basically the
same results. In particular, Fig. 5b shows the segmentation
results, Fig. 8b shows a modified scene where a plate has
been removed and Fig. 6 (right) shows the posterior predictive
distribution for location and type, as for the synthetic case, that
can be used to complete an incomplete scene.

To better illustrate the inference process, we plot the log-
likelihood, the number of parts, and the number of meta-object
types in Fig. 9 as they evolve during MCMC sampling.

V. CONCLUSION

This paper presents a novel and fully probabilistic genera-
tive model for unsupervised scene analysis. Our approach is
able to model the spatial arrangement of objects. It maintains
a nonparametric prior over scenes, which is updated by ob-
serving scenes and can directly be applied for parsing new
scenes and for model completion by inferring missing objects
in an incomplete scene. Our model applies a combination
of a Dirichlet process and beta processes, allowing for a
probabilistic treatment of the model complexity. In this way,
we avoid a model selection step, which is typically intractable
for the models considered here. To evaluate our approach,
we successfully used our approach to infer missing objects
in complex scenes.
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