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Abstract. Autonomous exploration is a frequently addressed problem in the ro-

botics community. This paper presents an approach to mobile robot exploration

that takes into account that the robot acts in the three-dimensional space. Our

approach can build compact three-dimensional models autonomously and is able

to deal with negative obstacles such as abysms. It applies a decision-theoretic

framework which considers the uncertainty in the map to evaluate potential ac-

tions. Thereby, it trades off the cost of executing an action with the expected

information gain taking into account possible sensor measurements. We present

experimental results obtained with a real robot and in simulation.

1 Introduction

Robots that are able to acquire an accurate model of their environment are regarded

as fulfilling a major precondition of truly autonomous mobile vehicles. So far, most

approaches to mobile robot exploration assume that the robot lives in a plane. They

typically focus on generating motion commands that minimize the time needed to cover

the whole terrain [1,2]. A frequently used technique is to build an occupancy grid map

since it can model unknown locations efficiently. The robot seeks to reduces the number

of unobserved cells or the uncertainty in the grid map. In the three-dimensional space,

however, such approaches are not directly applicable. The size of occupancy grid maps

in 3D, for example, prevents the robot from exploring an environment larger than a few

hundred square meters.

Whaite and Ferrie [3] presented an exploration approach in 3D that uses the entropy

to measure the uncertainty in the geometric structure of objects that are scanned with

a laser range sensor. In contrast to the work described here, they use a fully parametric

representation of the objects and the size of the object to model is bounded by the range

of the manipulator. Surmann et al. [4] extract horizontal planes from a 3D point cloud

and construct a polygon with detected lines (obstacles) and unseen lines (free space

connecting detected lines). They sample candidate viewpoints within this polygon and

use 2D ray-casting to estimate the expected information gain. In contrast to this, our

approach uses an extension of 3D elevation maps and 3D ray-casting to select the next

viewpoint. González-Baños and Latombe [5] also build a polygonal map by merging

safe regions. Similar to our approach, they sample candidate poses in the visibility

range of frontiers to unknown area. But unlike in our approach, they build 2D maps

and do not consider the uncertainty reduction in the known parts of the map.

The contribution of this paper is an exploration technique that extents known tech-

niques from 2D into the three-dimensional space. Our approach selects actions that re-

duce the uncertainty of the robot about the world and constructs a full three-dimensional



model using so-called multi-level surface maps. It reasons about the potential measure-

ments when selecting an action. Our approach is able to deal with negative obstacles

like, for example, abysms, which is a problem of robots exploring a three-dimensional

world. Experiments carried out in simulation and on a real robot show the effectiveness

of our technique.

2 3D Model of the Environment

Our exploration system uses multi-level surface maps (MLS maps) as proposed by

Triebel et al. [6]. MLS maps use a two-dimensional grid structure that stores differ-

ent elevation values. In particular, they store in each cell of a discrete grid the height of

the surface in the corresponding area. In contrast to elevation maps, MLS maps allow us

to store multiple surfaces in each cell. Each surface is represented by a Gaussian with

the mean elevation and its uncertainty σ . In the remainder of this paper, these surfaces

are referred to as patches. This representation enables a mobile robot to model environ-

ments with structures like bridges, underpasses, buildings, or mines. They also enable

the robot to represent vertical structures by storing a vertical depth value for each patch.

2.1 Traversability Analysis

A grid based 2D traversability analysis usually only takes into account the occupancy

probability of a grid cell – implicitly assuming an even environment with only positive

obstacles. In the 3D case, especially in outdoor environments, we additionally have to

take into account the slope and the roughness of the terrain, as well as negative obstacles

such as abysms which are usually ignored in 2D representations.

Each patch p will be assigned a traversability value τ(p) ∈ [0,1]. A value of zero

corresponds to a non-traversable patch, a value greater zero to a traversable patch, and

a value of one to a perfectly traversable patch. In order to determine τ(p), we fit a plane

into its local 8-patch neighborhood by minimizing the z-distance of the plane to the ele-

vation values of the neighboring patches. We then compute the slope and the roughness

of the local terrain and detect obstacles. The slope is defined as the angle between the

fitted plane and a horizontal plane and the roughness is computed as the average squared

z-distances of the height values of the neighboring patch to the fitted plane. The slope

and the roughness are turned into traversability values τs(p) and τr(p) by linear interpo-

lation between zero and a maximum slope and roughness value respectively. In order to

detect obstacles we set τo(p)∈ {0,1} to zero, if the squared z-distance of a neighboring

patch exceeds a threshold, thereby accounting for positive and negative obstacles, or if

the patch has less than eight neighbors. The latter is important for avoiding abysms in

the early stage of an exploration process, as some neighboring patches are below the

edge of the abysm and therefore are not visible yet (see Fig. 1 (a)).

The combined traversability value is defined as τ(p) = τs(p) · τr(p) · τo(p). Next,

we iteratively propagate the values by convolving the traversability values of the patch

and its eight neighboring patches with a Gaussian kernel. For non-existent neighbors,

we assume a value of 0.5. The number of iterations depends on the used cell size and

the robot’s size. In order to enforce obstacle growing, we do not perform a convolution
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Fig. 1. (a) While scanning at an abysm, some of the lower patches will not be covered by a laser

scan (dashed area). Since the patches at the edge of the abysm have less than eight neighbors,

we can recognize them as an obstacle (red / dark gray area). (b) Outdoor map showing sampled

candidate viewpoints as red (dark gray) spheres.

if one of the neighboring patches is non-traversable (τ = 0), but rather set the patch’s

traversability directly to zero in this case.

3 Our Exploration Technique

An exploration strategy has to determine the next viewpoint the robot should move to in

order to obtain more information about the environment. Identifying the best viewpoint

is a two step procedure in our system. First, we define the set of possible viewpoints or

candidate viewpoints. Second, we evaluate those candidates to find the best one.

3.1 Viewpoint Generation

One possible definition of the set of candidate viewpoints is that every reachable posi-

tion in the map is a candidate viewpoint. However, this is only feasible if the evaluation

of candidate viewpoints is computationally cheap. If the evaluation is costly, one has

to settle for heuristics to determine a smaller set. A popular heuristic is the frontier

approach [2] that defines candidate viewpoints as viewpoints that lie on the frontier

between obstacle-free and unexplored areas. In our approach, a patch is considered as

explored if it has eight neighbors and its uncertainty, measured by the entropy in the

patch, is below a threshold. Additionally, we track the entropy as well as the number of

neighbors of a patch. If the entropy or number of non-existing neighbors cannot be re-

duced as expected over several observations, we consider it to be explored nonetheless

since further observations do not seem to change the state of the patch.

A frontier patch is defined as an unexplored patch with at least one explored neigh-

boring patch. Most of these patches have less than eight neighbors and therefore are

considered as non-traversable, since they might be at the edge of an abysm. Therefore,

we cannot drive directly to a frontier patch. Instead, we use a 3D ray-casting tech-

nique to determine close-by candidate viewpoints. A patch is considered as a candidate



viewpoint, if it is reachable and there is at least one frontier patch that is likely to be ob-

servable from that viewpoint. Instead of using ray-casting to track emitted beams from

the sensor at every reachable position, we use a more efficient approach. We emit vir-

tual beams from the frontier patch instead and then select admissible sensor locations

along those beams. This will reduce the number of needed ray-casting operations as the

number of frontier patches is much smaller than the number of reachable patches.

In practice, we found it useful to reject candidate viewpoints, from which the un-

seen area is below a threshold. We also cluster the frontier patches by the neighboring

relation, and prevent patches from very small frontier clusters to generate candidate

viewpoints. This will lead to a more reliable termination of the exploration process.

Candidate viewpoints of an example map are shown in Fig. 1 (b).

3.2 Viewpoint Evaluation

The utility u(v) of a candidate viewpoint v, is computed using the expected information

gain I(v) and the travel costs t(v). As the evaluation involves a costly 3D ray-casting

operation, we reduce the set of candidate viewpoints by sampling uniformly a fixed

number of viewpoints from that set.

In order to simultaneously determine the shortest paths to all candidate viewpoints,

we use a deterministic variant of the value iteration [7]. The costs

c(p, p′) = dist(p, p′)+w(1− τ(p′)) (1)

from patch p to a traversable neighboring patch p′ considers the distance dist(p, p′), as

well as the traversability τ(p′). A constant factor w is used to weight the penalization for

traversing poorly traversable patches. The travel costs t(v) of a viewpoint v is defined

as the accumulated step costs of the shortest path to that viewpoint.

In order to evaluate the information gain of a viewpoint candidate, we perform a ray-

cast operation to determine the patches that are likely to be hit by a laser measurement

similar to [8]. We therefore determine the intersection points of the cell boundaries

and the 3D ray projected onto the 2D grid. Next we determine for each cell the height

interval covered by the ray and check for collisions with patches contained in that cell

by considering their elevation and depth values. Using a standard notebook computer,

our approach requires around 25 ms to evaluate one potential viewpoint including the

3D ray-cast operation. This allows us to run our algorithm with minimal delays only for

typical environments.

For each casted ray that hits a patch, we temporary add a new measurement into the

patch’s grid cell with a corresponding mean and variance that depends on the distance

of the laser ray. The mean and variance of the patch will then be updated using the

Kalman update. As a patch is represented as a Gaussian, we can compute the entropy

H(p) of the patch as

H(p) =
1

2

(

1+ log
(

2πσ
2
))

. (2)

The information gain I(p) of a ray-cast is then defined as the difference between the

entropy H(p) of the patch before and the entropy H(p | m) after the temporary incor-

poration of the simulated measurement

I(p) = H(p)−H(p | m). (3)



Additionally, we add a constant value for each empty cell traversed by the ray. In this

way, we reward viewpoints from which unseen areas are likely to be visible, while

we are still accounting for the reduction of existing uncertainties in the known map.

Rays that do not hit any patch and do not traverse any empty cells, will result in an

information gain of zero. The information gain I(v) of a viewpoint v is then defined

as the sum of the information gains of all casted rays. Finally, the utility u(v) of each

candidate viewpoint is computed by a relative information gain and travel costs as

u(v) = α

I(v)

maxx I(x)
+(1−α)

maxx t(x)− t(v)

maxx t(x)
. (4)

By varying the constant α ∈ [0,1] one can alter the exploration behavior by trading off

the travel costs and the information gain.

3.3 Localization and Termination

The registration of newly acquired information involves a scan matching procedure

with the previous local map. We therefore cannot drive directly to the next viewpoint,

as the resulting overlap with the previous local map may be to small. Hence, we perform

several 3D scans along the way, which has the benefit, that it allows us to optimize the

localization of the robot with the pose returned by the scan matcher. We apply a 6D

Monte Carlo localization proposed by Kümmerle et al. [9]. After each 3D scan, we

replan the path to the selected viewpoint. If the viewpoint is unreachable, we choose a

new one. The exploration terminates if the set of candidate viewpoints is empty.

4 Experiments

The experiments described here are designed to illustrate the benefit of our exploration

technique which is able to build three-dimensional models of the environment and takes

into account the travel costs and the expected change in the map uncertainty to evalu-

ate possible actions. For the real-world experiments we used an ActivMedia Pioneer2-

AT robot with a SICK laser range finder mounted on a pan-tilt unit to acquire three-

dimensional range data. For a 3D scan we tilt the laser in a range of 40 degrees at four

equally spaced horizontal angles while acquiring the laser data.

We tested our approach in simulation and in a real-world scenario. For the simula-

tion experiments, we used a physical simulation environment that models our Pioneer

robot with its pan-tilt unit. The simulated indoor environment consisted of four rooms,

each connected to a corridor, and a foyer where the robot is located initially. The upper

two rooms are connected directly through a door, while the lower ones are not. The

robot efficiently covered the environment taking into account its constraints like travel

cost, and information gain. The robot traveled 59 meters, visited eight viewpoints, and

performed 15 scans (see Fig. 2 (a)-(c)). The final map, depicted in Fig. 2 (c) and (d),

covers an area of 22m×17m and contains about 41,000 patches.

Real-world experiments have been carried out on the university campus. In the ex-

periment shown in Fig. 2 (e)-(h) the robot traveled 84 meters, visited six viewpoints,

and performed 23 scans. The map depicted in Fig. 2 (g) and (h) contains about 197,000
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(a) Robot reached the first viewpoint. (b) Robot reached the fourth viewpoint.

(c) Robot reached the final viewpoint. (d) Perspective view of the final map.
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(e) Robot reached the first viewpoint. (f) Robot reached the fourth viewpoint.

(g) Robot reached the sixth viewpoint. (h) Perspective view of the map.

Fig. 2. (a)-(d) Exploration in a simulated indoor environment. One can see four rooms, a corridor,

and the foyer where the robot started the exploration. (e)-(h) Real-world exploration in an outdoor

scenario. One can see the walls of three buildings, the pitched roof of a green house, and several

street lamps and trees.



patches and its bounding box roughly covers an area of about 70m× 75m. In both ex-

periments, we set α = 0.55 and used a cell size of 0.1m×0.1m.

5 Conclusion

In this paper, we presented an approach to autonomous exploration for mobile robots

that is able to acquire a three-dimensional model of the environment, which is com-

pactly represented by a multi-level surface map. We addressed problems which are not

encountered in traditional 2D representations such as negative obstacles, roughness, and

slopes of non-flat environments. The viewpoint generation and evaluation procedure uti-

lizes 3D ray-casting operations to account for the 3D structure of the environment. We

applied a decision-theoretic framework which considers both the travel costs and the

expected information gain to efficiently guide the exploration process. Simulation and

real-world experiments showed the effectiveness of our technique.
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