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Zusammenfassung

UTONOME Roboter miissen ihre Umgebung wahrnehmen und verste-
hen, um verschiedenste Aufgaben erfolgreich planen und ausfithren zu
konnen. Ein grundlegender Aspekt dieser Wahrnehmungsfihigkeit be-
steht darin, die Aufnahmepositionen der Sensoren aktiv anzusteuern,

um die Umgebung zu erkunden und aufgabenrelevante, informative Messungen zu
erfassen. Im Gegensatz zur passiven Wahrnehmung, die vordefinierte Pfade oder
feste Heuristiken zur Exploration folgt, und zur externen Uberwachung, die ar-
beitsintensive menschliche Anleitung erfordert, beinhaltet aktive Wahrnehmung
autonome Entscheidungsprozesse, bei denen der Roboter basierend auf seinem
aktuellen Wissensstand tiber die Umgebung die aussichtsreichsten Aufnahmepo-
sitionen fiir das Sammeln von Messungen auswahlt. Der entscheidende Schritt
in diesem Prozess ist die Observationsplanung, die es dem Roboter ermdglicht,
Aufnahmepositionen auszuwéhlen, die den erwarteten Nutzen der erfassten Mes-
sungen maximieren. Diese Féahigkeit ist besonders relevant in unbekannten Um-
gebungen, in denen kein Vorwissen zur Unterstiitzung der Observationsplanung
zur Verfiigung steht, und ihre Online-Anpassung kann die Leistung bei Aufgaben
wie Lokalisierung, Objekterkennung und Kartierung verbessern.

In dieser Dissertation konzentrieren wir uns auf die Roboterkartierung, bei der
Roboter mit bordeigenen Sensoren eingesetzt werden, um raumliche Repréasenta-
tionen ihrer Umgebung zu erstellen. Insbesondere untersuchen wir die autonome
Kartierung in unbekannten Umgebungen mittels Integration aktiver Wahrneh-
mungsstrategien. Unser Ziel ist es, Robotern zu ermoglichen, mithilfe von Sen-
sormessungen prazise raumliche Reprasentationen aktiv zu erstellen. Wéahrend
frithere Arbeiten bereits aktive Wahrnehmung fiir Roboterkartierung untersucht
haben, konzentrieren sich viele bestehende Ansédtze nicht darauf, feingranulare
Details der Umgebung zu bewahren — Details, die fiir Anwendungen mit hohen
Anforderungen an Modelltreue entscheidend sind, wie etwa die Inspektion von In-
frastrukturen und die Erstellung digitaler Zwillinge. Dies liegt hauptsachlich an
der Verwendung konventioneller, diskreter Kartenreprisentationen, die oft mit
Informationsverlust wiahrend des Kartierungsprozesses einhergehen.

Wir 16sen diese Herausforderung durch den Einsatz lernbasierter Kartierungs-
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techniken, die die Umgebung kontinuierlich darstellen konnen. Der Hauptbeitrag
dieser Dissertation liegt in der Entwicklung aktiver Wahrnehmungssysteme, die
lernbasierte Kartierungsmethoden einsetzen. Wir untersuchen Gauss-Prozesse,
image-based neural rendering, semantic neural radiance fields und Gaussian splat-
ting, um eine autonome, hochprézise Roboterkartierung zu realisieren. Im Zen-
trum unserer Systeme steht die Anpassung der Kartenrepriasentationen sowie die
Entwicklung von Nutzenfunktionen, die den erwarteten Nutzen moglicher Auf-
nahmepositionen in Bezug auf spezifische Kartierungsziele bewerten, wie z. B. Re-
duzierung von Kartenunsicherheit oder die Steigerung der Rekonstruktionsgenau-
igkeit, um die Integration von aktiver Wahrnehmung zu ermoglichen. Aufgrund
der unterschiedlichen Eigenschaften dieser Kartierungstechniken entwickeln wir
fiir jede Methode mafigeschneiderte aktive Wahrnehmungsstrategien, um die Ob-
servationsplanung mit der zugrunde liegenden Kartenstruktur abzustimmen. Zur
Validierung unserer Beitrage evaluieren wir die vorgeschlagenen Methoden sowohl
in Simulationen als auch in realen Szenarien und zeigen ihre Vorteile hinsichtlich
Effizienz und Qualitit bei autonomen Kartierungsaufgaben.

Des Weiteren zeigt diese Dissertation die Wirksamkeit der aktiven Wahrneh-
mung fiir lernbasierte Roboterkartierung. Durch die Verkniipfung adaptiver Ob-
servationsplanung mit lernbasierten Kartierungstechniken leistet unsere Arbeit
einen wichtigen Beitrag zur aktiven Wahrnehmung fiir Roboterkartierung und
ermoglicht eine effizientere sowie genauere Modellierung unbekannter Umgebun-
gen. Samtliche in dieser Dissertation vorgestellten Methoden wurden in begut-
achteten Konferenzbeitridgen und Zeitschriftenartikeln verdffentlicht und leisten
somit einen wissenschaftlich fundierten Beitrag zum Forschungsfeld. Um Repro-
duzierbarkeit zu fordern und zukiinftige Entwicklungen zu unterstiitzen, wurde

der zugehorige Quellcode in 6ffentlich zugénglichen Repositorien bereitgestellt.
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Abstract

UTONOMOUS robots need to perceive and understand their environ-

ment in order to plan and carry out tasks. A fundamental aspect

of this perception capability is the active control of onboard sen-

sor viewpoints to explore the surrounding environment and acquire
informative measurements relevant to the task at hand. Unlike passive percep-
tion, which follows predefined path patterns or fixed heuristics for exploration,
and external supervision, which requires labor-intensive human guidance, active
perception involves autonomous decision-making to determine the most valuable
viewpoints for collecting measurements based on the robot’s current knowledge
of the environment. The key in the process is the view planning step, which
enables the robot to select viewpoints that maximize the expected usefulness
of the acquired measurements. This capability is relevant in unknown environ-
ments, where prior knowledge is unavailable to inform view planning, and its
online adaptation can enhance performance for tasks such as localization, object
detection, and mapping.

In this thesis, we focus on the task of robot mapping, using robots equipped
with onboard sensors to construct spatial representations of their environments.
Specifically, we investigate autonomous mapping in unknown environments by
integrating active perception strategies. Our goal is to enable robots to actively
build accurate spatial representations using sensor measurements. While previous
work has studied active perception for robot mapping, many existing approaches
do not focus on preserving fine-grained details of the environment, which are
crucial for tasks requiring high-fidelity environmental models, including infras-
tructure inspection and digital twin generation. This largely stems from the
use of conventional, discrete map representations, which lead to information loss

during the mapping process.

We address this challenge by leveraging learning-based mapping techniques
capable of representing the environment in a continuous manner. The main con-
tribution of this thesis is the development of active perception strategies with
such mapping techniques. We explore Gaussian processes, image-based neural

rendering, semantic neural radiance fields, and Gaussian splatting to achieve au-



tonomous, high-fidelity robot mapping. At the core of our approach lies the adap-
tation of map representations and the design of utility formulations that assess
the expected usefulness of candidate viewpoints with respect to specific map-
ping objectives, such as reducing map uncertainty or enhancing reconstruction
fidelity, thereby enabling active perception. Due to the varying characteristics
of these mapping techniques, we develop tailored active perception strategies for
each method to align the view planning module with the underlying map repre-
sentation. To validate our contributions, we evaluate the proposed methods in
simulation and real-world scenarios, demonstrating their strengths in improving
mapping efficiency and quality for autonomous mapping tasks.

Overall, this thesis highlights the effectiveness of active perception for learning-
based robot mapping. By coupling view planning with learning-based mapping
techniques, our work takes an important step forward in the field of active percep-
tion for robot mapping, contributing to more efficient and accurate environmental
modeling in unknown environments. All methods presented in this thesis have
been published in peer-reviewed conference papers and journal articles, under-
scoring their scientific contribution to the field. To support reproducibility and
further research, the corresponding source code has been made publicly available

in open-access repositories.
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Chapter 1
Introduction

OBOTS are becoming increasingly popular in various fields, includ-

ing agricultural, industrial, and household service applications. To

autonomously operate in the real world, robots must be able to per-

ceive their environment using sensors, such as cameras and LiDARs,
and make informed decisions based on the information contained in the acquired
measurements. This capability becomes particularly crucial in unknown environ-
ments, where a robot has no prior knowledge of the scene and thus heavily relies
on online perception.

Consider how humans explore a new environment: they actively look around,
seek new viewpoints to avoid occlusions, and approach certain regions to gather
detailed information, such as the attributes of objects or the spatial layout of
the scene. The perceived visual information forms the basis for decision-making,
guiding subsequent movements and interactions with objects in the environment.
Such human-like exploration behavior naturally embodies the concept of active
perception [4], in which the perception process of where to collect measurements
is actively controlled to acquire useful information relevant to the tasks.

While active perception is natural and intuitive for humans, traditional robotic
systems have adopted a different strategy in practice. In many applications,
robots primarily serve as a platform for carrying sensors, where the perception
process is conducted manually or passively. It either relies on external control,
e.g., from human operators, or simply follows predefined path patterns or heuris-
tics, for collecting measurements in unknown environments. This strategy is
simple to implement but often lacks informative feedback from the perception
process itself and cannot automatically adjust its sensor viewpoints based on the
information in the acquired measurements, resulting in inherent limitations. For
instance, external control typically requires human-in-the-loop operation, which
can be labor-intensive, delayed, and heavily dependent on the operators’ experi-

ence. This also bottlenecks the scalability of robotic systems, as it is difficult to



Figure 1.1: Active perception enables a robot to actively decide where to collect in-

formative measurements. This is relevant for achieving robot autonomy in unknown
environments, as no prior knowledge is available and robots need to adapt their percep-
tion strategies on the fly based on the information in the acquired measurements. For
instance, to inspect or pick fruits, a robot arm needs to actively reposition its onboard
camera to better perceive the target fruit and avoid occlusions, such as by following a
path indicated by the dashed line. Image adapted from Federico Magistri.

deploy a large number of robots in parallel solely under human supervision. On
the other hand, designing a perception strategy in the absence of prior knowl-
edge of a specific environment is often infeasible, while blindly following fixed
path patterns or heuristics without online adaptation can lead to inferior task
performance, as such approaches fail to leverage information already obtained for
deciding where to collect measurements next. In contrast, robot autonomy de-
mands onboard decision-making for robots operating in unknown environments,
free from external interventions or rigid, predefined plans.

By tightly coupling perception and sensor control, active perception builds
up a closed-loop system, allowing for adaptive perception strategies during online
missions. For example, a robot may actively adjust its sensor viewpoints based
on current measurements to avoid occlusions or to focus on detected objects of
interest, as illustrated in Figure EI This closed-loop behavior facilitates more
targeted perception by directing attention to specific regions in the environment,
thereby increasing the efficiency of measurement acquisition.

Active perception therefore plays an important role in enhancing robot au-

tonomy in unknown environments [4], and it has actually been widely applied
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in tasks, such as object recognition [32,129,205], localization [19,40, 49,88,165],
semantic scene understanding [146,214,216,222], and mapping [30, 38,164, 204].
In the context of object recognition, a robot selects viewpoints that maximize the
visibility of an object or minimize the ambiguity, leading to improved recognition
performance. For localization, a robot plans viewpoints to target texture-rich ar-
eas to minimize uncertainty in its pose estimate or actively search for loop closures
to reduce accumulated drift, achieving more accurate localization. For semantic
scene understanding, a robot gathers information about object relationships or
semantic attributes, enhancing its holistic interpretation of the scene. This thesis
focuses specifically on active perception for robot mapping, a concept we also use
interchangeably with the term active reconstruction in the following chapters. In
this context, the integration of perception and sensor control is fundamental to
enabling robots to autonomously and efficiently construct map representations of

previously unknown environments.

Robot mapping is a fundamental task in robotics, where robots create spatial
representations of the environment, identifying what the world looks like, where
things are located, and potentially the attributes of those objects. This spatial
understanding supports a wide range of robotic applications, including search and
rescue, infrastructure inspection, agricultural monitoring, and household service,
as shown in Figure . For example, robots can be used to generate 3D maps
of collapsed buildings, providing structural information to support rescue opera-
tions. In infrastructure inspection, where human access can be difficult or even
hazardous, robots can build a map to help identify potential issues in structures,
such as bridges or factory facilities, supporting preventive maintenance. In preci-
sion agriculture, field monitoring using robots is often more efficient than manual
inspection and also provides higher flexibility compared to static sensor networks.
An accurate map of the field helps farmers to optimize crop management and re-
source allocation. In household service or warehouse automation, robot manipu-
lation requires accurate spatial modeling of the target objects, which is necessary
for planning and executing physical interactions, such as grasping and assem-
bly. In this thesis, we tackle the problem of autonomously generating accurate
environmental models using robots equipped with onboard sensors, without any
human supervision, to exploit the potential of robot autonomy for mapping.

When deployed in real-world scenarios, autonomous robot mapping systems
often operate under mission constraints, such as limited operation time or travel
distance, which necessitate effective perception strategies for collecting informa-
tive measurements for map updates. Passive perception for robot mapping in
unknown environments may lead to incomplete, redundant, or poorly targeted
measurements, degrading both mapping efficiency and map quality. This limita-

tion arises from fixed perception strategies in passive perception, which cannot
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(c) Agricultural monitoring (d) Household service

Figure 1.2: Examples of different application scenarios for robot mapping. Accurate
mapping techniques are important for applications such as search and rescue, infras-
tructure inspection, agricultural monitoring, and household service. Compared to static
sensor networks or manual inspection, robot mapping offers significant advantages in
terms of accessibility, flexibility, efficiency, and autonomy in these applications. Images
from Boston Dynamics, ExRobotics, DJI, and ACRV.

account for current map states during online missions. As a consequence, pas-
sive perception proves inefficient and falls short of fully optimizing the mapping

objectives under mission constraints.

We compare the frameworks of passive and active perception for robot map-
ping in Figure B to highlight the differences in these two paradigms. At the
core of active perception for robot mapping is the view planning problem, which
involves selecting informative viewpoints to acquire new measurements that im-
prove the map representation. By explicitly taking into account the current map
state and mapping objectives for view planning, active perception methods close
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(b) Active perception for robot mapping

Figure 1.3: A comparison between the general frameworks of passive and active per-
ception for robot mapping. (a) In passive perception, the robot follows a predefined
path or non-adaptive heuristic to collect measurements for mapping, which may result
in redundant or incomplete measurements of the environment, leading to inefficient or
low-quality mapping. (b) In contrast, active perception enables the robot to actively
select informative viewpoints based on the current map state, directly optimizing spe-
cific mapping objectives, such as full coverage or high reconstruction accuracy. This
closed-loop setup enhances the robot autonomy and leads to more efficient and accurate
mapping in unknown environments.

the loop between perception and sensor control, overcoming the limitations of

passive perception and enabling more accurate and efficient mapping.

Active perception for robot mapping aims to improve specific mapping objec-
tives in unknown environments, such as maximizing scene coverage, reducing un-
certainty, or enhancing overall map quality, under mission constraints. Common
strategies in this domain follow the next best view (NBV) paradigm [,@],
which often involves viewpoint generation and evaluation to greedily decide where
to collect next measurements for map updates. In this process, viewpoint gen-
eration is responsible for proposing possible candidate viewpoints, while view-

point evaluation estimates the expected utility values of measurements at these
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viewpoints, i.e., how much a potential measurement at these viewpoints would
contribute toward improving the mapping objectives. The generated viewpoints
are then ranked based on their expected utility, and the robot selects the best
viewpoint to move to for taking new measurements [16]. However, acquiring the
utility values of candidate viewpoints can be non-trivial. It typically requires
either computationally intensive simulation of measurements at those viewpoints
to estimate the resulting map posterior, or evaluations of current map quality
from those viewpoints in the absence of ground truth. These requirements pose
significant challenges for utility evaluation often necessary for view planning in
unknown environments. Moreover, the diversity of map representations and task-
specific mapping objectives calls for customized utility functions, and in many
cases, even modifications to the map representations themselves to support ac-
tive perception. The works presented in this thesis also follow the NBV paradigm
and aim to tackle these challenges, enabling active perception for robot mapping.

1.1 Point of Departure

At the outset of this PhD research, active perception for robot mapping was
already established in the robotics community, with a variety of methods devel-
oped for different mapping objectives and map representations [96]. However,
the majority of these methods are primarily designed with a focus on spatial ex-
ploration to improve the map coverage or coarse geometric modeling, while often
overlooking fine-grained details in the environment.

Commonly used map representations in previous approaches are conventional
robotic maps such as voxel grids [11,152,219], point clouds [28,81,210], or surface
meshes [160,[161]. While effective in many applications, these representations
often suffer from discretization artifacts, and the fixed shape primitives of the
map cannot adapt to the varying levels of detail required in different areas of the
environment. This inherently limits their ability to preserve fine-grained details
that are crucial for tasks requiring high-fidelity environmental models, such as
object-level manipulation, detailed inspection, or photorealistic rendering. For
instance, space discretization in voxel grids leads to information loss in areas
with fine structural details unless extremely high resolutions are used, which
is at the cost of memory and computational resources. Point clouds, on the
other hand, provide a more flexible representation but often lack the density and
connectivity needed to accurately model complex surface geometry and texture.
Surface meshes show inflexibility for online incremental mapping due to their fixed
surface pattern and usually require post-processing to acquire the final meshes.

The gap between the existing active perception approaches and the need for

high-fidelity scene modeling motivates the direction of this thesis. We aim to
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develop active perception methods that leverage more advanced map representa-

tions capable of preserving environmental details for autonomous robot mapping.

With the growing demands for more accurate and detailed mapping tech-
niques, learning-based map representations that can continuously capture en-
vironmental attributes have become increasingly popular in robotics applica-
tions [102,104,[117,168]. Techniques such as Gaussian process (GP) models and
radiance field representations represented by neural radiance field (NeRF), and
more recently, Gaussian splatting (GS), have been adopted for robot mapping.
These methods have gained enormous attention for their ability to create highly
accurate environmental models by directly learning from measurement data, sur-
passing the representation capabilities of traditional mapping approaches. For
example, GPs can be used to probabilistically model the spatial distribution of
physical phenomena, e.g., field temperature or gas density, allowing for contin-
uous mapping and uncertainty estimation [65,[117,167]. Radiance fields, on the
other hand, represent complex scene geometry and texture by training a radi-
ance field of the environment from dense measurements, enabling photorealistic
rendering from novel viewpoints [69,104,144,[172].

Such learning-based representations offer the promise of high-fidelity mapping;
however, they also introduce new challenges for integrating active perception. For
instance, GPs are inherently capable of modeling uncertainty in the map, which
is particularly valuable in active perception, allowing the robot to prioritize areas
of high uncertainty and thereby improve the efficiency of exploration and map-
ping. Therefore, GP-based methods have been widely used in active perception
for robot mapping in different scenarios. Nonetheless, GPs require careful con-
sideration of the kernel functions to capture spatial correlations present in the
mapping target. They also suffer from high computational costs when dealing
with dense measurements, which can limit their applicability for online incremen-
tal robot mapping. Recently emerging techniques such as NeRFs and GS have
demonstrated great potential for photorealistic robot mapping. Yet, research in
this area has primarily focused on improving reconstruction quality in offline set-
tings, where all scene measurements are precollected and maps are constructed
post hoc, rather than incrementally during an online mission. Their integration
into active perception remains largely unexplored. A key question lies in the
fact that these representations do not provide explicit uncertainty estimates as
GPs do, and require additional mechanisms to evaluate the utility of candidate

viewpoints for view planning in active perception.

These challenges give rise to a core research question in this thesis: Can we
effectively integrate active perception strategies with these learning-based map
representations, achieving high-fidelity mapping results in a computationally ef-

ficient and autonomous manner in unknown environments?
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1.2 Main Contributions

This thesis aims to jointly consider active perception and learning-based robot
mapping techniques. We focus on two main aspects of active perception for robot
mapping: (1) the design of utility formulations tailored to different learning-
based map representations and mapping objectives; and (2) the adaptation of
these map representations to support the integration with active perception. Our
approaches enable robots to autonomously explore unknown environments and
gather informative measurements to incrementally build high-fidelity maps.

We begin by investigating GPs in active perception for robot mapping. In par-
ticular, we propose a novel GP-based scalar field mapping approach that utilizes
GPs to model the spatial distribution of environmental properties, as detailed
in Chapter a The goal of this work is to minimize the uncertainty in regions of
interest in an unknown environment, thereby achieving high mapping accuracy in
these regions. Given that GPs inherently provide uncertainty modeling suitable
for active perception, we address our research question from the perspective of
computational efficiency. To facilitate online incremental mapping, we initialize
a spatially correlated grid map with the GP prior from our model, and perform
sequential Bayesian fusion to incorporate new measurements over time. We lever-
age the uncertainty modeling capability of GPs to formulate an active perception
strategy, where the robot selects viewpoints to maximize expected uncertainty
reduction in regions of interest. This is achieved by forward-simulating map up-
dates and evaluating the resulting posterior distributions. A key contribution
is the introduction of an integral kernel for the underlying GP model, enabling
the maintenance of an adaptive resolution map in both a computationally effi-
cient and theoretically sound manner. Our proposed integral kernel formulation
enables an adaptive strategy to preserve the probabilistic nature of GPs while
reducing the grid map resolution where high details are not required. This leads
to significantly lower memory usage and, more importantly, faster inference for
forward simulation, which is crucial for efficient view planning. We demonstrate
the effectiveness of this approach in a 2D temperature field mapping application

using an unmanned aerial vehicle (UAV) equipped with a thermal sensor.

The second contribution is an active perception approach based on uncer-
tainty estimation in image-based neural rendering, referred to as NeU-NBV in
Chapter @ Image-based neural rendering employs a pretrained network that,
given a set of posed RGB reference images, synthesizes photorealistic views from
novel viewpoints. Our goal is to actively collect RGB measurements as references
in an unknown scene to enhance the rendering performance of the neural network.
The key innovation of this work lies in modeling the color rendering process prob-

abilistically, allowing us to acquire rendering uncertainty based on the predicted
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variance of color rendering at each pixel, conditioned on the current reference
images. The uncertainty exposes the areas in the scene where the network is
less confident in its rendering using the current reference image collection, and
can thus be used to inform the view planning process. We leverage the uncer-
tainty estimation to formulate an NBV planning problem, directing the robot to
sequentially acquire new measurements at viewpoints with the highest predicted
uncertainty. These accumulated image measurements, together with the render-
ing network, serve as the internal map representation, enabling our approach to
retrieve scene information from novel viewpoints. Therefore, our approach allows
robots to actively gather informative measurements to more accurately represent

the scene, without the need for explicitly updating a map representation online.

The third contribution is a semantic-targeted active perception approach for
robot mapping, called STAIR and presented in Chapter B In this chapter, we
propose a novel active perception strategy for selectively reconstructing specific
object classes in an unknown environment, while deprioritizing semantically ir-
relevant regions of the scene. This is particularly important in scenarios where
a robot’s attention should be focused on task-relevant objects to make the best
use of limited mission resources. To achieve this, we integrate a NeRF with se-
mantic information as our map representation, enabling dense semantic modeling
of the scene. We derive uncertainty estimates based on the density distribution
in NeRFs, which allows us to identify the areas with high geometric ambiguity.
With the help of dense semantic and uncertainty rendering at novel viewpoints,
our view planning method can actively select informative viewpoints for collecting
new measurements, improving the reconstruction quality of target objects. This
targeted strategy significantly enhances mapping efficiency in semantic-targeted
tasks by focusing measurement acquisition on relevant parts of the scene, without

wasting resources on semantically irrelevant regions.

The fourth contribution is an active scene-level reconstruction approach based
on GS, which we refer to as ActiveGS in Chapter B In contrast to the NeRF-
based representations utilized in Chapter @ and Chapter H, which require com-
putationally heavy dense sampling for volume rendering to synthesize views, this
chapter addresses scene-level photorealistic mapping by leveraging more efficient
GS as the core map representation. Since GS primarily models scene surfaces and
lacks holistic spatial information, we propose a hybrid map representation that
combines a GS map with a coarse voxel map, leveraging the strengths of both
representations: the high-fidelity scene reconstruction capabilities of GS and the
spatial modeling strengths of the voxel map. At the core of our approach is an
effective confidence modeling technique that assigns confidence values to each
Gaussian primitive in the GS map based on the viewpoint distribution. This

allows our approach to identify under-reconstructed areas in the GS map for fur-
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ther inspection. In parallel, we utilize spatial information from the voxel map to
target unexplored areas and assist in collision-free path planning. Our approach
actively collects measurements in both under-reconstructed and unexplored areas
for map updates, achieving superior GS reconstruction results in indoor scenarios.

Together, these four contributions form the foundation of this thesis, each of-
fering a distinct approach to active perception for robot mapping. By leveraging
different learning-based map representations, including GPs, image-based neural
rendering networks, semantic NeRFs, and GS, we investigate utility formulations
tailored to these representations and associated mapping objectives. Our pro-
posed methods enable efficient view planning in active perception settings, and
we evaluate their performance in both simulation and real-world scenarios. The
results demonstrate their effectiveness in enhancing mapping efficiency and qual-
ity compared to baseline approaches, marking a significant advancement in the
field of active perception for learning-based robot mapping.

1.3 Publications

Parts of this thesis have been published in the following peer-reviewed conference
papers and journal articles:

e Liren Jin, Julius Riickin, Stefan Kiss, Teresa Vidal-Calleja, and Marija
Popovi¢. Adaptive-Resolution Field Mapping Using Gaussian Process Fu-
sion with Integral Kernels. IEEE Robotics and Automation Letters (RA-L),
7(3):7471-7478, 2022. DOI: 10.1109/LRA.2022.3183797.

e Liren Jin, Xieyuanli Chen, Julius Riickin, and Marija Popovi¢.
NeU-NBV: Next Best View Planning Using Uncertainty Estimation
in Image-Based Neural Rendering. In Proc. of the IEFEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2023. DOL:
10.1109/TROS55552.2023.10342226.

e Liren Jin, Haofei Kuang, Yue Pan, Cyrill Stachniss, and Marija Popovié.
STAIR: Semantic-Targeted Active Implicit Reconstruction. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2024.
DOI: 10.1109/TR0OS58592.2024.10801401.

o Liren Jin, Xingguang Zhong, Yue Pan, Jens Behley, Cyrill Stachniss, and
Marija Popovi¢. ActiveGS: Active Scene Reconstruction Using Gaussian
Splatting. IEEE Robotics and Automation Letters (RA-L), 10(5):4866-4873,
2025. DOI: 10.1109/LRA.2025.3555149.
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1.4 Collaborations

During my doctoral studies, I also contributed as a co-author to the following

publications, which are not included in this thesis:

o Julius Riickin, Liren Jin, and Marija Popovi¢. Adaptive Informative Path
Planning Using Deep Reinforcement Learning for UAV-Based Active Sens-
ing. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA),
2022. DOI: 10.1109/ICRA46639.2022.9812025.

o Julius Riickin, Liren Jin, Federico Magistri, Cyrill Stachniss, and Marija
Popovié. Informative Path Planning for Active Learning in Aerial Semantic
Mapping. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2022. DOI: 10.1109/TROS47612.2022.9981738.

e Sicong Pan*, Liren Jin*, Hao Hu, Marija Popovi¢, and Maren Bennewitz.
How Many Views Are Needed to Reconstruct an Unknown Object Us-
ing NeRF? In Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2024. DOI: 10.1109/ICRA57147.2024.10610617. (* authors con-
tributed equally).

e Hao Hu, Sicong Pan, Liren Jin, Marija Popovi¢, and Maren Bennewitz.
Active Implicit Reconstruction Using One-Shot View Planning. In Proc. of
the IEEE Intl. Conf. on Robotics and Automation (ICRA), 2024. DOL:
10.1109/ICRA57147.2024.10611542.

e Sicong Pan*, Liren Jin*, Xuying Huang, Cyrill Stachniss, Marija Popovi¢,
and Maren Bennewitz. Exploiting Priors from 3D Diffusion Models
for RGB-Based One-Shot View Planning. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2024. DOL:
10.1109/TR0OS58592.2024.10802551. (* authors contributed equally).

 Yue Pan, Xingguang Zhong, Liren Jin, Louis Wiesmann, Marija
Popovi¢, Jens Behley, and Cyrill Stachniss. PINGS: Gaussian Splat-
ting Meets Distance Fields within a Point-Based Implicit Neural Map.
In Proc. of Robotics:  Science and Systems (RSS), 2025.  DOL
10.15607/RSS.2025.XXI1.040.

o Sicong Pan, Liren Jin, Xuying Huang, Cyrill Stachniss, Marija Popovi¢,
and Maren Bennewitz. DM-OSVP++: One-Shot View Planning Using
3D Diffusion Models for Active RGB-Based Object Reconstruction. arXiv
preprint, 2025. DOI: 10.48550/arXiv:2504.11674.
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o Xingguang Zhong, Yue Pan, Liren Jin, Marija Popovié, Jens Behley, and
Cyrill Stachniss. Globally Consistent RGB-D SLAM with 2D Gaussian
Splatting. arXiv preprint, 2025. DOI: 10.48550 /arXiv:2506.00970.

o Xingguang Zhong, Liren Jin, Marija Popovi¢, Jens Behley, and Cyrill Stach-
niss. Dynamic Visual SLAM Using a General 3D Prior. arXiv preprint,
2025. DOI: 10.48550/arXiv:2512.06868.

1.5 Open Source Contributions

To facilitate further research in active perception for learning-based robot map-
ping, we have open-sourced the implementations of all proposed approaches pre-
sented in this thesis:

« ARGPF-Mapping: Adaptive-Resolution Field Mapping Using Gaussian
Process Fusion with Integral Kernels

https://github.com/dmar-bonn/argpf-mapping

e NeU-NBYV: Next Best View Planning Using Uncertainty Estimation in
Image-Based Neural Rendering
https://github.com/dmar-bonn/neu-nbv

o STAIR: Semantic-Targeted Active Implicit Reconstruction
https://github.com/dmar-bonn/stair

o ActiveGS: Active Scene Reconstruction Using Gaussian Splatting
https://github.com/dmar-bonn/active-gs
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Chapter 2
Basic Techniques

N this chapter, we review basic techniques essential for understanding the

research question and the main contributions of this thesis. We aim to

provide a self-contained reference for the reader, while noting that we do

not claim any technical contributions for the techniques presented in this
chapter. The key concepts throughout this thesis are learning-based map rep-
resentations and active perception strategies for robot mapping. We start by
introducing common map representations used in robotic applications, compar-
ing their respective strengths and limitations. We then shift our focus to recent
developments in learning-based mapping techniques, with a detailed overview of
the learning-based map representations adopted in this thesis. Following that,
we discuss fundamental approaches and methodologies for actively building map
representations using robots, with a particular focus on how different mapping
objectives and characteristics of the chosen map representations influence the
design of active perception approaches.

2.1 Map Representations

A map representation is a structured abstraction of the surrounding environment
that captures geometric information and spatial relationships between objects
and, in many cases, also textural or semantic information. From simple 2D layouts
such as floor plans to dense 3D reconstructions and semantically rich models, map
representations vary in their complexity and the type of information they encode,
reflecting the needs of the application.

Even for us humans, map representations are an integral part of our daily lives.
Tourists rely on city maps displayed on smartphones to effortlessly navigate busy
streets and locate their goal destinations. Game players interact with vivid 3D

models in video games and virtual environments, acquire enhanced entertainment

13
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through immersive virtual experiences. Engineers use terrain maps in geographic
information systems to analyze potential land use, plan urban development, and
monitor environmental changes. Farmers leverage high-resolution modeling of
crop fields to optimize their operations in precision agriculture. Each type of
these map representations, although it appears in different formats, serves to

simplify and communicate spatial information for human decision-making.

More closely aligned with the research focus of this thesis, we concentrate
on map representations used for robot mapping. At the core of robot map-
ping lies the processing of onboard sensor measurements, such as from LiDAR,
RGB, or depth cameras, to construct a spatial representation of the environ-
ment. These representations underpin a robot’s spatial awareness, crucial for
enabling robots to understand and interact effectively with their surroundings.
Such spatial awareness is fundamental for a wide range of robotic tasks such as
state estimation, scene understanding, planning, and physical interaction [103].
In addition to enabling autonomous robot behavior, these map representations
also offer valuable insights to human operators, assisting in decision-making for
tasks such as industrial inspection, search and rescue, and urban monitoring. De-
pending on the specific task requirements, operational conditions, and available
sensors, various types of map representations can be employed.

The most commonly used type of map representation in robotics is the metric
map, focusing on preserving scene geometry or texture, as shown in Figure Ell
Geometric feature points are sparse, distinctive points that can be reliably de-
tected and matched across different viewpoints. Their robustness makes them
popular for localization tasks [98,[111]. Point clouds, with their simple data struc-
ture, are widely used to capture scene surfaces using unstructured 3D points from
LiDAR or depth cameras, or reconstructed from RGB inputs using multi-view
stereo algorithms. They are largely applied in tasks like localization [34, 206],
object detection [212,220], and scene understanding [190,197,209], but can strug-
gle to preserve fine details when sampling is sparse. Surfel maps extend point
clouds by using 2D disks to model local surface patches with position and ori-
entation, offering denser models [171,193,198]. Surface meshes, composed of
connected polygons, typically triangles, provide explicit connectivity for better
surface approximations. While they are preferred for high-quality geometric and
textural modeling [6, 131, [179], they also introduce complexity in connectivity
maintenance, which complicates incremental mapping. Volumetric maps use
voxel grids to maintain spatial data like occupancy or signed distance to sur-
faces [3,[73,119,[125]. They can handle both surface and free space information,
crucial for planning and navigation. However, they are often constrained by their
fixed resolution, leading to either excessive memory usage for high-resolution

maps or loss of details for low-resolution maps. To address this, hierarchical
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Figure 2.1: Examples of conventional map representations. (a) Sparse geometric fea-
ture points commonly used for localization purposes. (b) A point cloud map provides
sampling on the scene surfaces. (c) Surfels extend points to 2D disks, capturing both po-
sition and orientation of local surface patches. (d) Surface meshes approximate surfaces
using connected polygons. (e) Volumetric maps utilize voxel grids to maintain spatial
information such as occupancy or signed distance to the surfaces. (f) Hierarchical vol-
umetric maps adaptively allocate resolution to different regions of the scene based on
their complexity. These conventional map representations rely on rigid, prefixed shape
primitives, limiting the map granularity for representing details in the scene.

approaches like octrees [,@,@,,] or VDB-based maps [H,,] dy-

namically adjust resolution based on scene complexity, optimizing memory and
efficiency. Voxel hashing [@, ], on the other hand, reduces mapping cost
by only spawning voxels as needed. Despite their versatility and effectiveness,
conventional metric map representations relying on rigid, predefined shape prim-
itives remain limited in reconstruction granularity and face a trade-off between

map fidelity and memory efficiency.

In many robotic applications, high-level semantic reasoning is crucial for tasks
like planning and interacting with complex environments, which cannot be fully
achieved with metric maps alone. For instance, robot manipulation requires rec-
ognizing specific objects for tasks such as grasping or assembly, while context-
aware navigation requires interpreting the semantic meaning of regions to plan
paths. In these scenarios, maps must also encode semantic information, as illus-
trated in Figure @ To achieve this, metric-semantic maps augment the above-

mentioned metric maps with semantic information [,@,,,]. Seman-
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Figure 2.2: An example of semantics in map representations. Different colors represent
different semantic categories, such as walls, floors, sofas, and doors. This semantic
information is crucial for high-level reasoning in robotic applications, enabling robots
to understand and interact with their environments more effectively. Semantic maps
can be constructed by fusing semantic segmentation results from images or by training
neural networks to predict semantic labels directly from the 3D map itself. Image from
Straub et al. ]

tic information can be integrated by fusing image-level semantic segmentation
from pretrained networks or training networks to directly predict semantic labels
from the 3D map, such as in point cloud semantic segmentation [@,@,] The
segmentation networks are usually trained offline on large, semantically anno-
tated datasets, and then deployed for online labeling, forming the foundation of
metric-semantic mapping [@, , ] )

Besides metric and metric-semantic maps, several specialized map represen-
tations have been developed to address the unique requirements in robotic appli-
cations. For example, topological maps are well-suited for high-level navigation
tasks [@, @], where the focus lies in connectivity and spatial relationships be-
tween objects rather than geometric accuracy. Dynamic scene representations are
essential for environments involving moving objects [E, , ], enabling track-
ing and prediction over time. Additionally, map representations for deformable
or articulated objects [@, @] provide structure-aware representations that are
critical for applications such as manipulation or human-robot interaction.

16
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Figure 2.3: A simple example of comparison between conventional and learning-based
map representations. Conventional dense map representations utilize (a) voxels, (b)
points, or (c¢) meshes to represent the scene. The granularity of the reconstructed scene
is largely limited by its spatial discretization. Learning-based dense mapping techniques
utilize data-driven approaches, such as neural networks, to learn the scene represen-
tation directly from measurement data, enabling continuous, resolution-independent
modeling of complex scenes. Image adapted from Mescheder et al. [@]

In this thesis, our goal is to accurately model static, unknown environments.
We utilize learning-based map representations that can represent the scene in a
continuous manner, allowing for inference at arbitrary resolution and preserva-
tion of fine-grained environmental details. Instead of being explicitly constructed
using rigid primitives such as point clouds, voxel grids, or surface meshes, these
learning-based map representations allow for direct optimization of the map to
account for sensor measurements. By leveraging data-driven approaches, e.g.,
neural networks or optimizable shape primitives, they encode information of the
scene properties in a continuous, resolution-independent manner, leading to more
flexible and expressive modeling of complex scenes. We show a toy example
comparing conventional and learning-based map representations in Figure @,
highlighting the key difference in how spatial information is preserved. In the fol-
lowing subsections, we introduce the basic techniques of the learning-based map

representations used in this thesis.

2.1.1 Gaussian Processes

GP models are among the earliest and most influential learning-based map repre-
sentations. In geostatistics, they are known as kriging [], a method for spatial
mapping of geologic properties. More generally, GPs represent the mapping tar-
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get, such as temperature, gas density, or signed distance, as a distribution in the
function space. In other words, a GP can be interpreted as a collection of random
variables, any finite subset of which follows a joint Gaussian distribution [140].
A GP model is fully described by its mean function p(x) indicating the ex-
pected function value at an input point x, and kernel function k(x, x") describing
the spatial correlations between the function values at x and x’. We denote a GP

as f(x) ~ GP(u(x), k(x, x')) with:

p(x) = E[f(x)], (2.1)
k(x, x') = E[(f(x) — p(x)(f () = p(x))]. (2.2)

The kernel function is central to a GP, and different kernel formulations can
be selected based on the attributes of the mapping target, such as commonly
used squared exponential or Matérn kernels [140]. Although the kernel function
is manually selected, its hyperparameters are typically learned from sensor mea-
surements collected during online mapping missions or from previously acquired
data in a similar domain. Given a set of measurements collected at locations
X = {x;}¥, with corresponding noisy measurement values y = {y;}~,, where
v = f(x;) + € and € ~ N(0,0%), the hyperparameters can be determined via

maximizing the marginal log likelihood:
w' = argmax logp(y | X, w), (2.3)
with:
logp(y | X, w) = =3y (Kxx +0°) 'y — § log|Kx x + 0°I| — §log(27), (24)
where Kx x = k(X X; w) is the covariance matrix over the measurement locations,
parameterized by the hyperparameters w.
Given the learned kernel function, we can infer the function distribution at any

query points via GP regression [140]. The joint distribution over measurements
values y and the function value f, = f(X,) at a set of query point X, = {x;}}1,
is a joint Gaussian distribution:

[+ )

where pux = p(X) and px, = p(X,) represent the mean value vectors; Kx x =
EX,X;w'), Kxx, = k(X,X,;w), and K(X,,X,) = k(X,,X,;w) denote the

covariance matrices over the measurement locations, between the measurement

Hx
Hx,

Kxx +0°1 Kxx,

KX* X KX* X

)

locations and the query points, and over the query points, respectively.
The predictive distribution of f, at X, conditioned on X and y is then:
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Figure 2.4: A 1D example of GPs. The x-axis represents the location of measurements,
and the y-axis indicates their values. Given point measurements shown as red crosses,
GPs enable inference at any locations, yielding both mean and variance predictions.
Areas with sparse measurements often show higher variance, indicating high map un-
certainty. Active perception approaches based on GPs can utilize this attribute to

formulate utility evaluation to guide view planning toward uncertain areas.

with:

My = px, + KX*,X [KX,X + 0-21} 71(y - IJ’X)7 (27)
Z* = KX*,X* — KX*,X |:KX,X + 0'21} 71KX,X*- (28)

We illustrate a 1D example of GPs in Figure @, showing the posterior dis-
tribution of the underlying function given a set of noisy measurements. GPs
offer a powerful framework for continuous and probabilistic mapping, and have
therefore been successfully applied to various robot mapping tasks, such as occu-
pancy [65,[79], terrain [25,[183], pipe thickness [185], gas distribution [167], and
signed distance [199]. The inherent uncertainty formulation in the form of the
variance prediction as given by Equation (@) can be directly utilized for ac-
tive perception. Several works adopt the uncertainty information in GP-based
mapping for exploration [66,178]. However, GPs can be computationally expen-
sive, especially for mapping in higher dimensions with dense measurements, due
to the need to invert covariance matrices in Equation (@) and Equation (@)
for inferring spatial correlations. This often limits GPs to relatively small-scale
environments or requires approximation techniques to handle the computational
complexity [100,159,168,183].

We introduce a novel online incremental mapping approach based on GPs
in Chapter B, where we improve its mapping efficiency while maintaining the

probabilistic inference capability important for active perception.
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2.1.2 Neural Radiance Fields

A growing body of research has focused on learning-based dense map represen-
tations specifically designed for complex 3D reconstruction. Pioneering works in
this domain leverage neural networks to predict geometric attributes such as oc-
cupancy probabilities [106,130], or signed distance values [121,[12§], at arbitrary
query points, therefore enabling continuous representation of the scene geometry.
These implicit representations are either optimized directly for a specific scene
or trained offline using large datasets of 3D shapes, allowing them to generalize
well to unseen scenes during inference.

Building on the idea of using neural networks to represent scenes, NeRFs [[107]
have emerged as a powerful approach for scene modeling. They encode the entire
scene into the network’s weights, enabling the preservation of both accurate ge-
ometry and photorealistic textures. Combined with volume rendering techniques,
NeRFs enable novel view synthesis with high visual realism while maintaining a
compact memory footprint. The core of NeRF’s success lies in the differentiability
of the rendering process, which allows the network to be trained by minimizing
the discrepancy between rendered views and the ground-truth images observed
from densely sampled viewpoints in a scene.

A NeRF can be parameterized by a neural network f : (x,d) — (c,0) im-
plemented as a multi-layer perceptron (MLP). This MLP maps a 3D position
x = (x,9,2) € R3 together with a 2D viewing direction (6, ¢), represented by a
unit vector d € S*, to an RGB color ¢(x,d) € R® and a volume density value
o(x) € R>o. Note that, different from the previous section, where o denotes the
variance in GP models, the ¢ used here does not carry a probabilistic meaning.
For a camera ray r(t) = o + td passing through an image plane, where o € R?
is the camera origin and ¢ is the distance along the ray, the corresponding pixel

color C(r) can be computed using the volume rendering equation [74]:

C(r) = /t "T) o(x(t)) e(x(t), d) dt, (2.9)

where t,, and ¢; denote near and far bounds of the ray, and 7'(¢) is the accumulated

transmittance defined as:
t
T(t) = exp <—/ o(r(s)) ds) : (2.10)
tn

representing the probability that the ray travels from ¢, to ¢t without termination.
In practice, this integral is approximated via stratified dense sampling along each
ray, where [t,,t] is partitioned into N evenly-spaced bins, and one sample is

drawn uniformly at random from each bin for each training iteration as:

i Ut + Sty — tn), ta+ %t —ta)] - (2.11)
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Figure 2.5: A NeRF preserves global scene information in an MLP. Given a point with
a viewing direction, this MLP predicts color and density value. To render a novel
view, NeRFs densely sample points along the camera ray and query the MLP for each
sampling point. These per-point colors and densities compose the final pixel color via
differentiable volume rendering. The differentiability allows the MLP to be optimized
given ground-truth RGB color measurements. Image from Mildenhall et al. [@]

This stratified sampling strategy allows NeRFs to learn a continuous scene
representation, since it results in the MLP being evaluated at continuous positions

during training. Consequently, the volume rendering can be reformulated as:

C(r) ~ ZT (1 — exp(—0a(x(t;)) 6;)) e(x(t;), d), (2.12)

where 0; = t; 1 —t; is the spacing between consecutive samples. The accumulated

transmittance is recursively defined as:
i—1
T = [ exp(—o((t) 6,) (2.13)
j=1

Since the volume rendering process is differentiable, we can supervise the
NeRFs training with the loss:
1

L=
R

>_llew) — cw). (2.14)

reR

where R is the set of rays across all training views, and C(r) represents the

ground-truth color corresponding to each ray. By updating the MLP’s weights
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Figure 2.6: We illustrate a hybrid NeRF representation. For rendering a novel view,
the features of dense sampling points can be retrieved from the voxel grid via trilinear
interpolation. An MLP then interprets these features into density and color information
for volume rendering. Since the scene information is preserved locally in the feature
voxel grid, hybrid NeRFs mitigate the forgetting issues commonly seen in vanilla NeRFs
during incremental mapping. Image adapted from Fridovich-Keil et al. [43].

to account for training views, NeRFs achieve highly detailed reconstructions with
accurate geometry and photorealistic textures. We show an illustration of the
NeRFs pipeline in Figure @

While vanilla NeRFs offer an excellent trade-off between reconstruction qual-
ity and memory efficiency, their representational capacity is inherently constrained
by the network size. This limitation often leads to over-smoothing artifacts in
large-scale scenes, where a single global network struggles to preserve fine details
across extended spatial extents. Moreover, NeRFs are not naturally suited for in-
cremental updates, since the network tends to forget previously learned informa-
tion when updated with new measurements, a phenomenon known as catastrophic
forgetting [172]. This poses a major challenge for active perception for robot map-
ping, which often necessitates online map updates. To address these limitations,
recent research has proposed hybrid NeRF representations that combine shallow
neural networks with spatially structured feature voxel grids [[110,[173], as shown
in Figure @ These methods store local scene information in the form of op-
timizable feature vectors in voxel grids. A lightweight MLP is then employed
to interpret features at arbitrary sampling points, which are retrieved through
trilinear interpolation in the voxel grid, into color and volume density of the ra-
diance field. This design improves scalability and allows for localized updates,
making them more suitable for online incremental mapping scenarios. We uti-
lize a hybrid NeRF representation and integrate semantic information to achieve
semantic-targeted active reconstruction in Chapter B

In parallel, another line of research aims to avoid the time-consuming per-
scene optimization of NeRFs by leveraging image-based neural rendering tech-

niques [194, 207]. Unlike classical rendering techniques, which project explicit
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Figure 2.7: We show how image-based neural rendering works. A pretrained image
encoder first encodes the reference images to acquire their feature maps. To render
a target view, image-based neural rendering methods sample dense points along the
ray, which are projected to each reference image plane via a projection operation
to acquire corresponding image features via bilinear interpolation. Features collected
from different reference images are fused, e.g., by averaging. The final features are then
decoded by an MLP into color and density, which compose the pixel color via volume
rendering. By training on large datasets, image-based neural rendering learns to render
target views by conditioning on reference images, allowing for generalizable novel view
synthesis. Image adapted from Yu et al. [207].

3D content, e.g., surface meshes, onto 2D image planes, image-based rendering
directly generates novel views by warping and compositing an existing set of refer-
ence images. Image-based neural rendering extends this idea by employing neural
networks that condition novel view synthesis on features extracted from nearby
reference images [180]. Specifically, reference images are first encoded into fea-
ture maps, from which features corresponding to each query point are retrieved
via projection and bilinear interpolation. The features collected across reference
images are then fused, e.g., by averaging, to form the final feature vector of the
query point, which is subsequently decoded by an MLP into color and density.
The volume rendering still follows Equation () to acquire final rendering re-
sults. Trained on large datasets of multi-view images, these models learn strong
priors that enable generalization to new scenes and support direct novel view
synthesis from only a few reference images at inference time. We illustrate the
image-based neural rendering process in Figure @ However, similar to NeRFs,
these methods also require dense sampling in the scene for volume rendering,
which is computationally expensive. In Chapter @, we mitigate the inefficiency in
dense sampling and propose incorporating uncertainty modeling in image-based

neural rendering to guide view planning for active perception.
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Figure 2.8: GS maps represent the scene using a set of explicit but optimizable shape
primitives. Different from NeRFs that require dense sampling along rays to estimate
the color and density, the primitives in GS maps can be directly projected onto image
planes for view synthesis, enabling more efficient rendering compared to NeRF-based
approaches. In contrast to conventional map representations that rely on rigid shape
primitives, GS maps integrate differentiability into the rendering pipeline, allowing

them to be optimized directly from scene measurements.

2.1.3 (Gaussian Splatting

Recently, GS maps have appeared as a promising alternative to NeRF-based ap-
proaches for photorealistic reconstruction. Different from NeRFs that rely on
dense sampling to acquire scene information in the space, GS introduces explicit
radiance fields constructed from a set of optimizable shape primitives [29,61, 78],
referred to as Gaussian primitives. Each primitive is defined by its parameters
g = (Xi,4q;,8;, ¢ ,0;), where x; € R? denotes the position of the primitive cen-
ter; q; € R* is its rotation in the form of a quaternion; s; = [s7,s!,s7] € R?
represents the scaling factors along the three axes of the primitive; ¢;(d) € [0,1]°
represents the RGB color, decoded from the viewing direction, e.g., via spherical
harmonics [43]; o; € [0,1] is the opacity value. Intuitively, a Gaussian primi-
tive can be viewed as an ellipsoid whose opacity decreases with distance from its
center, as illustrated in Figure @ Its distribution in the world coordinate is

formulated as:
N(x;x;, X;) = exp (—%(X —x) ' E(x — x,)) : (2.15)

where 3; = R(q;) diag ((s¥)?, (s¥)?, (s7)%) R(q;)" is the covariance matrix rep-

resenting the shape of the Gaussian primitive in 3D space, with the rotations

matrix R(q;) € SO(3) derived from the quaternion q;.

24



2. BAsic TECHNIQUES

For rendering, each primitive is first projected onto a 2D image plane via the
elliptical weighted average filter [223]. The projected covariance matrix can be

formulated as:
=W, %, W/ (2.16)

where J; is the Jacobian of the affine approximation of the projective transfor-
mation and W; is the viewing transformation from the world coordinate to the
image coordinate. Consequently, the opacity of a projected Gaussian primitive

g; at a pixel u on the image plane can be expressed as:
_ 1 Tsv—1
a;(u) = exp —§(u —w) X (u—w) | o (2.17)

where u; is the projected position of the primitive’s center on the image plane.
These projected Gaussian primitives are ordered based on their distance to the
image plane, and the final pixel color can be acquired by blending all Gaussian
primitives overlapping the pixel from near to far, a technique commonly referred
to as differentiable rasterization:

C(u) = Zwici yw = T, T; = H(l — ay). (2.18)
i=1

j<t

By supervising the rendering results with training views, similar to Equation (),
we can optimize the parameters of Gaussian primitives.

GS maps preserve the scene information explicitly in the primitives and do
not require dense sampling to query scene information, leading to faster novel
view synthesis. While compared to conventional explicit map representations,
which typically lack end-to-end optimization capabilities, GS retains differentia-
bility throughout the rendering pipeline. This allows the geometric and textural
parameters of GS maps to be optimized to account for measurements, enabling
high-fidelity reconstructions without the computational overhead associated with
the dense sampling in NeRFs. As a result, GS can produce photorealistic render-
ings at interactive frame rates, making it particularly suitable for online robotic
applications. Beyond rendering efficiency, the explicit nature of the representa-
tion facilitates direct manipulation, fusion, and incremental updates, capabilities
that are important for dynamic or large-scale mapping tasks [21]. We adopt GS

as the main map representation for active scene-level reconstruction in Chapter §.

2.2 Active Perception for Robot Mapping

Active perception in robotics refers to the process of actively planning and moving

sensor viewpoints to acquire informative measurements for a given task. Unlike
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passive perception, which relies on fixed, predefined perception strategies or man-
ual control, active perception automatically adapts the perception process based
on current knowledge and task requirements. This is an important capability
when performing robotic tasks, e.g., localization, object detection, semantic scene
understanding, and mapping [4], particularly in unknown environments.

In the context of robot mapping, where robots are employed to incremen-
tally generate map representations of an unknown environment, active percep-
tion enables autonomous mapping and plays a crucial role in improving both the
efficiency and quality of the resulting map. This becomes even more important
in resource-constrained online missions, where robots must operate under lim-
ited mission resources [96], such as operation time, number of measurements, or
travel distance. By coupling perception and sensor control, the closed-loop setup
in active perception allows the robot to make informed decisions about where to
measure next, thereby reducing redundant measurements and focusing sensing
efforts on the most task-relevant regions.

Active perception for robot mapping typically follows an iterative process
that alternates between planning future sensor viewpoints, acquiring new mea-
surements at those viewpoints, and updating the map representation accordingly.
This cycle continues until the robot either completes the mission requirements,
such as achieving full area coverage, or exhausts its available mission resources.
Central to this loop is the view planning module, which selects future viewpoints
based on the expected utility of the measurements they would provide. This al-
lows the robot to act purposefully, directing its sensor viewpoints toward areas
that are likely to yield more informative measurements to the mapping process,
thereby enhancing the overall mapping efficiency and quality.

2.2.1 Utility Formulation

Most active perception approaches for robot mapping rely on explicit utility func-
tions to guide view planning. Based on the current map state, these functions
serve as a quantitative measure of the expected value of a potential measure-
ment at candidate viewpoints with respect to specific mapping objectives. In
general, the utility function can be formulated as ¢ : (M,v) — R, where M
is the current map, and v is a candidate viewpoint, as illustrated in Figure @
By assigning utility scores to candidate viewpoints, utility functions enable the
robot to make informed choices, balancing between exploring new areas, refining
uncertain regions, and revisiting known locations to improve map accuracy. A
core contribution of this thesis lies in the formulation of utility functions tailored
to various learning-based mapping techniques, which is essential for effectively
integrating active perception with the used representations.

However, formulating utility functions in active perception for robot mapping
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Candidate Viewpoints

Utility Function

Figure 2.9: A general framework of utility-based view planning in active perception

for robot mapping. The key in the view planning is a utility function, which reflects
specific mapping objectives. Given a set of candidate viewpoints and the current map
state, the utility function evaluates their expected utility values, indicating the potential

contribution of new measurements at these viewpoints to the mapping objective.

can be non-trivial, as it is intricately linked with the choice of map representa-
tions tailored for specific applications, which in turn is heavily influenced by the
objectives of the mapping task. For instance, in scene-level exploration tasks,
the goal is to cover all unexplored areas in an unknown environment. Due to
their capability to represent both surfaces and free space information, volumetric
maps are often preferred for these tasks. In these scenarios, the mapping objec-
tives are typically defined in terms of maximizing the coverage of the unknown
environment; therefore, viewpoints that can observe larger unexplored areas in
the volumetric map are preferred [@, ] When modeling the scene attributes
probabilistically, such as occupancy probability, volumetric maps can also be
used to quantify the uncertainty of the map from a novel viewpoint, allowing the
robot to select viewpoints that minimize the uncertainty in the map [@, ]
Similarly, mapping methods employing GPs inherently model map uncertainty
through variance in Gaussian distributions [], which can be directly incorpo-
rated into the utility function. Therefore, active perception for robot mapping
utilizing GPs often relies on simulated measurements to identify viewpoints that
are expected to reduce overall map uncertainty most effectively [@,]

For tasks that require the map to preserve fine-grained scene details, espe-
cially for object-level reconstruction or photorealistic rendering, map represen-

tations such as meshes, or more advanced learning-based representations like
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NeRFs or GS maps, are often preferred. In these applications, the mapping ob-
jectives primarily focus on maximizing the geometric or textural fidelity of the
reconstructed scene. Consequently, the utility function is typically designed to
evaluate the expected quality of the map from a candidate viewpoint, such as the
expected photometric loss or geometric error. A core challenge in such applica-
tions is the lack of ground-truth information at unseen viewpoints. As a result, it
is difficult to directly compute the utility of a viewpoint beforehand. To address
these, many approaches rely on heuristic estimates [51,80,[161] or learning-based
methods [89,[124,204] to predict the utility values for viewpoint evaluation.

In summary, the utility function’s design is pivotal in guiding view planning
in active perception systems by aligning with specific map representations and
mapping objectives, shaping how robots explore and reconstruct environments ef-
fectively. In this thesis, we propose utility functions designed for learning-based
map representations, encompassing approaches that range from inherent uncer-
tainty prediction and heuristic modeling to fully data-driven learning methods.

2.2.2 Candidate Viewpoint Generation

Beyond the design of the utility function itself, the strategy for generating candi-
date viewpoints is also critical in view planning. For generating candidate view-
points, three major paradigms are commonly used: sampling-based, optimization-
based, and heuristic-based methods.

Sampling-based methods work by generating a discrete set of candidate view-
points either randomly or based on certain rules, such as weighted sampling to
prioritize certain regions of the environment based on previous utility evalua-
tion [10, b8, [71,151,[186]. Sampling-based methods are generally easy to imple-
ment, efficient when utility evaluation is fast, and can be generalized to most of
the map representations, including conventional and learning-based maps. The
constraints of viewpoint space can easily be considered in the sampling step, mak-
ing it flexible to adapt to different robot platforms and environments. However,
their performance heavily depends on the quality and density of the candidate
samples. For example, a large number of viewpoint samples may be required to
cover the viewpoint space sufficiently, which can introduce redundancy and in-
crease computational overhead, especially in large-scale or complex environments.

Optimization-based methods, on the other hand, formulate the view planning
as an optimization problem, where the goal is to maximize the utility function
over an action space of viewpoints [[l,203]. This approach often allows for more
effective exploration of the action space and can yield better final utility values.
It is particularly useful in scenarios where fine-grained control over the viewpoint
is necessary. A critical requirement for optimization-based methods is that the

utility function must be differentiable with respect to the viewpoint parameters,
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which can be difficult to achieve for certain map representations or utility for-
mulations. Both sampling-based and optimization-based methods may struggle
to find informative viewpoints in scenarios where the utility function is highly
non-linear or contains many local maxima, as they are prone to getting trapped
in suboptimal solutions.

In contrast, heuristic-based methods, such as frontier-based exploration [l16,
80, 202], often perform more robustly in such settings by leveraging domain-
specific insights. For example, frontier-based methods generate candidate view-
points directly in frontier regions, which are the boundaries between known and
unknown space. The viewpoints in these regions are more likely to yield high
utility in exploration tasks. While heuristic methods can efficiently guide the
sensor viewpoints to promising areas without requiring extensive sampling or op-
timization, they typically rely on hand-crafted rules that are tailored to specific
map representations. This dependence on manually designed heuristics can limit
their generalization ability to different map representations.

In practice, some state-of-the-art systems adopt hybrid approaches that com-
bine the strengths of these strategies. For instance, sampling-based methods may
be used to generate a diverse set of initial candidate viewpoints, which are then
refined through local optimization to reach viewpoints yielding higher utility val-
ues [203]. This combination enables both broad exploration of the viewpoint
space and fine-tuned exploitation of promising regions, leading to more effective
and efficient view planning in active perception for robot mapping. To further
mitigate the risk of getting trapped in local maxima, heuristic-based methods
can be integrated with sampling strategies to achieve local inspection via sam-
pled candidates, while reserving the ability to explore a broader viewpoint space

using heuristically generated candidates [80].

2.2.3 Viewpoint Selection Strategies

Besides utility formulation and candidate viewpoint generation, the strategy for
selecting the next viewpoints also impacts the effectiveness of view planning.
Without any prior knowledge, a widely used strategy is to greedily select the
viewpoint with the highest expected utility from the candidate viewpoints, which

is often referred to as the NBV planning [58,[132] and can be formulated as:
v* = argmax (M, v) — §(M, v, ), (2.19)

where 0 can be an optional cost term, e.g., depending on the travel distance from
the current viewpoint © to a candidate viewpoint v.

NBV planning is straightforward and computationally efficient; yet, due to
its greedy nature, NBV planning tends to exhibit myopic behavior, prioritiz-
ing immediate utility gains without considering the long-term consequences of
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viewpoint selection. This can lead to suboptimal exploration paths, such as a
back-and-forth movement pattern, limiting the efficiency of robot mapping.

To address this limitation, receding horizon approaches offer a compromise be-
tween short-term efficiency and long-term effectiveness. Instead of only consider-
ing a single best viewpoint, receding horizon approaches evaluate short sequences
of future viewpoints, computing the cumulative utility over each candidate se-
quence [12,[126,[175]. The robot then executes the first viewpoint from the most
promising sequence and repeats the process in a rolling fashion. By incorporating
a planning horizon, this strategy anticipates the downstream effects of its sens-
ing actions, leading to more informed decisions over time compared to myopic
NBYV planning. However, receding horizon approaches can be computationally
expensive and often require path planning algorithms involved to provide a valid
sequence of viewpoints, e.g., using rapidly-exploring random trees [87].

Different from the utility-based view planning paradigm, another line of re-
search explores the use of reinforcement learning to learn a policy for view plan-
ning [72,86,211]. These approaches implicitly embed the utility function into the
learning objective, enabling the robot to learn policies that project the current
map state to the next sensing action. Depending on the formulation, reinforce-
ment learning methods either select the most promising viewpoint from a set of
candidates or directly output control actions for sensor movement, e.g., move for-
ward a certain distance or rotate by a certain angle. While reinforcement learning
can yield efficient and adaptive view planning behaviors, these approaches typi-
cally require large amounts of training data and extensive simulation or real-world
experience to converge. Moreover, they often suffer from limited generalization,
performing poorly when deployed in unseen environments or when transferred
across different map representations.

In this thesis, we develop active perception approaches for robot mapping
that explicitly consider utility formulation for view planning. Our goal is to
design utility functions that are specifically tailored to different learning-based
map representations and mapping objectives. To guide the robot’s exploration
and measurement acquisition, we specifically focus on the sampling-based NBV
planning strategy that balances efficiency and adaptability, enabling informed
decision-making during online robot mapping.
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Chapter 3

Adaptive-Resolution Field
Mapping Using (Gaussian Process
Fusion with Integral Kernels

OBOTS have been widely adopted for mapping tasks due to their flex-

ibility and high degree of autonomy. One important application

scenario is environmental monitoring, which plays a central role in

helping us understand the Earth and its natural processes. Many

commonly observed natural phenomena, e.g., temperature and humidity, exhibit
complex and non-uniform spatial variations that are difficult to capture using
traditional monitoring methods [83], such as manual sampling or static sensor
networks [[101]. Recently, UAVs have emerged as a flexible, cost-efficient platform
for measurement acquisition in a wide range of applications, including biomass
calculation [[134], signal strength monitoring [58], weed detection [163], and ther-
mal mapping [[101]. To fully exploit the autonomy of these platforms for envi-
ronmental monitoring, particularly in the context of active perception for robot
mapping, a key challenge is developing mapping approaches that can accurately
capture heterogeneous natural phenomena while being compact and computation-
ally efficient for online decision-making on resource-constrained robot platforms.
A variety of methods have been developed for field mapping in the context of
environmental monitoring. In the remote sensing community, most existing ap-
proaches exploit aerial measurements to create high-resolution reconstructions,
e.g., terrain orthomosaics [101]. Although they produce very detailed models,
such procedures often require heavy offline postprocessing, making them unsuit-
able for online incremental mapping. To enable such applications, a common
strategy is to discretize the environment in a grid map and fuse new measure-
ments into it during a monitoring mission. However, traditional grid-based meth-

ods [35,44,59] assume spatial independence between cells, neglecting important
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spatial correlations which characterize environmental phenomena, and thereby
often limiting the map quality. In contrast, our goal is to develop an online map-
ping strategy that explicitly models spatial correlations by leveraging Gaussian
processes (GPs) [140]. Our approach aims to support high-fidelity field recon-
struction in targeted regions of interest, e.g., hotspots or anomalies, as well as
online mapping with low computational and memory requirements. By addressing
both fidelity and efficiency simultaneously, our work bridges the gap between en-
vironmental monitoring applications and the needs of active perception for robot

mapping, where online reasoning and decision-making are essential capabilities.

This chapter focuses primarily on the mapping component of an active per-
ception system, targeting the reconstruction of continuous, spatially correlated
2D scalar fields, e.g., of temperature or biomass cover, using measurement infor-
mation from onboard sensors. We emphasize that mapping quality and efficiency
could be critical factors for adaptive view planning in active perception systems,
as they rely on current map states to inform the measurement acquisition pro-
cess. This is particularly relevant when using GPs as the map representation,
which offer built-in uncertainty modeling that can be directly utilized for view
planning. However, view planning using GPs often requires forward simulation
of map updates to select the most informative viewpoints, which can become a
computational bottleneck in online settings. In this context, improving the effi-
ciency and adaptability of the GP-based mapping directly enhances the robot’s
capability for intelligent decision-making in view planning. By reducing the com-
putational burden of continuous field mapping using GPs, our method lays the
foundation of active perception approaches for robot mapping that rely on accu-
rate uncertainty estimates in GPs for viewpoint selection. Thus, although this
chapter focuses on the mapping side, it forms a crucial component for active
perception systems, where mapping quality and computational tractability are
tightly coupled with view planning performance.

We follow GP fusion [[133,[185] for online field mapping. In GP fusion, a GP
model is exploited to initialize a spatially correlated grid map, which serves as a
prior for recursive Bayesian fusion. Although discrete grid maps are used to store
and update environmental information, the underlying GP allows continuous in-
ference at arbitrary resolutions, as long as its probabilistic structure is preserved.
The goal of our approach is to adaptively adjust the GP fusion map resolution
online based on the information value of associated measurements, such that only
regions of interest are mapped at high resolutions. This leads to compact map
representations that are computationally efficient and memory-friendly during
online mapping, while still preserving fine-grained details in regions of interest.
Different from GP regression introduced in Chapter , which pools the entire
measurement history to predict the posterior map state at any resolution at once,
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Figure 3.1: Our adaptive-resolution GP fusion approach for online field mapping. Left:
Synthetic ground-truth distribution. Yellower shades indicate higher values we would
like to map in greater detail. Right: Mapping result with uncertainty. Our approach
maps regions of interest at higher resolutions while compressing information in less
interesting regions to increase computational and memory efficiency. The checkerboard
serves as an interpretation of map uncertainty (high opacity means low uncertainty).

the usage of GP fusion, although more efficient, poses a major challenge: adapt-
ing the map resolution leads to varying mapping locations in the environment;
however, correlations at these new locations cannot be easily obtained from the
previous measurements or the current map state [] Naively merging grid cells
in GP fusion would lead to a loss of spatial correlations, as the posterior at the
new resolution is not guaranteed to be consistent with the previous one. The
posterior after map resolution change is thus difficult to retrieve in a theoret-
ically sound and efficient manner. This hinders the recursive update step and
constitutes an open research question.

To address this, we propose a novel GP formulation based on integral kernel
functions to describe the spatial correlation over the areas of grid cells instead
of points, e.g., grid cell center point. This area-based kernel formulation natu-
rally introduces a hierarchical structure in the modeling of spatial correlations,
enabling more efficient fusion of posterior information, as discussed later in Sec-
tion @ Combined with an Nd-tree structure [@], we adapt the map resolution
online while preserving its spatial correlations. This enables us to retain high-
resolution details in targeted areas of the field, while using coarser resolutions
otherwise, as shown in Figure Ell In this way, we achieve memory and computa-
tionally efficient mapping without sacrificing map quality, as necessary for online
applications on platforms, e.g., UAVs, with limited computing power.

We make the following three claims:
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1. We propose an integral kernel formulation to encode the spatial correlations
over the areas of 2D grid cells, enabling efficient merging operation of grid
cells to compress information at any scale in uninteresting regions while

preserving spatial correlations in the map.

2. Our approach combines GP fusion with the Nd-tree data structure to allow
for resolution adaptation of spatially correlated maps, enhancing the map-
ping efficiency and reducing memory usage for online mapping compared to
state-of-the-art baselines. We also demonstrate its applicability in a surface

temperature mapping scenario.

3. We demonstrate the effectiveness of our mapping approach in active percep-
tion for robot mapping, justifying the high mapping quality and efficiency

of our approach benefit online adaptive view planning.

3.1 Owur Approach to Adaptive-Resolution

Gaussian Process Fusion

This section introduces our online field mapping approach. We initialize a grid
map using a GP model and store it in an Nd-tree. This map is then recursively
updated with new measurements using Bayesian fusion. We first present the
theory behind GPs with the integral kernel and define an average measurement
sensor model, in which the state of a grid cell represents the average function value
over the cell area. Then, we explain our Bayesian fusion update and the merging
operation for incrementally building adaptive-resolution field maps. Bringing
together these elements, our key contribution is the ability to efficiently merge
grid cells in GP fusion without losing spatial correlations. Note that our setting
considers a UAV-based mapping scenario. However, our approach is applicable
to general 2.5D mapping problems.

3.1.1 Gaussian Processes and Integral Kernels

A GP is the generalization of a Gaussian distribution over a finite vector space to
an infinite-dimensional function space. It is fully described by its mean p(x) and
kernel function k(x, x’), where x is an arbitrary point in input space. In practice,
a GP regression model is used to encode spatial correlations in a probabilistic
non-parametric manner and infer function values at a finite set of query points
given observed measurements [140]. Different from GP regression, previous stud-
ies of GP fusion [133,]185] exploit the GP’s mean and kernel function to calculate
the prior in predefined mapping positions, e.g., grid cell center points. The pos-

teriors at these points are then recursively updated with grid cell measurements
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using Bayesian fusion, assuming measurements falling into the same grid cell as
direct measurements of the grid cell center point. This GP fusion setting largely
enhances the map update efficiency compared to standard GP regression. How-
ever, as the map posterior is only maintained in fixed mapping positions, adaptive
resolution is hard to achieve.

To address this problem, we propose a new GP fusion approach leveraging an
integral kernel. The mapping target in our problem is assumed to be a stationary
continuous function described by a GP: f(x) ~ GP(u, k) : € — R, where £ C R?
is the 2D rectangular input space and x € €. Similar to Reid et al. [142], we now
define the new function:

(= [rax (31)

to represent the average of the latent function f over a rectangular domain r C &
with area a € R. Since applying a linear operator to a GP leads to another
GP [148], we obtain the new GP: ((r) ~ GP(u1, k1), whose mean and kernel
function are described as follows:

i) = [ nx)dx (32)

r

[[ ki xraxae. .

TiXTj

ki(ri,ry) =

aZ

1
a;a
where x and x” are the point positions contained within the rectangular domains
r; with area a; and r; with area a; respectively. The area-related terms in Equa-
tion (@) and Equation (@) simply transform the integral into an average, which
makes the physical meaning of mean and covariance in accordance with our mea-
surement model introduced in Section . For simplicity, we consider a con-
stant mean function p in our approach.

3.1.2 Map Initialization

We initialize our grid map using this new GP model. For rectangular cells and
squared exponential kernel [140]:

1|2
k(x, ') = o%exp (—%) : (3.4)
we can find a closed-form solution to Equation (@) In general, numerical in-
tegration is required to determine the kernel integration [116]. Note that the
integral calculation is only conducted in the initialization step and does not
burden online mapping. The fact that our model is a GP allows us to ini-
tialize the prior map at any resolution, and we recursively discretize the input

space into rectangular grid cells using an Nd-tree until maximum depth ¢ € Nt
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is reached. Only leaf grid cells are maintained and updated in our grid map
C={ci, ..., ¢cu}, where n = (N9 with d = 2, as we focus on 2D field mapping;

min
%

max

max] x [ymin ymax] jg the parametrization of a grid cell ¢; C £, and

¢ = [z x
c=[ci, ..., ¢,]" is the vectorization of C. This prior map, with prior mean vector

p~ and covariance matrix K~ calculated by Equation () and Equation (@)

,u1<61) ]’C[(Chcl) k?I(Cl,Cn)
po=puc)=| : |, K =kilcec)= : : , (3.5)
pi(cn) ki(cn,c1) .. ki(cn, cn)

can be seen as a multivariate Gaussian distribution from the perspective of the
recursive update introduced later in Section :

In our online mapping approach, we initialize the map to the highest resolu-
tion and adaptively merge uninteresting grid cells during mapping. Note that,
since our underlying model is a GP, we can still infer the function values at arbi-
trary resolutions using the mean function, kernel function, and map posteriors as
described by Reece et al. [141]. As this procedure is computationally heavy, we
only consider it as a post-processing step to recover a high-resolution map after

an online mission is complete.

3.1.3 Sensor Model

In our GP fusion setting, we consider a Gaussian sensor model to account for
noisy measurements. For each observed grid cell ¢; € C, the sensor provides a

measurement y; capturing the average value of function f over the area of this
2 2

EX) S,1

cell as y; ~ N (us4,02;), where 5, is the mean and o7, is the variance express-
ing uncertainty in y;. The variance can be further decomposed into two parts.
First, we assume measurements taken from higher altitudes are more susceptible
to environmental noise. To this end, we follow the work of Popovi¢ et al. [133]

and describe the degraded accuracy of sensor information at higher altitudes by
2

a,t

o2, = ah, where a € R* is a coefficient and h is the sensor’s altitude. Second,
we consider uncertainty caused by observing incomplete grid cells. In our map-
ping approach, some grid cells are only partially covered by the current sensor
footprint, especially when the grid cells occupy larger area after they are merged.
Directly assigning the average values as the final measurement of these grid cells
would be an over-confident assumption, as the unobserved part of these grid cells
may contradict the current measurements, e.g., when grid cells span over the

domain of heterogeneous function values. To tackle this problem, we propose

the coverage-ratio-dependent variance afﬂ- =0 (1 — “27”) in our sensor model,
where § € Rt is a coefficient, and a., aeover are the area of the grid cell and the

part covered by the sensor footprint.
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Cy

Figure 3.2: Our sensor model provides the measurements of the average function value

over a grid cell. For instance, the measurement zo observed from co is the average of
2

four single measurement values {ms, ms, ms, mg}. For calculating O s Gcover is the

green area on the terrain and a. is the area of ¢y itself.

For each new measurement, the data are generated as follows. First, the
sensor footprint is determined based on the known field of view and the sensor’s
extrinsic parameters. Next, we identify the grid cells having overlap with the
sensor footprint using a depth-first tree search with pruning. For each observed

grid cell ¢;, we calculate the corresponding averaged measurement value y; as
2

a,

illustrated in Figure @ Finally, we sum o ; and o7, as the total variance of

each measurement ;.

3.1.4 Sequential Map Update

A major difference between GP regression and our GP fusion approach lies in
the map update rule. During the online mapping mission, the map state is fully
described by the mean vector g and covariance matrix K, which is initialized
by our GP model as introduced in Chapter , and recursively updated by
Bayesian fusion with new measurements. Specifically, we denote p~, K™ as the

prior map state and ™, KT as the posterior map state for map updates.

At each update step, y denotes a vector of [ new average function value mea-
surements observed from [ corresponding grid cells, as introduced in Section .

The posterior density p(Cly,c) o« p(y|¢,c)p(Clc), where ¢ = [((c1), ..., ((cn)],
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can be computed using the Kalman Filter update equations [141]:

pt=p +Tg, (3.6)
K" =K - THK",

where I' = K"H'S™! is the Kalman gain; g =y — Hu~ and S = HK"H' + R
are the measurement and covariance innovations; R is a diagonal [ x [ matrix
composed of variance term o7, ; + 02, associated with each measurement y; and H
is a [ X n observation matrix denoting the part of the map observed by y, where
n and [ are the number of grid cells in the current map and observed grid cells,
respectively. Note that the current map only contains leaf grid cells and a small

matrix § € R is inverted at each update.

3.1.5 Merging Operation

Given a non-uniform target field for mapping, our goal is to use coarser (larger)
grid cells to map uninteresting regions and denser (smaller) grid cells to retain
details in interesting parts. Previous works utilizing GP fusion [133,[185] do not
support efficient resolution changes. By using our new GP fusion method with
the integral kernel ki, however, we naturally encode the states of parent nodes
in their children, which enables efficient retrieval of a parent’s posterior from its
children on the fly.

The online merging operation allows us to summarize information in larger
areas and monotonically reduce the total number of grid cells in the map, which
facilitates mapping efficiency and memory usage. For this, we subdivide our map

into uninteresting regions (UR) and regions of interest as hotspots (HS):

Cor={c €C| pi +7Ki;i < fin}, Cus = C\ Cur, (3.8)

where p; and K; ; are the mean and variance of grid cell ¢; in the current map; the
design parameter « is chosen to specify the margin to the threshold f;, [55]. The
threshold fi, can be defined by expert knowledge in a certain application, e.g., in
agricultural scenarios, high temperature may indicate crop health issues and thus
be more interesting for environmental monitoring tasks. We also consider the
variance information to avoid merging grid cells with possibly high mean values,
which causes loss of details in interesting regions. Note that Equation (@) can
be easily rewritten to account for interesting regions with low mean values.

For a parent grid cell, if all of its P = N¢ child grid cells are uninteresting
leaves (grid cells in Cygr), these child grid cells can be replaced by their parent grid
cell. When we merge the information of P children into their parent, based on
the definition of the grid cell variable and the correlation encoded by the integral
kernel, we have the parent grid cell defined as (parent = 1% Zil Cenild;- The parent
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C

original merged

Eoih i

Figure 3.3: Illustration of the merging operation in our map. Top and bottom rows
show the grid cell map and its corresponding Nd-tree (with N = d = 2) structure.
Only leaf nodes (blue and orange) are considered in the map update. After merging
(right), the states of child grid cells are summarized into their parent in the new map.

grid cell now represents the average function value of the entire region covered
by its children. For the grid map, the merging operation can be described as the
linear transformation of a multivariate Gaussian distribution:

Hmerged = M“originala (39)
Kmerged = MKoriginalMTu (310>

where floriginal; Koriginal Tepresent the map state of Coriginal prior to merging, and
Pmerged; Kmerged denote the map state of the newly-merged map €pmergea- In the
simplest case, where only one parent’s child cells are merged, Corginal, Cmerged, and

M can be expressed as:

_ . -
1

Cp— :

Coriginal = P ) Crmerged = ) (3 1 1)
Ch—P41 Cp—p
Cn—P+1
Cn
I 0
M — (n—P)X(n—P) (’rL—P)XP 7 (312)
1x(n—P) 13 P
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assuming that ¢,—pi1 in Cperged NOW represents the parent of grid cell to be merged
{€r—pP11,. -+, Co} IN Coriginal, and q is [1%, . %} A simple illustration is given in
Figure B.3. The merging operation is performed for eligible grid cells after every
map update. As the multivariate Gaussian distribution is closed under linear
transformations, the map after the merging operation becomes the prior map for

the Bayesian fusion update described in Chapter .

3.2 Experimental Evaluation

Our experimental results support our three claims: (i) we show that our inte-
gral kernel-based formulation enables merging operations to compact the map
resolution in uninteresting areas; (ii) we show that our approach achieves on-
pair mapping accuracy while providing more efficient map updates and reduced
memory usage compared to various baselines for field mapping; and (iii) we fur-
ther integrate our adaptive-resolution mapping approach with view planning to

demonstrate that it benefits active perception for robot mapping.

3.2.1 Mapping Evaluation

We evaluate the mapping performance with total mapping time, mapping quality
in terms of root mean square error (RMSE), intersection over union (IoU) of
hotspots, memory consumption ratio, and number of grid cells in the final maps.
The total mapping time is obtained by aggregating the individual map update
times over the mission; RMSE and IoU are calculated by comparing resulting
maps and ground truth at the ground-truth resolution; memory usage is reported
as a ratio relative to the approach with the highest memory consumption. We

compare six different mapping approaches:

e Qurs: our adaptive-resolution mapping strategy based on GP fusion with
integral kernel as described in Section B.1];

e FR-IDP: fixed-resolution mapping under independence assumption [36].
We use the same map initialization and update strategy as introduced in
Section @, while setting the non-diagonal elements of the covariance ma-
trix to zero, meaning that the spatial correlations between grid cells are not

considered for map updates;

o AR-IDP: adaptive-resolution mapping under independence assumption.
Uninteresting grid cells are pruned during mapping as proposed by Ein-
horn et al. [35];
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o AR-BCM: adaptive-resolution mapping using the Bayesian committee ma-
chine [181] and test-data tree, as adapted from Wang et al. [192]. Uninter-
esting grid cells are pruned to reduce the number of query points. We do
not follow the nested Bayesian committee machine approach, as our whole
map can be seen as a block in their case;

o AR-GPR-IK: adaptive-resolution GP regression with integral kernel based
on the approach proposed by Reid et al. [142]. We take one step further to
recursively merge cells if they are uninteresting after each regression update;

o FR-GPF: fixed-resolution GP fusion proposed by Popvié¢ et al. [134].

We simulate 20 different 20m x 20 m Gaussian random fields with 400 x 400
resolution as ground-truth environments, representing spatially correlated vari-
ables over the terrain. For simplicity, we normalize the ground-truth values be-
tween [0, 1] and define regions with values greater than 0.7 as hotspots. To model
noisy measurements, we add zero-mean Gaussian noise to the ground-truth val-
ues, following the altitude-dependent noise model introduced in Section with
a = 0.03. To assess mapping performance at different scales, we conduct experi-
ments at 3 different maximum resolutions: 16 x 16, 32 x 32, and 64 x 64 grid cell
maps corresponding to adaptive-resolution approaches with maximum quadtree
depths of 4, 5, and 6, respectively.

We map the terrains using a lawnmower pattern to focus on comparing the
mapping performance, excluding the influence of path variations. To simulate a
UAV mission, we take 16 non-overlapping measurements as shown in Figure @(a)
to fully cover the terrain, assuming a flight altitude of 2.5m and 5m x 5 m sensor
footprint on the ground. All GP-based mapping approaches (AR-BCM, AR-
GPR-IK, FR-GPF, Ours) use the squared exponential kernel function with hy-
perparameters {02, £} = {1, 2.36} and a constant prior mean value of 0.5.

In general, the domain knowledge should be exploited in kernel function se-
lection, and the hyperparameters can be optimized using prior information, e.g.,
datasets from an earlier sampling campaign or similar fields, as discussed in Chap-
ter . For approaches using an integral kernel (AR-GPR-IK, Ours), we follow
Equation (@) to calculate the prior maps. For mapping under the independence
assumption (FR-IDP, AR-IDP), we use the same prior mean and variance, while
ignoring all cross-correlations to isolate each grid cell. We consider the average
measurement sensor model in all mapping approaches. For merging operation in
adaptive-resolution approaches, we choose {7, fin} = {2,0.7} in Equation (@)
Note that all these hyperparameters are used consistently in all experiments.

We summarize the results in Table Ell and Figure @ In all cases, approaches
relying on the cell independence assumption yield the least accurate maps with
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Figure 3.4: Qualitative comparison of our approach (g) against benchmarks (b)-(f). The terrain is mapped using a lawnmower pattern, as
shown in (a). The red line and black dots indicate the traveled path and measurement locations. All approaches use a map size of 32 x 32
grid cells. By mapping adaptively, our method compresses information in areas with low information value (blue) while preserving details in
higher-value regions of interest (yellow) to achieve a compact map representation for online applications. (h) shows the offline higher-resolution

(50 x 50) reconstruction from our online mapping result (g), illustrating how the map can be decompressed after the mission.
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3.2. EXPERIMENTAL EVALUATION

the highest RMSE and the lowest IoU, since they are most vulnerable to sen-
sor noise or sparse measurements. This is because they neglect correlations for
mapping, which are key for capturing spatially correlated variables. In contrast,
the four GP-based approaches reflect the smooth structure of the Gaussian ran-
dom fields, as they incorporate covariance information into the map updates.
As expected, the averaging effect caused by merging cells in adaptive-resolution
approaches leads to higher total RMSE compared to FR-GPF. However, all GP-
based approaches show comparable accuracy in mapping hotspots and similar
IoU scores, as required in our problem setup.

In terms of mapping efficiency, AR-BCM performs the worst as it executes
large matrix inversion and Bayesian committee machine fusion at every update
step, leading to prohibitively slow mapping. Note that the Bayesian commit-
tee machine benefits from parallelizing several GP regressions. However, in on-
line mapping scenarios, where measurements are accumulated incrementally, the
Bayesian committee machine loses this strength. AR-GPR-IK is slower than two
GP fusion approaches (FR-GPF and Ours), due to regression using accumulated
measurements. We point out that by using the integral kernel together with the
average measurement sensor model, AR-GPR-IK already achieves a significant
speed-up compared to vanilla GP regression. In all cases, AR-IDP is slower than
FR-IDP due to the overhead caused by tree search. The same overhead is ex-
pected in our approach; however, as the major bottleneck is the matrix inversion
and multiplication in Equation (@) and Equation (@), this can be compensated
by faster Bayesian fusion update with fewer grid cells in our approach.

Regarding memory usage, FR-GPF consumes the most memory space as it
maintains a large constant number of grid cells and a large covariance matrix.
Among the adaptive-resolution approaches, AR-IDP shows the worst merging
ability, as indicated by the number of grid cells in the final map. This can
be explained by heterogeneous states in children’s nodes caused by inaccurate
mapping, which potentially reduces the chances of the merging operation. Among
the GP-based methods, our approach achieves the fastest mapping updates and
best memory compression ratios with competitive map quality. The benefit of
our online merging operation can be seen by comparing Qurs and FR-GPF. In all
cases, our approach outperforms AR-IDP and FR-IDP in terms of map quality.
In Figure @(h), we further show how our mapping result can be decompressed to
recover a high-resolution reconstruction in an offline post-processing step, thanks

to well-maintained spatial correlations in our map.

3.2.2 Validation on Real-World Data

We demonstrate our mapping approach in a real-world surface temperature map-

ping scenario. We collected sensor measurements in a 150m x 150 m crop field
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Figure 3.5: Validation of our approach for surface temperature mapping. Top: Exper-
imental setup showing our UAV over a crop field. Bottom-left: Orthomosaic of the
crop field’s temperature distribution. Bottom-right: Map generated by our method.
High-temperature areas (red) are mapped at higher resolutions to preserve detail in
these regions of interest, while the grid cells in uninteresting regions are merged to
compact the map representation, leading to more efficient map updates.

(50.86° lat., 6.45° lon.) near Jilich, Germany on June 25, 2021 using a DJI Ma-
trice 600 UAV platform equipped with a Vue Pro R 640 thermal sensor. During
measurement acquisition, the UAV followed a lawnmower path at 100 m altitude
to collect thermal images at 15 cm ground resolution. The images were processed
using Pix4D software to create an orthomosaic used as a proxy for ground truth
in our experiment. We use a maximum map resolution of 64 x 64. The entire
mapping process takes 28.31s considering 81 measurements with 50% overlap.
The aim is to validate our method for adaptively mapping hotspots (> 28° C) at
finer resolutions using these real measurements. The mapping result in Figure

confirms that our approach can adapt the map resolution in a targeted way.

45



3.2. EXPERIMENTAL EVALUATION

3.2.3 Integration with Active Perception

Finally, to demonstrate that our proposed mapping approach can enhance active
perception based on GPs, we integrate our mapping method with adaptive view
planning to actively map 2D fields in UAV-based environmental monitoring mis-
sions, following the setting introduced by Popovié¢ et al. [133]. The planning task
aims at efficient detection of regions of interest in an initially unknown environ-
ment under mission time constraints. For this, the UAV must adaptively plan
its viewpoints based on the current map state to trade off between exploration of
unknown areas and exploitation of already identified regions of interest.

This experiment considers the same setup as described in Section except
setting our prior mean to 0.7 to initially encourage exploration. We compare
the FR-IDP, AR-IDP, FR-GPF methods to our approach, as regression-based
mapping approaches AR-BCM and AR-GPR-IK are prohibitively slow for online
planning. For all methods, we employ the same planning strategies to isolate the
influence of mapping on planning performance.

We use a 3D lattice consisting of 300 total viewpoints at altitudes of 2m and
5m to represent the discrete action space. At each planning step, the UAV is
allowed to move to one of these predefined viewpoints, each associated with a
nadir-facing camera orientation. The planner applies greedy search among these
candidate viewpoints to find the next best viewpoint by forward-simulating the
map updates and calculating the expected reward for each. The utility function
1 is defined by the posterior variance reduction in regions of interest, assuming

a measurement taken at a candidate viewpoint v:

Yo,p , K7) = Z (K, —K;;"), (3.13)

€EChs

where Cgg is the hotspot area in the prior map as defined in Equation (@),
K, ;™ is the prior variance and Km-+ is the posterior variance of grid cell ¢; after
a simulated measurement at v, calculated by Equation (@) Taking the flight

time cost into consideration, we finally get the next best viewpoint v* by:

. Yo, K7)
vt =argmax ———

, 3.14
v T(U; Ucurrent) ( )

where T (v, Veurrent) is the flight time from the current viewpoint veyprent t0 a
candidate viewpoint v, assuming a constant flight speed of 1 m/s of the UAV.
For more technical details on the planning approach, we refer to the work of
Popovi¢ et al. [133]. Note that the reward calculation neither updates the map
state nor involves the posterior mean value calculation; therefore, it does not
require true measurements to be available at candidate viewpoints. At each

planning step, we forward-simulate the map updates for all candidate viewpoints
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and select the one with the highest reward as the next viewpoint. The true
measurements are then taken at the selected viewpoint to update the map ac-
cordingly. We iterate this process until the mission time budget is exhausted.
By adaptively merging uninteresting grid cells during mapping to reduce the
number of grid cells in the map, our mapping approach allows for accelerated
forward-simulation, leading to more efficient view planning.
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Figure 3.6: Comparison of different mapping approaches used in adaptive view plan-
ning. Combining the strengths of both accurate mapping results produced by GP
fusion and efficient forward-simulation enabled by our adaptive-resolution approach,
our strategy performs the best to efficiently reconstruct hotspot areas in an unknown
environment with the highest mapping accuracy (top) and map quality (bottom). Solid
lines and shaded regions represent means and standard deviations over 10 trials.
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We conduct experiments on 10 simulated Gaussian random fields and plot
the evolution of RMSE (hotspots) and IoU over mission time in Figure @ The
mission time is defined as the sum of planning time, mapping time, and flight
time, reflecting the total operational cost for autonomous UAV-based monitoring.
The results show that planning using our mapping approach consistently achieves
the best IoU and RMSE (hotspots) scores with the shortest mission time, which
is favorable for autonomous monitoring tasks using resource-constrained UAVs.
Planning using our approach outperforms FR-GPF due to more efficient map
updates, which significantly accelerates forward-simulation during adaptive view
planning. This efficiency is particularly critical in active perception for robot
mapping with GPs, where the cost of uncertainty-driven planning can otherwise
dominate the total mission runtime. Our results hence highlight the importance
of optimizing the mapping pipeline to accelerate decision-making in closed-loop
active perception systems. On the other hand, planning baselines using FR-IDP
and AR-IDP shows poorer performance. This degradation stems directly from
the inaccuracy of the underlying maps, which are generated using methods that
assume independence between grid cells. As already observed in Section ,
mapping approaches using the independence assumption neglect important spa-
tial correlations and are thus more susceptible to sensor noise. Due to inaccurate
mapping, the false positive interesting areas mislead the UAV into a close in-
spection of actually uninteresting regions. This inaccuracy deprives FR-IDP and
AR-IDP of their advantage in fast planning.

3.3 Related Work

A large body of literature has studied mapping methods for monitoring spatially
correlated variables in different application domains [b4, b5, 134, 168, 183, 185].
This chapter focuses on online mapping methods suitable for environmental mon-
itoring scenarios. Our new approach introduces a GP fusion method using GP
models with integral kernels as priors for adaptive-resolution mapping. The fol-

lowing subsections review previous studies related to these topics.

3.3.1 Gaussian Processes Mapping

Grid maps are the most commonly used map representation for robot map-
ping [109]. Despite their successful applications, traditional occupancy grid mod-
els assume the stochastic independence of grid cells, mainly to enhance computa-
tional efficiency [[117]. This representation does not capture the spatial correla-
tions commonly found in natural phenomena, e.g., distributions of temperature,

weed density, or humidity. To address this, GP models can be applied for en-
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vironmental monitoring. For instance, GPs are used to incorporate uncertainty
and represent spatially correlated measurements for aquatic monitoring [46, 54].
Vasudevan et al. [183] apply GP regression to predict elevation on a field where
sensory information is incomplete. Other applications include gas distribution
mapping [168], occupancy mapping [[117], terrain elevation [183], and underwater
pipe thickness mapping [185]. Our approach follows these lines by using GPs to
model the latent scalar field.

The main limitation of applying standard GP regression for online robot map-
ping is its cubic computational complexity in the number of measurements [140].
Previous work has tackled this problem by storing measurements in a K-d tree
structure and using local models to approximate GPs [117,[155,[183]. To pre-
dict the mean and variance of query points, one may only consider nearby mea-
surements, thereby reducing the computational costs. However, local GPs often
require performing regression for each query point individually, limiting their
parallelization capability. To alleviate this problem, Kim et al. [79] propose the
concept of extended blocks, which applies GPs to the query points in individ-
ual blocks of the map only using the measurements in neighboring blocks. This
approach decomposes a large GP into sub-models and applies regression to infer
the posterior of each block in parallel. The multiple regression results are then
fused using a Bayesian committee machine [181], whose computational complex-
ity scales cubically with the number of query points. Based on the Bayesian
committee machine, Wang et al. [192] introduce test-data octrees to prune nodes
of the same state to condense the number of query points in regression, further
reducing the redundancy during inference.

In the context of integral kernels, O’Callaghan et al. [116] propose GP-based
occupancy grid mapping with range sensors that utilizes an integral kernel to
process entire beam lines, rather than discretizing them into individual point
measurements. This reduces the number of measurements needed for regression
and improves efficiency. Most similar to our approach, Reid et al. [142] leverage
an integral kernel to capture spatial correlations between image areas and infer
a high-resolution estimate from a low-resolution measurement in a UAV-based
setup. However, inference over the map is still performed using standard GP

regression, which suffers from poor scalability, especially with dense image data.

In contrast to the above-discussed regression-based methods, our method
leverages GP fusion to reduce the computational burden for online mapping.
This procedure removes the need to preserve the measurement history and infer
the map posterior from scratch each time new measurements arrive [141]. A key
difference in our approach with respect to previous fusion-based works [133,[185]
is the proposed integral kernel, which bridges the gap between GP fusion and
adaptive-resolution mapping.
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3.3.2 Adaptive-Resolution Mapping

In practice, many monitoring scenarios exhibit a non-uniform distribution of in-
formation in the environment, i.e., some regions are considered more interesting
or informative for mapping than others. Therefore, maintaining a map with con-
stant resolution over the whole environment is redundant and costly. A common
method to generate compact map representations is by using tree structures. A
well-known algorithm in this category is OctoMap [p9], which prunes child nodes
with the same state, e.g., occupied, to achieve both memory savings and highly
precise maps. Funk et al. [44] use the octree structure in an online mapping
system that adjusts map resolution based on the occupancy state. Similarly,
Chen et al. [26] apply quadtrees to build adaptive-resolution 2D maps. The Nd-
tree proposed by Einhorn et al. [35] generalizes these approaches by subdividing
any d-dimensional volume recursively with N children. Rather than compress-
ing a map only in a postprocessing step, we adapt the map resolution online
based on incoming measurements, following the ideas of Einhorn et al. [35] and
Funk et al. [44]. Our approach shares the same motivation, as we tailor the map
structure to reduce memory consumption and computation time in applications
requiring online mapping, such as adaptive view planning [54,58,[133].

Previous work in adaptive-resolution mapping assumes spatial independence
between cells [35,44,59], such that no correlation information needs to be main-
tained. This substantially simplifies adaptive-resolution mapping at the cost of
map quality. In our online mapping setup, the covariance must be correctly
modified to account for resolution changes, which is challenging in the GP fusion
framework. Popovié et al. [134] introduce an approach for incrementally fusing
variable-resolution measurements into a spatially correlated map. However, their
method still considers a fixed-resolution map. In contrast, our strategy supports
adaptive-resolution mapping while preserving spatial correlations.

3.4 Conclusion

This chapter introduces a novel approach for online 2D scalar field mapping.
Since GP models naturally provide uncertainty modeling that can be used for
formulating utility functions, we focus on enhancing mapping efficiency, which is
crucial for effective view planning in active perception for robot mapping using
GPs as the map representation. We present an integral kernel formulation within
the GP fusion method, allowing for incremental and continuous modeling of spa-
tial phenomena in an efficient manner. Unlike standard GP regression based on
point measurements, which can be computationally prohibitive for large datasets

and online missions, our integral kernel allows for GPs operating on 2D areas.
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Combined with an Nd-tree data structure, our formulation facilitates the merging
of map information in uninteresting areas, conserving computational and memory
resources, while preserving spatial correlations in a theoretically sound fashion.

Experimental results indicate that our approach performs competitively in
terms of mapping accuracy, memory efficiency, and computational speed, out-
performing traditional methods that rely on fixed-resolution grids, independence
assumption, or full GP regressions. To validate its generalization ability, we test
our mapping approach using real-world surface temperature measurements on an
agricultural field. Furthermore, we show that the efficiency and fidelity of our
mapping module significantly benefit downstream tasks such as adaptive view
planning, by enabling robots to make better-informed decisions about where to
acquire new measurements. This leads to more targeted and efficient measure-
ment acquisition in active perception for robot mapping.

While GP-based approaches have demonstrated effectiveness in 2D scalar field
mapping, they are inherently limited in representing high-frequency visual infor-
mation. They, for example, fall short in supporting photorealistic scene recon-
struction. This limitation motivates the exploration of alternative learning-based
map representations that better capture fine-grained scene texture and geometry.
In the subsequent chapters, we tackle this challenge by integrating active percep-

tion with radiance field representations to enable photorealistic reconstruction.
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Chapter 4

Next Best View Planning Using
Uncertainty Estimation in

Image-Based Neural Rendering

ITH the growing demand for high-fidelity scene reconstruction in

robotics and virtual reality applications, implicit neural represen-

tations, such as neural radiance fields (NeRFs) [107], are draw-

ing significant interest as a powerful alternative to explicit map
structures for representing complex scenes. NeRFs model scenes as continuous
volumetric functions, with neural networks encoding both geometric and textural
information. This enables photorealistic novel view synthesis after being trained
on a set of posed 2D RGB images. Their ability to capture fine-grained details
without relying on discretized representations makes them particularly appealing
for photorealistic reconstruction.

In the context of active perception for robot mapping, emerging works [89,
124,[139,[177,213] incorporate uncertainty estimation into NeRFs and exploit it to
guide NBV planning [132]. These studies follow an active learning [143] paradigm
to collect measurements at the most informative, i.e., most uncertain, viewpoints
for periodically retraining a NeRF to improve the scene representation with min-
imal data. While effective in minimizing data requirements, this retraining-based
strategy introduces a significant computational burden. NeRFs require dense
samples on rays for rendering and many iterations of gradient-based optimiza-
tion to converge, making frequent retraining prohibitively slow. As a result, these
methods are impractical for online robotic applications.

To overcome the inefficiency caused by per-scene optimization requirements
of vanilla NeRF models, an alternative line of research focuses on generalizable
image-based neural rendering [145,182,194,207]. Unlike traditional NeRFs, which
learn a scene-specific global representation by overfitting to a set of training im-
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Figure 4.1: Our novel NBV planning approach exploits uncertainty estimation in image-
based neural rendering to guide measurement acquisition. Given reference images from
the current image collection of the scene (black frustums), our network outputs per-pixel
uncertainty estimates at sampled candidate viewpoints (colored frustums). Brighter
frustums indicate higher average uncertainty rendered from the viewpoint. Zoom-
in boxes illustrate per-pixel uncertainty estimates at the most certain and uncertain
viewpoints. By selecting the most informative, i.e., most uncertain, candidate viewpoint
at which to take the next measurement, our approach efficiently explores the unknown
scene without the need for online map updates.

ages, image-based approaches exploit a shared encoder to map given 2D reference
images into latent feature space, upon which the local implicit representation is
conditioned. This architecture enables efficient novel view synthesis without the
need for per-scene optimization, as the model can render novel views by decod-
ing the latent features extracted from the reference images. By training across a
diverse set of scenes, image-based neural rendering models acquire generic scene
priors and learn to interpret features in a way that allows them to generalize to
previously unseen environments, as introduced in Chapter . Previous work
in image-based neural rendering [,,@,@] mainly studies improving ren-
dering quality and generalization in offline settings using prerecorded image mea-
surements. However, leveraging the strengths of image-based neural rendering
for active perception remains largely unexplored.

The main contribution of this chapter is a novel NBV planning approach

bridging the gap between active perception and image-based neural rendering for
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robot mapping. A key aspect of our method is a new technique for uncertainty
estimation in image-based neural rendering, which enables us to quantify the in-
formativeness of candidate viewpoints without relying on ground-truth images
or global scene representations. Intuitively, high uncertainty of color rendering
indicates where scene information provided by the closest reference images is
insufficient to render the novel view, due to sparse observations, occlusions, or
more complex scene details in these areas. As a result, this rendering uncertainty
serves as a proxy for identifying unexplored or poorly reconstructed areas of the
scene. Therefore, we utilize rendering uncertainty at viewpoints as an informative
exploration objective. As shown in Figure El], based on the predicted rendering
uncertainty, we actively select the most uncertain candidate viewpoint at each
planning step to maximize the information acquired during a measurement ac-
quisition process in an unknown scene.

We make the following three claims:

1. Our uncertainty estimation technique generalizes to unknown scenes, pro-
viding an informative proxy for rendering quality of novel views, and is

better calibrated compared to baseline approaches.

2. Our uncertainty-guided NBV planning strategy outperforms baseline plan-
ning approaches in finding more informative image measurements to repre-

sent an unknown scene, given a limited measurement budget.

3. The informative measurements collected using our approach also improve
the offline training quality of NeRF models, justifying the effectiveness of

our online measurement acquisition strategy.

4.1 Owur Approach to View Planning in

Image-Based Neural Rendering

We propose a novel NBV planning approach illustrated in Figure @ At each
planning iteration, we begin by sampling candidate viewpoints and retrieving
their closest reference images from the current image collection. Leveraging the
visual information from these references, our image-based neural rendering net-
work predicts per-pixel uncertainty associated with the color prediction for each
candidate viewpoint. These uncertainty predictions reflect the network’s con-
fidence in rendering novel views from these candidate viewpoints, allowing us
to estimate the informativeness of potential measurements. The NBV planning
strategy selects the most uncertain candidate viewpoint corresponding to the next

measurement, which we add to the image collection. Together with the image
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Figure 4.2: Overview of our novel NBV planning approach. We leverage uncertainty
estimation in image-based neural rendering to identify areas where the current image
collection is insufficient for producing accurate novel view rendering. We use this
uncertainty information to actively guide measurement acquisition in unknown scenes.
Our image collection and rendering network constitutes the internal map representation

in our approach, eliminating the need for map maintenance during online missions.

collection, our neural rendering network retrieves scene information in a purely
image-based manner. This enables us to achieve efficient autonomous exploration
without maintaining an explicit map or iteratively retraining an implicit neural
representation. In the following subsections, we describe our network architec-
ture, training procedure for uncertainty estimation, and NBV planning scheme.

4.1.1 Network Architecture

Our rendering network follows the architectural design of PixelNeRF [207]. Specif-
ically, a shared encoder maps input RGB images into a latent feature space, and
an MLP interprets features sampled along each rendering ray to predict scene at-
tributes. PixelNeRF uses a volume rendering technique requiring dense sampling
along the ray at predefined intervals, which is inefficient and limits its online
applicability. Inspired by Rosu et al. [145] and Sitzmann et al. [157], we adopt a
long short-term memory module [57] to adaptively predict the jumping distance
to the next sampling point, avoiding dense sampling in empty space, therefore
speeding up the inference of our image-based neural rendering. We illustrate the
network architecture in Figure §.3.

Given a novel viewpoint, we query our current image collection to find the N

closest reference images I,,c(12,... v} to acquire scene information. We use a shared
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4.1. OUR APPROACH TO VIEW PLANNING IN IMAGE-BASED NEURAL RENDERING

convolution-based encoder to extract latent feature volume F,, € RE*WXL from
each reference image I,,, where H and W are feature volume’s spatial resolution,
and L is the channel dimension. We parameterize a ray emitted from the novel
viewpoint as r(t) = o + td, where o € R? is the camera center position, and ¢ is
the distance along normalized view direction d € R3. Starting from the close end
of the ray t = t,, we transform the sampling point’s position x = r(¢) and view
direction d into each reference image’s coordinate using known relative camera
poses to get x,, and d,,, respectively. To better recover high-frequency details of
the scene, the point position x, is mapped into higher-dimensional space by the
positional encoding operation ~y(x,) proposed by Mildenhall et al. [107]. By com-
bining it with its view direction, we compose the pose feature p,, = (v(x,), d,) for
the sampling point expressed in n'* reference image’s coordinate. To retrieve the
latent image feature from reference images, we project x,, onto the corresponding
reference image plane using known camera intrinsics to get its image coordinate
@, , which we use to query the image feature f, = interp(F,,, ¢, ) € RY by grid
sampling with bilinear interpolation [207].

The acquired pose feature p,, and image feature f,, from each reference image
are processed individually by MLPg.,.;. For aggregating features from all reference
images, we use the predicted weight w, € [0,1] and processed feature f/ to
calculate the weighted mean f,.., and variance f,,,. This operation downweights
the feature from less informative reference images, e.g., due to occlusions or large
viewpoint differences. Conditioning on the aggregated feature (fpcan,fvar), our
long short-term memory module adaptively predicts the jumping distance At to
the next sampling point x = r(t + At), thus mitigating the sampling inefficiency
commonly seen in volume rendering [107,207]. We iterate this process a fixed
number of times to let the sampling point approach the surface in the scene
and acquire depth prediction. We then use MLP., to interpret the aggregated
feature queried at the final sampling point into color and uncertainty information,
as detailed in the following subsection.

4.1.2 Uncertainty Estimation in Image-Based Neural

Rendering

Our uncertainty estimation quantifies the uncertainty inherited from the input
data, due to the varying quality of the information provided by the reference
images. Specifically, the predicted uncertainty reflects how well the scene content
at a target viewpoint is supported by the available reference images. For example,
we expect reference images with large viewpoint differences and self-occlusions
with respect to the novel viewpoint to lead to blurry rendering results and thus

high uncertainty. An illustration of input-dependent uncertainty estimated using
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our new approach is shown in Figure @

The core to model uncertainty in image-based neural rendering is to interpret
the RGB prediction as a probabilistic distribution. Given supervision using only
posed 2D images, we incorporate input-dependent uncertainty estimation in the
image-based neural rendering training process. Considering that the predicted
RGB value is normalized between [0, 1], we model each channel value of the
RGB prediction ¢; € [0, 1], where i € {1,2,3}, as an independent logistic normal
distribution described by:

1 1 (logit(c;) — i)
iy Miy O3) = — , 4.1
plei6.7) = = exp( “ (4.1)

(2

Ci
l—Ci
mean /i; and variance o7 predicted by our network. To train the network, following

where logit(c;) = In(+%-) ~ N(u;, 0?) follows a normal distribution, with the

Kendall et al. [77], we minimize the negative log-likelihood —log p (¢; = v | w4, 04),
given ground-truth RGB channel values y; € [0,1]. For a single pixel RGB
prediction, this leads to our photometric loss function formulated as:

(logit (yi) — i) _

o (4.2)

3
£=" 3 loa(o?) + log (4 (1~ ) +
i=1

For calculating the loss, the ground-truth RGB channel value is mapped into
logit space by logit(y;), before which we clamp y; at [0.001,0.999] to ensure
numerical stability. By training the rendering network with this loss function
using a large amount of image sets, our rendering network learns novel view

rendering in a probabilistic manner.

During deployment in unknown scenes, given a novel viewpoint and its refer-
2

ence images, our network predicts mean p; and variance o;, assuming each RGB
channel of a pixel is normally distributed in logit space. We sample 100 times
from the normal distribution and pass all samples through a sigmoid function
to acquire a valid RGB channel value. The mean and variance of the 100 chan-
nel values represent our final channel-wise RGB prediction ¢; € [0, 1], and the
corresponding uncertainty estimate u; € [0,0.25] of the respective pixel. Since
the sampling is conducted in the output space, this operation does not notably

increase the computational cost of the network’s forward pass.

4.1.3 Uncertainty-Guided Next Best View Planning

Our novel NBV planning approach exploits uncertainty estimation in image-based
neural rendering to guide efficient and informative measurement acquisition in
unknown scenes. Given a limited measurement budget, our uncertainty-guided
approach enables the system to prioritize viewpoints that potentially contribute

the most to improving scene understanding and representation quality.
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For view planning, we consider a hemispherical surface around the scene as
our action space. First, our planning procedure initializes the image collection
with image measurements at two random viewpoints. For planning the next
camera viewpoint, we uniformly sample a fixed number of candidate viewpoints
Ure{1,2,...,k} Within a constrained angular changes around the current camera view-
point. For each candidate viewpoint, we retrieve up to N closest reference im-
ages from our current image collection based on pose proximity. Given the novel
viewpoint and corresponding reference images, our pretrained network renders
per-pixel uncertainty estimate U,, € [0, O.25]HTXWTX3 following the approach in-
troduced in Section , where H, and W, denote the desired rendering resolu-
tion. In this setup, we propose a simple yet effective utility function ¢ defined as

the average uncertainty values rendered at a candidate viewpoint:

1

V(ve) = H, x W, 3

sum(U,, ), (4.3)

where sum is the summation operation over the entire uncertainty map. We then
select the next best viewpoint v* with the highest utility value for taking a new

measurement and add it to our image collection:

v* = argmax ¥ (vy). (4.4)
Vg

A high uncertainty score indicates that the candidate viewpoint cannot be
well-rendered by our network given the current image collection, due to under-
sampling around the viewpoint, i.e., the closest reference images are far away, or
the scene is generally complex when observed from the viewpoint. Therefore, a
new measurement at the most uncertain viewpoint potentially yields the highest
information value for scene representation using our image-based neural rendering
network. We iterate this planning procedure until a given measurement budget
is exhausted. Note that our approach is agnostic to sampling strategies and can
be easily adapted to other task-specific constraints, viewpoint priors, or robotic

kinematics, depending on the application scenarios.

4.2 Experimental Evaluation

Our experimental results support our three claims: (i) we show that our un-
certainty estimation in image-based neural rendering is informative to rendering
quality and generalizes to new scenes; (ii) we show that our uncertainty-guided
NBV planning strategy collects informative image measurements using a pub-
licly available real-world dataset and in a simulated environment. To measure
the quality of collected images, we evaluate their influence on image-based neural

rendering performance at test viewpoints; and (iii) we show the benefit of using
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Scene No. 8 21 30 31 34 38 40 41 45 25 63 82 103 110 114
Entropy  0.16 0.52 0.37 0.29 0.21 0.60 0.39 0.52 0.17 047 0.53 032 042 0.33 0.60

SRCC 1 Confidence 0.83 0.83 090 0.80 0.66 0.76 081 0.80 0.83 0.78 0.82 0.88 0.48 0.53 0.79
Ours 084 089 093 088 086 087 083 086 089 091 091 093 0.73 0.83 0.89

Entropy  0.50 0.48 0.34 042 055 048 0.50 0.51 0.51 0.41 0.38 034 047 036 045

AUSE | Confidence 0.25 0.26 0.14 0.18 0.21 0.28 0.27 0.22 0.19 023 0.14 0.16 0.23 0.20 0.16
Ours 0.17 0.18 0.05 0.11 0.12 0.19 0.14 013 0.11 0.15 008 0.08 0.18 0.12 0.11

Table 4.1: Evaluation of uncertainty estimation strategies across 15 test scenes from the DTU dataset. Best results in bold.
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our online collected images to train NeRFs offline. Experimental results indicate
that images collected using our planning approach lead to more accurate radiance

field reconstruction when compared against baselines.

4.2.1 Training Procedure

We train our network separately on two datasets for the corresponding planning
experiments. We first use real-world images with a resolution of 400 x 300 pixels
from the DTU dataset [68]. We follow the data split proposed by PixelNeRF [207]
with 88 training scenes and 15 test scenes, in which no shared or similar scenes
exist. For each scene, 49 images are collected following a fixed path pattern on
a section of a hemispherical surface. We also record our own synthetic dataset,
considering 50 ShapeNet [[18] models from 4 representative categories: car, motor-
cycle, camera, and ship. For each model, we record 100 images with a resolution
of 200 x 200 pixels from viewpoints uniformly distributed on the hemispherical
action space covering the scene.

We use the Adam optimizer with a learning rate of 10~° and exponential decay
of 0.999. For the long short-term memory module, the iteration number during
a forward pass is set to 16. The network is implemented in PyTorch and trained
with a single NVIDIA RTX A5000 GPU for around 2 days until convergence.
Rendering a novel view with the same resolution as the two dataset images takes
0.6s and 0.3s, respectively, which is 60 times faster than PixelNeRF [207]. For
both training processes, we randomly select 3, 4, or 5 reference images for novel
view rendering in the scene. Our network design is agnostic to the number of input
reference images; however, we limit the number of reference images to N = 5 to

restrict the memory consumption during training.

4.2.2 FEvaluation of Uncertainty Estimation

Our first experiment is designed to show that our uncertainty estimation strongly
correlates with actual rendering error in image-based neural rendering in unknown
scenes. This evaluation is crucial for validating uncertainty as a reliable proxy for
guiding active perception. To evaluate the quality of uncertainty prediction, we
employ two complementary evaluation metrics. First, we use Spearman’s rank
correlation coefficient (SRCC) [162] to assess the monotonic relationship between
the averaged uncertainty estimates and the rendering errors over a test view. A
high SRCC indicates that the uncertainty estimates are informative in ranking
the viewpoints by their expected rendering quality. As SRCC only captures
the global informativeness of averaged uncertainty prediction, the quality with
respect to the structural similarity between the per-pixel uncertainty estimate

and error is not considered. To evaluate the structural similarity, we report the
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area under sparsification error (AUSE) curve [63]. This metric quantifies the
pixel-wise agreement between uncertainty and error by progressively removing
the most uncertain pixels and observing the impact on average rendering error.
A lower AUSE value indicates a stronger correspondence between uncertain and
erroneous pixels, implying that the uncertainty and error maps are spatially well-
aligned with each other.

For every test scene in the DTU dataset, we generate 100 randomized test
sets. Each test set consists of four images randomly selected from the scene, from
which we use three as reference images and the remaining one as the test view.
For each test view, we compute the mean square error between the rendered and
ground-truth image, as well as the average predicted uncertainty across all pixels.
We then calculate the SRCC values based on the 100 pairs of average uncertainty
and mean square error values obtained from these test sets. SRCC values above
0.8 empirically indicate strong monotonicity, suggesting that higher predicted
uncertainty consistently corresponds to higher rendering error. In addition to
SRCC, we also report the average AUSE across the 100 test views for each scene
to assess the structural fidelity of the uncertainty estimates.

We compare our approach against two alternative uncertainty estimation
methods that can be incorporated into image-based neural rendering pipelines.
Lee et al. [89] propose calculating the entropy of the density distribution of the
samples along each ray as uncertainty quantification in NeRFs. We reimplement
this entropy calculation in PixelNeRF, which we denote Entropy in the experi-
ments. Rosu et al. [145] propose learning to predict RGB rendering confidence in
image-based neural rendering by defining the loss as a linear combination of the
predicted and the ground-truth images. Similar to our approach, this approach
learns to assign high confidence values to pixels that are well-supported by the
reference images in the rendering process, while low confidence values otherwise.
As their network can only handle a fixed number of reference images with small
viewpoint changes, we adapt it by replacing our loss function Equation ()
with their confidence loss and train the network under the same conditions as
introduced in Section . We denote this method as Confidence.

Table El! summarizes the results of uncertainty evaluation. Our uncertainty
prediction is more informative and better aligned with rendering error compared
to the other two methods. The poor performance of the Entropy approach is
likely due to the fact that the entropy of the density distribution mainly cap-
tures uncertainty over scene geometry, while ignoring the uncertainty in RGB
modeling. As proven in prior work [18(0], neural rendering systems can often
reconstruct plausible color information even in the presence of inaccurate depth
estimates. Consequently, naively incorporating Entropy as uncertainty estima-

tion in image-based neural rendering fails to provide useful information about
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rendering quality. The superior performance of our approach compared to Con-
fidence indicates that our probabilistic interpretation of RGB prediction leads to
more consistent uncertainty estimates. We exemplify a qualitative illustration of
our uncertainty prediction results in Figure §.4.

4.2.3 Comparison of Next Best View Planning Strategies

We show that our uncertainty-guided NBV planning collects the most informative
images to better represent an unknown scene. For evaluating planning perfor-
mance, we use collected images and our image-based neural rendering network to
render test views. The rendering quality is measured by the peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) [107]. Note that, since the
image-based neural rendering network is fixed for test view rendering in all ex-
periments, performance differences arise purely as the consequence of different
NBYV planning strategies. We compare our uncertainty-guided approach against
two non-adaptive heuristic baselines:

e Qurs: selects the most uncertain candidate viewpoint via our uncertainty

prediction as illustrated in Figure @;

e Max. View Distance: selects the candidate viewpoint that maximizes the
viewpoint distance with respect to all previously visited viewpoints, reduc-

ing the redundant information in the image collection;

o Random: selects a candidate viewpoint uniformly at random.

We conduct experiments on the DTU dataset and in our simulator with cor-
responding pretrained networks, respectively. For all planning experiments, we
initialize the image collection with two images collected from randomly selected
viewpoints and use different planning approaches to take the next image mea-
surements until a given maximum of measurements is reached.

For experiments on the DTU dataset, we set the measurement budget to 9
images, including the 2 images for initializing the image collection. As the DTU
dataset provides a limited number of views per scene, we treat all unselected
viewpoints as candidates. We apply three different planning strategies to select
the next viewpoint from the pool of candidates and add the corresponding view
to our image collection. After each viewpoint selection step, we use the current
image collection to render at all viewpoints for performance evaluation. We cal-
culate the average PSNR and SSIM with standard deviations. We repeat the
experiment 10 times for all 15 test scenes and report the results in Figure @
As shown, NBV planning guided by our uncertainty estimation selects the most
informative candidate viewpoint in each step, reflected by better image-based

neural rendering quality.
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Figure 4.5: Comparison of NBV planners on the DTU dataset. For each test scene,
we use our image-based neural rendering network and collected images to render at
unselected viewpoints. To evaluate planning performance, we report the average PSNR
and SSIM with standard deviations over all test scenes and runs. Note that the large
standard deviations are due to the varying rendering difficulty of each scene. Our
uncertainty-guided approach finds informative images in the scene, improving scene

representations via image-based neural rendering.

To further demonstrate the advantages of our NBV planning approach in a
more realistic robotic application scenario, we show the planning experiment in a
simulation environment with a continuous action space. We import two different
ShapeNet 3D models into the simulator. First, we consider a car model, which
belongs to the training category but is not seen during training. Second, to show
the generalization ability of our approach, we test our planning approach on an
indoor model consisting of a sofa and table. Note that the sofa and table are not
in our training data categories. We configure our action space as a hemispherical
surface covering the scene and set the measurement budget to 20 images including
2 initialization images. At each planning step, we uniformly sample 50 candidate
viewpoints within the interval of maximum 60° angular change with respect to the
current camera viewpoint. The three planners select the next viewpoint among
the sampled candidates. For our approach, we predict per-pixel uncertainty at
60 x 60 pixel resolution for each candidate viewpoint using a maximum of 5 closest
reference images. One planning step takes 1.5s in this setting. To evaluate the

quality of collected images during online missions, we fix 100 random test views of
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the scene. After every 2 measurements, we use our network to render all test views
given a maximum of 5 closest reference images from the current image collection
and report average PSNR and SSIM with standard deviations to evaluate implicit
scene reconstruction quality. We repeat each planning experiment 10 times on
the two models, respectively. Figure @ summarizes the planning results in the
simulator experiments. Our findings confirm that images collected using our
uncertainty-guided approach lead to better image-based neural rendering quality
in both scenes. Non-adaptive heuristic approaches cannot efficiently utilize the
measurement, budget, thus limiting their view planning performance. In contrast,
our uncertainty-guided approach collects informative images in a targeted way,

resulting in higher test view rendering quality.

4.2.4 Measurement Acquisition for Offline Modeling

In this experiment, we further show that the images collected by our approach
improve NeRFs training using limited measurements. Note that, different from
uncertainty-guided NBV planning based on NeRFs [89,[124,[139,177], our uncer-
tainty estimation generalizes to unknown scenes; thus, the measurement acquisi-
tion process and NeRF training can be decoupled in our approach. This avoids
computationally expensive network retraining during online missions.

After online NBV planning experiments in our simulator, described in Sec-
tion , we use Instant-NGP [110] to train NeRFs using images collected by the
three planning approaches, respectively, under the same training conditions. To
evaluate the training results, we render 100 test views using the trained NeRFs.
We report the rendering metrics averaged over all experiment runs in Table @
and show examples of rendering results at complex views from the scene in Fig-
ure @ Both quantitative and qualitative results verify that our planning strat-
egy for collecting informative images boosts NeRF’s performance with limited
training data. This indicates the benefits of using our approach to efficiently ex-
plore an unknown scene and collect informative images online. The 3D modeling
of the scene can be done by training NeRFs offline, after a robotic mission, when

computational resources are less constrained.

4.3 Related Work

Our approach bridges the gap between active perception and image-based neu-
ral rendering for efficient measurement acquisition in unknown scenes. In this
section, we review related work in active perception for robot mapping with a
focus on the NBV planning. We discuss current developments in implicit neural

representations and the uncertainty estimation in these map representations.
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Car Indoor

Max. View Distance 27.37 £0.65 30.02 &+ 0.55

PSNR 7t Random 25.73 4+ 0.83 28.46 +0.92
Ours 28.35 +0.53 30.46 -0.24

Max. View Distance 0.925 +0.004 0.937 & 0.003

SSIM 1 Random 0.908 £ 0.012 0.920 £ 0.007
Ours 0.934 +0.004 0.941 £ 0.003

Table 4.2: NeRF training results using images collected from our planning experiments
in the simulator. Best results in bold.

4.3.1 Next Best View Planning

View planning in active perception for robot mapping is an area of active re-
search [4]. In initially unknown scenes, a common approach is to iteratively select
the NBV from a set of candidate viewpoints using a utility function capturing
their expected utility based on the current map state.

Isler et al. [64] build a probabilistic volumetric map and select the NBV by
calculating the utility composed of visibility and the likelihood of seeing new parts
of an object from a candidate viewpoint. Similarly, Zaenker et al. [208] main-
tain a voxel map enriched with information of regions of interest. To balance
detailed inspection of detected regions of interest with unknown space explo-
ration, they generate candidate viewpoints through targeted sampling around
regions of interest in the current map and frontier-based sampling for explo-
ration. To avoid short-sighted decisions, Bircher et al. [11] find the NBV in a
receding-horizon fashion by generating a random tree of candidate viewpoints,
and selecting the branch maximizing the exploration of the amount of unmapped
space in a volumetric map. Instead of relying on volumetric map representations,
Zeng et al. [210] propose a point cloud-based deep neural network to directly
predict the utility of candidate viewpoints from the current raw point cloud of
the scene. Song et al. [161] evaluate the completeness of reconstructed surfaces

and extract low-confidence surfaces to guide NBV planning.

All these approaches require explicit, discretized 3D map representations to
maintain current information about the scene, which limits their scalability and
representation ability. In contrast, our approach utilizes a compact implicit neu-
ral representation, conditioned solely on 2D image inputs, for NBV planning to

acquire informative measurements.
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4.3.2 Implicit Neural Representations

Implicit neural representations parameterize a continuous differentiable signal
with a neural network [18(0]. For example, NeRFs [107] learn a density and
radiance field supervised only by 2D images. To render a novel view, NeRFs
sample points densely along a camera ray, then predict radiance and density
from the position and view direction of each point. The final RGB and depth
estimate of the ray is calculated by differentiable volume rendering. As the scene
information is encoded in the network parameters, NeRFs overfit to a single scene
and require significant training time.

Instead of memorizing a specific scene, image-based neural rendering, e.g.,
PixelNeRF [207], leverages an encoder to map nearby reference images into la-
tent feature space. After aggregating features from reference images, an MLP
is trained to interpret the aggregated features into texture and geometry infor-
mation at a novel viewpoint. By training across different scenes, image-based
approaches generalize well to new scenes without test-time optimization. We ex-
ploit the generalization ability of image-based neural rendering to achieve online

NBV planning for efficient measurement acquisition in an unknown scene.

4.3.3 Uncertainty Estimation in Neural Representations

Estimating uncertainty in learning-based computer vision tasks is a long-standing
problem [77]. Several recent works address uncertainty quantification in NeRFs.
S-NeRF [154] proposes learning a probability distribution over all possible radi-
ance fields modeling the scene. To this end, it treats radiance and density as
stochastic variables and uses variational inference to approximate their posterior
distribution after training. W-NeRF [102] directly learns to predict RGB vari-
ance as an uncertainty measure in rendering transient objects in the scene. For
image-based neural rendering, Rosu et al. [145] introduce a loss function to learn
confidence estimation in the rendered images. However, they only consider a
fixed number of reference images with small viewpoint changes as inputs, which
limits the applicability of their approach in robotics. Smith et al. [158] lever-
age occupancy predictions in image-based neural rendering to estimate geometric
uncertainty for active perception. Their approach mainly handles single object
shape reconstruction and requires known foreground masks.

Emerging works use uncertainty-guided NBV selection to address NeRF train-
ing with a constrained measurement budget. Pan et al. [124] and Ran et al. [139]
model the emitted radiance as a Gaussian distribution and learn to predict the
variance by minimizing negative log-likelihood during training. These works add
the candidate viewpoint with the highest information gain, i.e., the highest un-

certainty reduction, to the existing training data. Instead of learning uncertainty
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in parallel to radiance and density, Lee et al. [89] and Zhan et al. [213] propose
calculating the entropy of the density prediction along the ray as an uncertainty
measure with respect to the scene geometry. The entropy is used to guide mea-
surement acquisition toward less precise parts. Stnderhauf et al. [177] exploit the
recent development of fast rendering of Instant-NGP [110] to train an ensemble
of NeRFs for a single scene, and measure uncertainty using the variance of the
ensemble’s prediction, which is utilized for NBV selection.

The above-mentioned approaches address uncertainty-guided NBV selection
based on NeRFs. Although these approaches show NeRF model refinement with
limited input data, deploying such methods in robotic applications is not straight-
forward. As the scene information is entirely encoded in the network weights,
after each planning step, the uncertainty estimation must be reoptimized to ac-
count for newly added measurements, which is time- and compute-consuming. In
contrast, our approach incorporates uncertainty estimation in image-based neural
rendering to actively select informative image measurements, which are incremen-
tally added to our image collection to better condition the image-based neural
rendering. This way, we explore an unknown scene without the need to maintain

an explicit map representation or retrain an implicit neural representation.

4.4 Conclusion

In this chapter, we present a novel NBV planning approach using image-based
neural rendering for online scene modeling in unknown environments. Central to
our approach is a new method for estimating uncertainty in image-based neural
rendering, which identifies viewpoints with high predictive uncertainty based on
the current set of collected images. Leveraging this powerful tool, we exploit the
predicted uncertainty to guide our measurement acquisition.

We demonstrate that our uncertainty estimation is informative to the ren-
dering quality of novel views and generalizes to new scenes. This enables our
uncertainty-guided NBV planning to efficiently collect informative images in un-
known scenes, which leads to better scene representations via image-based neural
rendering. Such a setup offers a significant advantage over previous approaches
that require time-consuming retraining of implicit neural representations. Our
planning experiments, conducted on both real-world datasets and in simulation,
prove that our uncertainty-guided NBV planning scheme effectively finds infor-
mative viewpoints in an unknown scene. Measurement acquisition using our
approach leads to more accurate scene representations via online image-based
neural rendering and offline implicit reconstruction using NeRFs.

One limitation of our current approach is the assumption of a collision-free

hemispherical action space, which simplifies view planning. To extend the appli-
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cability of active perception for robot mapping to more complex environments, we
investigate view planning in unconstrained action spaces, as discussed in Chap-
ter B Additionally, our current approach does not differentiate between seman-
tically relevant and irrelevant regions. Integrating semantics with uncertainty
estimation in NeRFs, and enabling the robot to actively focus on more task-
relevant areas in unknown environments, is particularly important for targeted

inspection tasks. We further address this problem in the following chapter.
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Chapter 5

Semantic-Targeted Active
Implicit Reconstruction

N many applications, including search and rescue, robot manipulation, and
precision agriculture, the ability to extract accurate information about the
geometry and texture of objects of interest, i.e., objects with specific seman-
tic meanings, is crucial for object-level understanding and downstream task

execution. A key challenge in such scenarios is planning a viewpoint sequence to
get the most informative measurements targeting the objects of interest, given
a limited measurement budget, e.g., operation time or total number of measure-
ments to be integrated. While prior work in active perception for robot mapping
has demonstrated the ability to generate high-fidelity map representations, it of-
ten lacks semantic awareness in its pipelines, which is important for achieving
semantic-targeted active reconstruction.

In this chapter, we address the problem of actively reconstructing objects
of one or multiple interesting semantic classes in an initially unknown 3D en-
vironment using posed RGB-D camera measurements. Given a limited mea-
surement budget, our goal is to obtain accurate 3D representations of the ob-
jects of interest by positioning an onboard camera online, i.e., during a mis-
sion, as shown in Figure . Most existing approaches for active reconstruc-
tion [3,64,89,113,122,[124,177,203,213] aim at reconstructing the whole scene,
without distinguishing between the observed objects, such as the approach in-
troduced in Chapter @ Since they do not incorporate semantics within their
planning pipelines, these methods cannot directly use semantic information to
target specific objects of interest.

Recently, implicit neural representations [106,128], such as NeRFs [107], are
attracting increasing attention as a compact form for dense scene representation.
Follow-up works of NeRFs [20,110,118,[173] also address the training inefficiency
of implicit neural representations by introducing hybrid structures, which learn
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Figure 5.1: Our novel active implicit reconstruction approach targets an object of
interest (car) in an unknown environment. We incorporate semantics and uncertainty
estimation into our pipeline, enabling view planning to acquire information about the
object in a targeted way. The red bounding box identifies the target object. The green
line shows the planned path, with pyramids indicating view frustums. With integrated
semantics in our implicit neural representation, we can extract mesh and render novel

views only for the object of interest, as exemplified in the bottom row.

scene attributes using coarse feature voxel grids combined with shallow MLPs,
as mentioned in Chapter . This efficient structure enables deploying implicit
neural representations in online robotic tasks [,,], while preserving their
continuous representation capabilities. In our approach, we also exploit hybrid
implicit neural representations as the map representation for semantic-targeted

active implicit reconstruction.
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Active implicit reconstruction is an advancing research field [53,60, 89,123,
124, 177,203, 213].  State-of-the-art works adopt NBV planning strategies to
find the most informative measurements for training implicit neural representa-
tions [b3,89,[124,[177,203,213]. While showing promising results, these methods
only focus on reconstructing global scenes uniformly. They do not incorporate
semantic information, limiting their ability to identify and reconstruct objects
of interest in an adaptive and targeted way. In the context of semantics, re-
cent works [8,[156,[189,217] propose integrating 2D semantic labels into implicit
neural representations to enhance semantic understanding capabilities. These
approaches show accurate and consistent semantic rendering at novel viewpoints
via multi-view learning. However, they have not been used for active reconstruc-
tion applications. To bridge the gap between active reconstruction and semantic
implicit neural representations, we propose a new approach that enables guiding
view planning toward objects of interest in an unknown environment.

The main contribution in this chapter is a novel method called STAIR for
semantic-targeted active implicit reconstruction. Given posed RGB-D measure-
ments and corresponding 2D semantic labels, our approach utilizes implicit neural
representations to learn occupancy, color, and semantic fields associated with the
scene. A key component of our approach is a new utility function for NBV plan-
ning using semantic implicit neural representations, which enables trading off
between exploring the unknown environment and exploiting information about
objects of interest as they are discovered.

We make the following three claims:

1. Our STAIR pipeline shows better performance in terms of reconstructed
mesh and RGB rendering quality compared to pure exploration and non-
adaptive heuristic baselines that do not consider semantics for view plan-
ning.

2. Our method outperforms a state-of-the-art semantic-targeted active recon-
struction system using an explicit map representation, both in mapping

and planning aspects.

3. Our utility function for planning balances between exploration and exploita-

tion to handle challenging scenes containing many occlusions.

5.1 QOwur Approach to Semantic-Targeted

Active Reconstruction

An overview of our STAIR pipeline is shown in Figure @ Our goal is to ac-

tively reconstruct objects of interest in an initially unknown environment using a
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Figure 5.2: Overview of our proposed approach, STAIR. We incrementally train our semantic implicit neural representation using posed

RGB-D measurements and their 2D semantic labels. After training, we render semantics and uncertainty at sampled candidate viewpoints.

For planning, our utility function considers both overall view uncertainty and the uncertainty from objects of interest. We select the candidate

viewpoint with the highest utility value as our next measurement location. We iterate between map representation training and view planning

until a maximum allowable number of measurements is reached.
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robot equipped with an RGB-D camera. We utilize an implicit neural represen-
tation consisting of coarse feature voxel grids and MLPs as our map representa-
tion. Given collected posed RGB-D measurements and corresponding semantic
labels, we incrementally train our map representation to model the occupancy
probability, color, and semantic information in a continuous 3D space. To guide
semantic-targeted view planning, we sample candidate viewpoints in a predefined
action space and evaluate the utility of each viewpoint based on uncertainty es-
timates from the occupancy distribution and semantic rendering. The candidate
viewpoint with the highest utility value is selected as the location for the next
measurement. We iterate between training and planning until a maximum allow-

able number of measurements is reached.

5.1.1 Semantic Implicit Neural Representation

Similar to DVGO [173], our map representation consists of coarse feature voxel
grids and MLPs to balance representation capabilities and training efficiency.
We employ voxel grids to preserve local scene features, while the MLPs interpret
these features into desired modalities. In our approach, we maintain features
for corresponding modalities of the scene: spatial occupancy (occ), RGB color
(rgb), and semantics (sem), in three voxel grids Voee, Vigh, and Vgey, respectively.
For any point in the space, we can query its modality feature by a trilinear

interpolation operation interp in the corresponding voxel grid expressed as:
f,, = interp(x, V,,) : (R? x RTmxHxWxLy _ RTm (5.1)

where m € {occ,rgh,sem}, f,, € RT is the queried modality feature vector at
position x € R3, V,, is the feature voxel grid of corresponding modality with T},
feature channels, and H, W, L are the spatial resolution dimensions.

The queried modality features at point x are interpreted by modality-specific
MLPs into per-point occupancy probability o(x) = MLPye.(y(x), foec) € [0, 1],
RGB color ¢(x) = MLP,4,(v(x), fi) € [0, 1], and semantic probability vector
s(x) = MLPyen(7(X), fiem) € [0, 1], with P as the number of total semantic
classes. We use a positional encoding function [107] v : R® — R?!' to map
position x into a higher-dimensional space. Note that we assume Lambertian

surfaces and do not consider view-dependent color emission in this approach.

5.1.2 Training of Map Representation

Our map representation is updated online during a mission. Given a set of posed
RGB-D measurements obtained by the robot camera and their semantic labels,
we jointly train our feature voxel grids and MLPs using differentiable volume

rendering [107]. To render color, depth, and semantics for a ray r cast from a
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measurement viewpoint, we uniformly sample N points X;c(1 2.y} along the ray
with d(x;) as the depth value from the sampling point x; to its viewpoint origin.
Following UNISURF [118], occupancy-based volume rendering for predicted color
C(r), depth D(r), and semantic probability S(r) observed from ray r is given by:

C(r) = Z w(x;) e(x;) (5.2)
D(r) = Zw(xi) d(x;), (5.3)

S(r) = Z w(x;) s(x;) (5.4)

with:
w(x) =o(x) T(x;), T(x)=]](1—-0(x)), (5.5)
j<i
where w(x;) is the weight of modality value at x; and T'(x;) is accumulated trans-
mittance, indicating the probability of ray reaching x; without being blocked by
built surfaces.
We supervise the training using the loss terms:

Lo = 7 2 || - 6, (5)
Laeptn = % 3 HD(r) - D(r)H1 , (5.7)
reR

1 .
Lam = 177 ngE (S(r), S(r)) , (5.8)

where C(r), D(r), and S(r) are the recorded color, depth, and semantic label
respectively of ray r in the measurements; CE refers to the cross entropy loss [97],

and R denotes the set of rays in the training batch. The total training loss is:
L = MLrgh + A2Lepth + A3Lsem (5.9)

with the factors A\, Ao, A3 balancing the weight of each term in the loss function.
Note that, although we focus on objects of interest, the reconstruction of other
regions is necessary for view planning under occlusions present in the scene.

We incrementally train our map representation for a constant number of iter-
ations when a new measurement arrives. To avoid overfitting to the latest mea-
surement, we collect our training batch R for each training iteration from both
previous measurements and the latest measurement. We assign the probability
of sampling each training ray example as being inversely proportional to its total
sampled time to ensure uniform sampling across the whole training dataset. After
training, our map representation is used for semantic-targeted view planning, as
introduced in the next subsection.
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5.1.3 Semantic-Targeted View Planning

A key aspect in our approach is a utility function that adaptively guides view
planning by trading off between exploration and exploitation. We first introduce
our sampling strategy for generating candidate viewpoints and then elaborate on
how we calculate utility values for viewpoint selection.

To generate candidate viewpoints, we adopt a two-stage sampling strategy.
We first uniformly sample Ny,; candidate viewpoints on the object-centric hemi-
spherical surface action space. We evaluate the individual utility of each view-
point and select the viewpoints of the top K utility values. We then resample N,
new candidate viewpoints around each of these viewpoints to obtain a fine-grained
utility evaluation. Finally, the candidate viewpoint with the highest utility value
is selected as the next measurement location.

Our utility quantification considers uncertainty estimates and semantic ren-
dering. Uncertainty estimation indicates parts of the scene that are unexplored
or still not well-reconstructed. At the same time, semantic rendering provides
masks to distinguish objects of interest from other uninteresting regions, allow-
ing for view planning in a targeted way. We derive the uncertainty estimates
from our trained occupancy field. For a candidate viewpoint vy, we sample Ny
points on each of Ny, rays cast from the viewpoint. We define the uncertainty
at each sampling point x; as its entropy:

Hpi(xi) = —o(x;) In(o(x;)) — o(x;) In(o(x;)) , (5.10)

where 0 = 1—o0 is the complementary occupancy probability. Note that we do not
consider the entropy of sampling points behind the built object surface. Thus,
the total entropy along a ray r is:

Nopt
Hyay(r) = T(xi) Hy(xi) (5.11)
=1

where T is the accumulated transmittance term introduced in Equation (@)
The sum of uncertainty rendered at viewpoint vy, is:

Nray
Uer(vk) = Z Hray(ri) s (512)
=1

which we define as our exploration (er) score. This term does not distinguish
between the uncertainty values associated with different objects. To account for
objects of interest based on their semantic meaning, we apply a mask to the

uncertainty according to whether or not the objects are relevant for semantic-
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Figure 5.3: Four different scenes used in our main planning experiments. Our interest-
ing semantic classes are: car for Scene 1, camera for Scene 2, sofa for Scene 3, car and
airplane for Scene 4.

targeted active planning:

N, ray

Uei () = Z Hyay (1:)6(r;) (5.13)

1 if S(r;)) €
5(z,) = if argmax (S(r;)) € T | (5.14)
0 otherwise

where S(r;) is the predicted semantic probability vector obtained using Equa-
tion (@) and 7 C {1,2,..., P} is a set of identifiers for the interesting semantic
classes. We denote the sum of pixel-wise uncertainty from the objects of interest
as our exploitation (et) score, which guides view planning toward target objects.

To trade off between exploring the unknown environment and exploiting in-
formation about objects of interest as they are discovered, we compute the utility
value of a candidate viewpoint as the sum of exploitation and weighted explo-

ration score, with € as the weight factor:

¢(Uk) = Uet(Uk) + EUer(Uk) . (5.15)

5.2 Experimental Evaluation

Our experimental results support our three claims: (i) we show the superior per-
formance of our approach in terms of rendering and mesh quality by considering
semantic information for view planning; (ii) we show that our approach based
on implicit neural representation outperforms approaches using explicit map rep-
resentations for semantic-targeted reconstruction tasks; and (iii) we validate the
effectiveness of our utility formulation that balances between exploration and

exploitation in view planning, especially in challenging scenes with occlusions.
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5.2.1 Experimental Setup

We spawn ShapeNet [[18] models of different semantic classes with random poses
to build test scenes. We consider 7 semantic classes in our simulator: car, airplane,
sofa, chair, table, camera, and background. Four test scenes used in the planning
experiments are shown in Figure @ All scenes consider a bounding box size of
3mx3mx3m. We set our camera action space as an object-centric hemispherical
surface with 2m radius and camera viewpoints targeting the scene origin. All
RGB-D measurements are captured at 400 x 400 pixel resolution. To acquire
the semantic labels, pretrained semantic segmentation models can be applied;
however, in this work, we use ground-truth semantics from the simulator to focus
on evaluating planning performance.

We use a grid size of 128 x 128 x 128 for all three feature voxel grids. We
set the feature channels as Tooc = 3, Tigp = 6, and Ty, = 7. The MLP,g,
comprises two hidden layers with 128 channels, while MLP,.. consists of two
hidden layers with 32 channels. We simply use an identity mapping as MLPg.,
and no positional encoding for modeling semantics since the semantic field is
smooth and exists in a low-frequency domain. We set Ay = 1.0, A3 = 0.1, and
A3 = 1.0 in Equation (@) For each training iteration, we use a batch size of 8000
with 4000 training examples from all previous measurements and 4000 training
examples from the current measurement. We train our map representation for
200 steps before conducting view planning, which takes approximately 5s and
2 GB video memory with our PyTorch implementation running on an NVIDIA
RTX A5000 GPU.

For candidate viewpoint sampling strategy introduced in Section , we set
Nuni = 100, K = 10, and N,, = 10, giving a total of 200 viewpoints. To render
semantic and uncertainty maps at a candidate viewpoint, we use N,y = 80 x 80
and Np; = 200. One planning step takes around 2s under this sampling and
rendering configuration. The exploration weight ¢ in Equation () is 0.2. We
select car in Scene 1, camera in Scene 2, sofa in Scene 3, car and airplane in
Scene 4 as the interesting classes for semantic-targeted active reconstruction. The
maximum allowable number of planning steps is set to 10 for all experiments.

We evaluate the reconstruction results with test view rendering performance
and mesh quality. We report the PSNR [107] as the rendering metric and use
the Fl-score to measure overall mesh quality. Since our goal is to reconstruct
objects of interest, we only consider these objects in the metrics calculations.
Hence, when rendering at test viewpoints or extracting meshes from our trained
map representation, we only keep objects of interest by setting the occupancy
probability of points with uninteresting semantic predictions to zero.

For calculating PSNR, we render color images at 100 uniformly distributed

test viewpoints and compare the predictions with ground-truth images. We aver-
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age the PSNR over all test views as the final rendering metric. For mesh quality
evaluation, we first extract the mesh of objects of interest from our trained occu-
pancy field using multiresolution isosurface extraction [106] with a threshold of
0.5. We uniformly sample 10° points on both the extracted mesh and the ground-
truth mesh. The precision is calculated as the fraction of points on the extracted
mesh that are closer than a threshold distance to points on the ground-truth
mesh. Similarly, the completeness is the fraction of points on the ground-truth
mesh that match points on the extracted mesh within a threshold distance. We
use 1cm as the threshold value for precision and completeness calculations. Fi-
nally, the F1-score is the harmonic mean of precision and completeness.

5.2.2 Comparison of Active Implicit Reconstruction

Our first experiment shows that our semantic-targeted view planning method
achieves better reconstruction quality in terms of rendering performance and mesh
quality compared to pure exploration and non-adaptive heuristic baselines that
do not consider semantics. The map representations and training configurations
are the same for all methods; hence, the reconstruction quality differs purely as
the consequence of the collected measurements using different planning strategies.

We consider the following planning methods:

o Qurs: selects the viewpoint with the highest utility value defined in Equa-
tion (p.15);

o Faxploration: selects the viewpoint with the highest exploration score as cal-
culated by Equation (), following the strategy proposed by Lee et al. [89];

o Fized Pattern: follows the spiral pattern viewpoint sequence to cover the

hemispherical action space;

e Max. View Distance: selects the viewpoint that maximizes the viewpoint
distance to all previously visited viewpoints;

o Uniform: selects a random viewpoint from uniformly sampled candidate
viewpoints in the action space.

For all experiment runs, we start with a measurement from the top viewpoint
and use different planning methods to select the next viewpoint to acquire a new
measurement, which, together with all previous measurements, is used to train our
map representation. We evaluate reconstruction performance after every planning
step. For each test scene and planning method, we run 5 trials and report the

average PSNR and F1-score with standard deviations along the planning steps.
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Step 2 Step 4 Step 10 Ground Truth
Scene 2: Camera

Step 4 Step 10 Ground Truth
Scene 4: Car and airplane

Figure 5.5: Qualitative results of our approach showing how novel view rendering (top)
and meshes (bottom) improve along planning steps during a mission. Our approach
collects informative measurements about objects of interest in a targeted way to achieve
high-quality reconstruction.

The experiment results are given in Figure @ We plot the mapping quality
over planning steps in terms of PSNR for rendering and F1-score for mesh evalu-
ation. NBV planning guided by our approach shows steeper-rising metric curves,
indicating more efficient reconstruction compared to baselines that do not con-
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sider semantic information. This verifies that our STAIR pipeline benefits from
integrating semantics in an implicit neural representation to achieve semantic-
targeted active reconstruction. Our approach has the lowest standard deviations
across all scenes, indicating its robust performance. In Figure @, we show two
examples of how novel view rendering and object meshes improve along planning
steps using our approach.

5.2.3 Comparison of Semantic-Targeted Explicit
Reconstruction

In this experiment, we compare our STAIR with a semantic-targeted active ex-
plicit reconstruction approach to show the advantages of using an implicit neural
representation for our task. Specifically, we compare against the approach of Za-
enker et al. [208], which we denote as STFE to indicate semantic-targeted planning
based on explicit map representations. STFE fuses RGB-D measurements and 2D
semantic labels into an explicit semantic occupancy grid map and biases planning
toward the objects of interest as they are built in the map by assigning higher
utility to unknown voxels close to objects of interest. For comparability, we use
the same grid size of 128 x 128 x 128 for their map.

To further investigate the sources of performance difference between our ap-
proach and STE, we cross-validate these two active reconstruction approaches
by combining measurements collected by each approach with the other mapping
method. After the online planning experiments, we fuse the measurements col-
lected by our approach into an explicit occupancy map used in the STE approach.
We denote this combination as Ours (Ezplicit). The result of this combination
can inform us whether the performance gain originates from our view planning
results. Similarly, we use the measurements collected by the STFE approach to
train our implicit neural representation, which we denote as STFE (Implicit). This
combination exposes how different map representations influence the reconstruc-
tion performance when the measurement inputs are held constant.

The results are shown in Figure @, where we only compare the Fl-score of
mesh reconstruction after each planning step, as the explicit map is incapable of
photorealistic rendering. Our approach performs better than the STE method.
The performance gain can be decomposed into two aspects. First, comparing
STE (Implicit) and STFE suggests that, given the same measurements, our im-
plicit neural representation improves reconstruction quality compared to explicit
occupancy mapping. This justifies the choice of using implicit neural represen-
tations in our active reconstruction approach. Second, as seen by comparing
Ours (Explicit) and STE, even when using explicit occupancy mapping, mea-

surements acquired using our planning approach lead to better reconstruction
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Figure 5.6: Comparison of our approach against the semantic-targeted active explicit reconstruction system STFE [208]. Dashed lines denote
variants cross-validating the measurements collected by one active reconstruction system with the mapping method of the other. The same
color indicates mapping using the same measurements. The results confirm that our STAIR pipeline achieves superior performance compared
to the explicit baseline. The performance gain originates from the implicit neural representation used in our approach and our utility function

for finding more informative measurements.
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STE Ours (Explicit)  STE (Implicit) Ours Ground Truth

Figure 5.7: Comparison of final mesh reconstructions. The meshes extracted from
explicit map representations are limited by the discrete representation, containing holes
and non-smooth surfaces. The implicit neural representation used in our approach
results in better mesh quality, due to its continuous representation capabilities.

quality. This indicates that our semantic-targeted view planning based on dense
semantic and uncertainty rendering enables finding more informative viewpoints
to reconstruct objects of interest. Figure @ visualizes the final extracted meshes
using the four methods. Meshes extracted from our implicit neural representation
show complete surfaces with more details compared to those from explicit maps.

5.2.4 Ablation Study

The final experiment justifies our design choice for the utility function introduced
in Section . We show that an exploration term is necessary for semantic-
targeted view planning in an unknown environment. For this purpose, we design
a challenging scene, as shown in Figure @, where two objects of interest (chairs)
are separated by other objects. We start from the top viewpoint, from which
only one chair is seen and the other one is occluded. We compare the planning
approach using the exploitation-only score in Equation (), i.e., e = 0.0, and
our proposed utility function in Equation () with ¢ values of 0.2, 0.5, and 0.8
to investigate the influence of varying the exploration term proportion.

Figure @ compares the reconstruction performance of both rendering and
mesh quality. Semantic-targeted view planning without exploration focuses only
on already detected objects of interest. As a result, this planning strategy does
not explore the unknown environment to find other potential objects of interest in
the scene, leading to inferior overall reconstruction performance. In contrast, our
approach trades off between exploring the unknown environment and exploiting
information about objects of interest as they are discovered. The results indicate
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Figure 5.8: Top row: Test scene seen from different perspectives. One object of inter-
est (red bounding box) can be easily detected; however, the second object of interest
(green bounding box) is severely occluded by other objects and can only be observed
from particular viewpoints. Bottom row: Semantic-targeted view planning using an
exploitation term alone (¢ = 0.0) cannot explore to find both objects of interest. In
contrast, our utility function balances between exploitation and exploration, leading to

better active reconstruction performance in this challenging situation.

that a small exploration term is sufficient to achieve such behavior, while up-
weighting exploration deteriorates semantic-targeted view planning performance.

5.3 Related Work

Our approach lies at the intersection of active reconstruction using semantics and
implicit neural representations. By integrating task-driven view planning with
learned implicit models that encode both geometry and semantics, we bridge
these two research areas. In this section, we provide an overview of related work

in both fields.
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5.3.1 Semantic-Targeted Active Explicit Reconstruction

Semantic understanding is crucial for many autonomous robotic tasks in unknown
environments. Recent advancements in deep learning-based semantic segmenta-
tion facilitate the seamless integration of semantic understanding onboard robotic
systems [62]. In the context of active reconstruction, several works propose inte-
grating semantics into explicit maps to enable semantic-targeted view planning.

Papatheodorou et al. [[127] employ a coarse occupancy voxel map to model
the background for exploring unknown environments. Upon detecting objects
belonging to predefined semantic classes of interest, they reconstruct these ob-
jects in detail using an adaptive-resolution octree-based signed distance function.
Burusa et al. [17] estimate the expected information gain based on the confi-
dence score of a voxel belonging to interesting semantic classes and use it for
view planning. To address occlusion challenges in active reconstruction, Lehn-
ert et al. [90] design a 3D camera array to obtain multiple measurements from
different perspectives. The objects of interest detected in each measurement are
used to calculate the gradient, indicating the most likely direction of movement to
better observe them. Similar to our problem setup, Zaenker et al. [208] propose a
semantic-targeted active explicit reconstruction system based on occupancy voxel
maps and apply it to reconstruct fruits in agricultural robotics applications. To
guide targeted NBV planning, they assign higher utility for candidate viewpoints
that observe more unknown voxels close to already detected objects of interest.

Our approach shares the same idea of using semantic information to conduct
view planning toward objects of interest. However, different from previous works
that rely on discrete explicit maps, we exploit recent advances in implicit neural
representations to improve the reconstruction quality.

5.3.2 Active Implicit Reconstruction

Implicit neural representations are a powerful tool for 3D reconstruction due to
their continuous representation capabilities. As discussed in Chapter , recent
work has explored these benefits in active reconstruction settings.

Pan et al. [124] model the radiance field as a Gaussian distribution and ac-
tively collect images by evaluating the reduction of uncertainty assuming new
inputs at candidate viewpoints. Exploiting fast rendering of Instant-NGP [110],
Stinderhauf et al. [177] train an ensemble of NeRF models for a single scene and
measure uncertainty as the variance of the ensemble’s prediction, which is used
to conduct NBV planning. Similar to our approach, Lee et al. [89] use entropy
of density distribution along rendering rays as the uncertainty measure to iden-
tify areas with low reconstruction quality. Leveraging the differentiability of the

implicit neural representations, Yan et al. [203] optimize viewpoint generation
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toward areas of high uncertainty. Following a different paradigm, Pan et al. [123]
utilize a prediction network to predict the number of viewpoints required to re-
construct a specific unknown object using NeRF, allowing for one-shot viewpoint

sequence generation without online replanning.

Our work follows these lines by using implicit neural representations for active
reconstruction. Unlike previous methods that uniformly reconstruct a scene or an
object, our approach integrates semantic understanding into an implicit neural

representation to achieve semantic-targeted active implicit reconstruction.

5.3.3 Semantics in Implicit Neural Representations

Recent works propose lifting 2D semantic information into 3D to generate a con-
sistent semantic field. These methods exploit the multi-view consistency during
implicit neural representations training. Zhi et al. [217] extend vanilla NeRF to
jointly predict the semantics of each sampling point along with color and density
values. Their results show multi-view consistent and smooth semantic rendering
at novel viewpoints, even given sparse or noisy 2D semantic labels as supervision
signals. Siddiqui et al. [156] and Bhalgat et al. [§] further incorporate instance
segmentation into implicit neural representations. Different from lifting 2D se-
mantics into 3D, Vora et al. [189] directly train a 3D network to convert a learned

density field into a semantic field, which generalizes across scenes.

In contrast to previous approaches for generating semantic implicit neural
representations, Kelly et al. [76] use semantic information to train NeRFs in a
targeted way. To reconstruct objects of interest in the scene at a higher quality,
they propose a denser sampling of training examples around these objects based
on semantic segmentation. DietNeRF [67] proposes a semantic consistency loss to
regularize rendering from arbitrary viewpoints, encouraging consistent high-level
semantics. This additional loss alleviates the degenerate performance commonly
observed in NeRF training with sparse measurements.

While semantics offer rich scene understanding capabilities in implicit neural
representations, they have not yet been applied to active implicit reconstruction
problems. We bridge this gap by introducing an approach for semantic-targeted
active reconstruction based on implicit neural representations. Our approach is
applicable to similar problems tackled by current methods using active explicit
reconstruction to target objects of interest in unknown environments [17,[127,208].
However, we exploit the advantages of underlying implicit neural representations

to further improve the reconstruction quality.
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5.4 Conclusion

This chapter presents STAIR, a novel approach for semantic-targeted active im-
plicit reconstruction in unknown environments. We integrate semantic under-
standing into implicit neural representations to guide view planning toward ob-
jects of interest. By jointly modeling semantic rendering and uncertainty es-
timation, STAIR actively selects informative viewpoints that prioritize regions
containing objects of interest, rather than treating all areas equally.

Our active planning experiments show that STAIR outperforms both standard
implicit reconstruction baselines that ignore semantics and a semantic-targeted
approach based on explicit map representations. These results support our mo-
tivation to combine implicit neural representations with semantic-targeted view
planning to enhance the reconstruction quality of target objects. Our ablation
study also highlights the importance of exploration behaviors in planning, partic-
ularly in complex and cluttered scenes, where occluded or partially visible target
objects may otherwise be overlooked.

Despite its effectiveness for semantic-targeted reconstruction, similar to Chap-
ter @, STAIR still requires computationally intensive dense sampling for volume
rendering. In the next chapter, we propose an active perception approach for
robot mapping to address the challenge of photorealistic reconstruction of un-

known environments using a more efficient learning-based map representation.
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Chapter 6

Active Scene Reconstruction
Using Gaussian Splatting

N this chapter, we focus on online active reconstruction of unknown scenes
under a limited budget, e.g., mission time, where the goal is to efficiently
obtain a photorealistic 3D representation by actively positioning the robot
with its camera online during a mission. Traditional active scene recon-
struction approaches mainly rely on conventional map representations such as
voxel grids, meshes, or point clouds [11, 80, 152, 160, 161, 210, 219]. However,
these methods often do not deliver high-fidelity reconstruction results due to
their sparse representations. Recent advances in implicit neural representations,
e.g., NeRFs [107], have attracted significant research interest for their accurate
dense scene reconstruction capabilities and low memory footprints. In the con-
text of active reconstruction, several emerging works [38,[124,139,203] incorporate
uncertainty estimation in NeRFs and exploit it to guide view planning. While
these approaches demonstrate promising results, the rather costly dense sampling
for volume rendering procedure during online incremental mapping poses limita-
tions for NeRF-based active scene reconstruction, as we have discussed in our
approaches previously introduced in Chapter @ and Chapter E
Dense reconstruction using Gaussian splatting (GS) [7§] offers a promising
alternative to NeRF-based approaches, addressing rendering inefficiencies while
preserving representation capabilities. GS explicitly models scene properties
through Gaussian primitives and utilizes efficient differentiable rasterization to
achieve novel view synthesis. Its fast map updates and explicit structure make
it well-suited for online incremental mapping. Building on these strengths, we
adopt GS for active scene reconstruction in this chapter.
While showing promising online incremental mapping results [[75,[104], incor-
porating GS into an active scene reconstruction pipeline presents significant chal-

lenges. First, active reconstruction often requires evaluating the reconstruction
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Mission Time Reconstruction Results

[T

View 1 (t = 10s) View 1 (t = 60s) View 2 (t = 60s)

Figure 6.1: Our approach actively reconstructs an unknown scene. We illustrate the reconstruction progress over mission time, displaying
planned camera viewpoints (green pyramids) and paths (red lines). We present examples of RGB and confidence images (redder color indicates
lower confidence) rendered at the same viewpoint at different mission times (magenta and cyan arrows) and at two distinct viewpoints at the
same mission time (cyan and blue arrows). By integrating confidence modeling into the Gaussian splatting pipeline, our approach enables
targeted view planning to build a high-fidelity GS map. The complete camera path and final reconstruction results, including RGB rendering
and surface mesh, are visualized on the right.
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quality to guide view planning. However, this is difficult without ground-truth
information at novel viewpoints. Second, the Gaussian primitives represent only
occupied space, making it hard to distinguish between unknown and free space,
which are important for exploration and path planning.

The key contribution of this chapter is addressing these challenges with our
GS-based active scene reconstruction approach, ActiveGS, as illustrated in Fig-
ure Ell To tackle the first challenge, we propose a simple yet effective confidence
modeling technique for Gaussian primitives based on viewpoint distribution, en-
abling view planning for inspecting under-reconstructed surfaces. For the second
challenge, we combine the GS map with a conventional coarse voxel map, exploit-
ing the strong representation capabilities of GS for scene reconstruction with the
spatial modeling strengths of voxel maps for exploration and path planning.

We make the following three claims:

1. Our ActiveGS approach achieves superior reconstruction performance com-
pared to state-of-the-art NeRF-based approach and GS-based baselines.

2. Our confidence modeling for Gaussian primitives enables informative view-
point evaluation and targeted inspection around under-reconstructed sur-

faces, further improving mission efficiency and reconstruction quality.

3. We validate our approach in different synthetic indoor scenes and in a real-
world scenario using a UAV.

6.1 Our Approach to Active Reconstruction
Using Gaussian Splatting

We introduce ActiveGS, a novel approach for active scene reconstruction using
GS. An overview of our approach is shown in Figure @ Our goal is to reconstruct
an unknown scene using a mobile robot, e.g., a UAV, equipped with an onboard
RGB-D camera. Given posed RGB-D measurements as input, we maintain a
coarse voxel map to model the spatial occupancy and incrementally train a GS
map for high-fidelity scene reconstruction. To actively guide view planning in a
targeted manner, we propose using our confidence modeling technique in the GS
map together with information about unexplored regions in the voxel map as the
basis for planning. Our approach alternates between mapping and planning steps
until a predefined mission time is reached.

6.1.1 Hybrid Map Representation

Assuming a bounding box of the scene to be reconstructed is given, we uniformly

divide the enclosed space into voxels, forming our voxel map V, where each voxel
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Figure 6.2: An overview of the proposed ActiveGS approach. Our hybrid map repre-
sentation consists of a GS map for high-fidelity scene reconstruction with a coarse voxel
map for exploration and path planning. Our view planner leverages unexplored regions
in the voxel map for exploration and low-confidence Gaussian primitives for targeted in-
spection, collecting informative measurements at planned viewpoints for map updates.
We iterate between the map update and view planning steps until the preallocated

mission time is reached.

v; € V represents the volume occupancy probability in the range of [0, 1].

Our GS map is based on Gaussian surfel [@], a state-of-the-art GS repre-
sentation that leverages 2D Gaussian primitives. The GS map G comprises a
collection of Gaussian primitives. Each primitive g; € G is defined by its parame-
ters g = (X;,q,8i, Ci, 0, k;), where x; € R? denotes the position of the primitive
center; q; € R? is its rotation in the form of a quaternion; s; = [s?, Z] € R? are
the scaling factors along the two axes of the primitive; ¢; € [0,1]* represents
the RGB color; o; € [0,1] is the opacity; and k; € R, is the confidence score
introduced later in Section . The distribution of the Gaussian primitive g;
in world coordinate is defined as:

N(x: x5, %) = exp (—%(x Cx) TR (x x,-)) | (6.1)

where X; = R(q;) diag ((s%)?, (s¥)%,0) R(q;)" is the covariance matrix, with the
rotations matrix R(q;) € SO(3) derived from the corresponding quaternion gq;,
and diag(-) indicating a diagonal matrix with the specified diagonal elements.
The normal of the Gaussian primitive can be directly obtained from the last
column of the rotation matrix as n; = R(q;). 3.

Given the GS map, we can render the color image C € R¥>*W>3_depth im-
age D € RT>W_ normal image N € R7*W>3 opacity image O € RT*W  and

confidence image K € R?*W at a viewpoint using the differentiable rasterization
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pipeline [29], where H and W denote the image height and width. With a slight
abuse of notation, we denote the corresponding rendering function for a pixel u
as C(u), D(u), N(u), O(u), and K(u), respectively. Without loss of generality,
the rendering process is formulated as:

O(u) = Zwi , M(u) = Zwimi, (6.2)

w; =Ty, T; = H(l—aj),ozi =N(wu;, X))o, (6.3)

j<i
where M € {C,D,N, K}, and m; € {c;,d;,n;, k;} is the corresponding modality
feature, with d; being the distance from the viewpoint center to the intersection
point of the camera ray and the Gaussian primitive g;; w; indicates the rendering
contribution of g; to pixel u; 3; and w; are the primitive’s covariance matrix and
center projected onto the image space [223]. For more technical details about the

rendering process, please refer to Gaussian surfel [29].

6.1.2 Incremental Mapping

We collect measurements captured at planned viewpoints and incrementally up-
date our map representation. Given the current RGB image C* and depth image
D* measurement, we generate a per-pixel point cloud using known camera pa-
rameters. We then update our voxel map V probabilistically based on the new
point cloud, following OctoMap [59].

For the GS map update, we first add Gaussian primitives to G where needed.
To this end, we render the color image C, depth image D, and opacity image O at
the current camera viewpoint. We calculate a binary mask to identify the pixels

in the new measurement that should be considered for densifying the GS map:
B=(0<0.5)V(avg(|C—C*|) > 0.5) V ((D—-D*) > A\D*) , (6.4)

where avg( - ) is the channel-wise averaging operation to calculate per-pixel color
error image, and A is a constant accounting for depth sensing noise, set to 0.05 in
our pipeline. This mask indicates areas where opacity is low, color rendering is
inaccurate, or new geometry appears in front of the current depth estimate, sig-
nalling the need for new Gaussian primitives. We spawn new Gaussian primitives
by unprojecting pixels on these areas into 3D space, with initial parameters de-
fined by the corresponding point cloud position, pixel color, and normal estimated
by applying central differencing on the bilateral-filtered depth image [114], which
helps mitigate noise contained in the depth sensing. We also set scale values to
1 cm, opacity value to 0.5, and confidence value to 0.

At each mapping step, we train our GS map G using all collected RGB-D
measurements for 10 iterations. Specifically, for each iteration, we select the 3
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most recent frames and 5 random frames from the measurement history. The loss
for a frame {C, ]3} in the training batch is formulated as the weighted sum of
individual loss terms:

L=ALe+ NLyg+ MLy, (6.5)

where the photometric loss £, = Li(C, C) and the depth loss £4 = Ly (D, D) are
both calculated using the L; distance. We formulate the loss related to normal
estimate as £,, = Dcos(N, N) + TV(N), which consists of the cosine distance D g
between the rendered normal image and the normal image N derived from the
rendered depth image [29], along with the total variation TV loss [147] to enforce
smooth normal rendering between neighboring pixels. A., A\g, and A, are the
weights for the corresponding loss terms. Note that the training process involves
only a subset of the Gaussian primitive parameters (x;,q;,s;, ¢;,0;), while the
modeling of non-trainable k; is introduced in Section .

After every 5 mapping steps, we perform a visibility check on all Gaussian
primitives and delete those invisible from all history viewpoints to compact the
GS map. We consider a Gaussian primitive visible from a viewpoint if at least
one pixel rendered in that view receives its rendering contribution greater than a
threshold, as defined in Equation (@) Unlike previous works utilizing density
control during offline training [29,61, 78], our approach adds necessary primitives
and removes invisible ones during online missions, achieving computationally ef-

ficient scene reconstruction.

6.1.3 Confidence Modeling for Gaussian Primitives

A Gaussian primitive can be effectively optimized if observed from different view-
points. Based on this insight, we derive the confidence of a Gaussian primitive
from the spatial distribution of its visible viewpoints in the measurement history.
Specifically, we connect the Gaussian center x; to the viewpoint center x,, de-
noted as d;; = x,, —X; = d;;V,j, where d;; is the distance and v;; is the normalized
view direction, with j € S(g;) and S being the index set of viewpoints from which

the Gaussian primitive g; is observed. We formulate the confidence k; as:

ki = i GXP(@') ) (6-6)
d;;
Yi = Z (1—dj>ni-vij, (67)
jes(e) far
Bi=1— || pill, (6.8)
1
i)l st

where 7; accounts for distance-weighted cosine similarity between the Gaussian

primitive’s normal n; and view direction v;;, with dg, as the maximum depth
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sensing range. Note that we increase the impact of viewpoints that are closer to
the Gaussian primitive’s center or provide view directions similar to its normal.
[; measures the dispersion of directions from which g; is observed, with ; closer
to 0 indicating similar view directions. Our confidence formulation assigns higher
confidence to Gaussian primitives densely observed from viewpoints with varying

angles, whereas lower confidence to those with sparse and similar measurements.

6.1.4 Viewpoint Utility Formulation

Active scene reconstruction requires both exploration, to cover unknown areas,
and exploitation, to closely inspect under-reconstructed surfaces. In our ap-
proach, we combine utility derived from the voxel map for exploration and the
GS map for exploitation, enabling these behaviors effectively.

A candidate viewpoint v{ is defined by its 3D position together with yaw and
pitch angles in our approach. To simplify path planning, we constrain the posi-
tions to a discrete lattice placed at the centers of all free voxels. We follow existing
active scene exploration methods [11],64,[122,[152,219] and define the exploration
utility based on the number of unexplored voxels visible from a candidate view-
point. Without relying on computationally expensive ray-casting operations, we
leverage the efficient rendering capabilities of the GS map to determine voxel vis-
ibility. We achieve this by checking whether the projected depth of the in-view
voxel centers in the camera coordinate is smaller than the corresponding depth
value in the rendered depth from the GS map.

Combining unexplored region information in the voxel map and confidence

rendering from the GS map, we define the utility of a candidate viewpoint v as:
Uriew (V5) = Py (v5) + g (vy) , (6.10)

where 1y (v§) = % is the exploration utility, defined by the ratio of the number
of visible unexplored voxels N, (v¢) to the total number of voxels in the voxel map;
g (v§) = —mean(K;) is the exploitation utility, calculated as the negative mean
of the confidence image K; rendered at v§ following Equation (@), and ¢ is the

exploration weight.

6.1.5 Viewpoint Sampling and Evaluation

Our viewpoint sampling strategy involves two types of candidate viewpoints.
First, we randomly sample N;anqom candidate viewpoints within a specified range
around the current viewpoint. However, relying solely on random local sampling
can lead to local minima. To address this, we introduce additional candidate
viewpoints based on regions of interest defined in the voxel map. We begin by

identifying frontier voxels [202] and add them to our regions of interest set R.
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Figure 6.3: We show a 2D case of our regions-of-interest-based candidate viewpoint
generation. We define regions of interest as voxels containing low-confidence Gaussian
primitives and frontier voxels. Normals for low-confidence voxels are generated by
averaging the normals of low-confidence primitives, while frontier voxel normals are
calculated using average vectors to neighboring free voxels. Given the voxel centers
and directional normals, we generate candidate viewpoints within the sampling region,

as illustrated on the right.

By explicitly modeling the confidence of each Gaussian primitive, we can iden-
tify and also include voxels containing low-confidence Gaussian primitives in R.
Inspired by previous work [80], we define normals for each voxel in R to indicate
the most informative viewing direction. For voxels with low-confidence Gaussian
primitives, this is simply the average normal of these Gaussian primitives. The
normal of frontier voxels is determined by finding their neighboring free voxels
and calculating the average directional vector from the frontier voxel to these
neighbors. To generate candidate viewpoints based on regions of interest, we
create a fixed number of candidate viewpoints within a cone defined by the min-
imum and maximum sampling distances from the center of each voxel in R and
the maximum angular difference relative to its normal. Starting from the closest
voxel, we continue outward until we have collected up to Nror viewpoints in free

space. We illustrate the sampling process in Figure @

We evaluate the utility of all candidate viewpoints following Equation ()
We use the A* algorithm [52] to find the shortest traversable path from the current
viewpoint position to all candidate viewpoint positions. Taking travel distance
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into account, we select the next best viewpoint v* by:

U* = arg max (Z ¢View(vi) N 5 Upath(vz‘ 5 vcurrent) ) 7 (611)

v l]'V:tital wview(vf) Zf\;t(iwl Upath (U'?? Ucurrent)

where Nigtat = Niandom + NVrot; Upath is the travel distance from the current

i

viewpoint Ueyrent to a candidate viewpoint positions; and § is a weighting factor

for the travel cost.

6.2 Experimental Evaluation

Our experimental results support our three claims: (i) we show that our ActiveGS
pipeline outperforms state-of-the-art NeRF-based and GS-based active scene re-
construction methods; (ii) we show that our confidence modeling of Gaussian
primitives enables informative viewpoint evaluation and targeted candidate view-
point generation, improving reconstruction performance; and (iii) we validate our
approach across different scenes in simulation as well as in a real-world scenario

to demonstrate its practical applicability.

6.2.1 Implementation Details

We use a voxel size of 20cm x 20 cm x 20 cm for the voxel map and set the loss
weights in Equation (@) as: A = 1.0, \y = 0.8, and A\, = 0.1. For visibility
checks, a minimum rendering contribution threshold of 0.3 is applied. We set the
exploration weight ¢ = 1000 in Equation () to encourage exploratory behavior
during the initial phase of an online mission, and travel costs in Equation ()
are weighted by 6 = 0.5. We consider Ny, = 100 candidate viewpoints, including
up to Ngror = 30 samples around regions of interest and Nyanqom = Niotal — NROT
random samples generated within 0.5m distance to the current viewpoint.

We test our implementation on a desktop PC with an Intel Core i9-10940X
CPU and an NVIDIA RTX A5000 GPU. In this setup, one mapping and planning
steps take approximately 1s and 0.5 s, respectively. The whole pipeline consumes
4 —5GB GPU RAM during an online mission, with approximately 10% allocated
to the voxel map update.

6.2.2 Simulation Experiments

We conduct our simulation experiments using the Habitat simulator [149] and the
Replica dataset [169]. The experiments utilize an RGB-D camera with a field of
view of [60°,60°] and a resolution of 512 x 512 pixels. The depth sensing ranges
from [0.1,5.0] m and is subject to Gaussian noise with a standard deviation that

increases linearly with depth, o = 0.01d, where d is the depth value in meters.
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We report the reconstruction performance over total mission time, defined
as the summation of mapping time, planning time, and action time, assuming
a constant robot velocity of 1m/s. The reconstruction performance is evaluated
on both rendering and mesh quality. For the rendering evaluation, we capture
ground-truth RGB images from 1000 uniformly distributed test viewpoints in the
scene’s free space. We report PSNR [107] of RGB images rendered from our GS
map at test viewpoints as the rendering quality metric. For mesh evaluation,
we run TSDF fusion [114] on depth images rendered at training viewpoints and
extract the scene mesh using marching cubes [99]. We use the completeness
ratio [38] as the mesh quality metric with a distance threshold of 2 cm.

We consider the following methods:

e Qurs: our full ActiveGS pipeline utilizing both exploration and exploitation
utility measures. We consider regions-of-interest-based sampling to achieve

targeted candidate viewpoint generation as described in Section ;

o Ours (w/o ROI): a variant of our ActiveGS that leverages only local random
sampling, with Nror = 0;

e Ours': a variant of our ActiveGS with an alternative confidence formula-
tion, assigning higher confidence to Gaussian primitives with more visible
viewpoints, without considering their spatial distribution;

« FBE [202]: a frontier-based exploration method that solely focuses on cov-
ering unexplored regions, without accounting for the quality of the GS map.
We use the collected RGB-D measurements to update the GS map, similar
to our approach;

o FisherRF [70]: a GS-based active scene reconstruction approach using only
frontier voxels for regions-of-interest-based candidate viewpoint generation
and Fisher information for viewpoint evaluation. We replace its 3D GS
map with our 2D GS;

o« NARUTO [Bg]: a state-of-the-art NeRF-based active scene reconstruction
pipeline.

We run 5 trials for all methods across 8 test scenes. We set the maximum mission
time to 300s and evaluate reconstruction performance every 60s. We report the
mean and standard deviation for PSNR and completeness ratio.

We present the results of simulation experiments in Figure @ Our approach
achieves the best performance in both rendering and mesh quality across all
test scenes, supporting our first claim that it outperforms state-of-the-art NeRF

and GS-based methods. The NeRF-based active scene reconstruction approach,
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NARUTO, exhibits a significant performance gap compared to our approach, par-
ticularly in RGB rendering. This disparity arises because NeRF-based methods
often compromise model capacity for faster map updates, limiting their represen-
tation quality in scene-level reconstruction. FisherRFE evaluates viewpoint utility
by calculating the Fisher information in the parameters of the Gaussian primitives
within its field of view. This requires computationally expensive gradient calcu-
lation for all candidate and training viewpoints, leading to prolonged planning
times and incomplete reconstruction under limited mission time. Additionally,
since Fisher information is conditioned on the candidate viewpoint, the viewpoint
must be selected before its utility can be evaluated, preventing direct viewpoint
sampling informed by Fisher information. In contrast, our approach models the
confidence of each Gaussian primitive, enabling fast feed-forward confidence ren-
dering for viewpoint evaluation and identification of low-confidence surfaces for
targeted candidate viewpoint generation, significantly enhancing reconstruction
quality and efficiency. FBE focuses solely on exploration and ignores surface
reconstruction quality, limiting its performance, while our approach balances ex-
ploration and exploitation by accounting for both unexplored regions and low-
confidence Gaussian primitives.

The ablation study comparing Ours and Ours (w/o ROI) demonstrates the
benefits of regions-of-interest-based sampling for targeted inspection, reflected by
higher means and smaller standard deviations in both evaluation metrics. Our
confidence formulation also outperforms the variant in Ours' by considering view-
point distribution. These results confirm that our confidence modeling is effective
in achieving efficient and high-fidelity active scene reconstruction, validating our
second claim. We visually compare the reconstruction results in Figure @

6.2.3 Real-World Experiments

We demonstrate the applicability of our approach in a real-world experiment using
a UAV equipped with an Intel RealSense 455 RGB-D camera to reconstruct a
scene of size 6 m x6 m x3m. Unlike simulation experiments, we do not account for
the pitch angle of viewpoints in this experiment due to control limitations. The
UAV pose is tracked by an OptiTrack motion capture system. Given the limited
onboard resources, we run ActiveGS on our desktop PC, where it receives RGB-D
and pose data from the UAV for map updates and sends planned collision-free
waypoints to guide the UAV. All communication is handled via ROS [13§].

Our real-world experiments indicate that our approach is effective for ac-
tively reconstructing unknown scenes by considering both unexplored regions in
the voxel map and under-reconstructed surfaces in the GS map. We show the

experimental setup and the reconstructed GS map in Figure @
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Figure 6.6: Our real-world experiments using a UAV equipped with an RGB-D camera.

We show the experimental setup (left) and the RGB rendering from our GS map (right).

6.3 Related Work

Our work uses Gaussian splatting as the primary map representation for active
scene reconstruction. In this section, we introduce state-of-the-art high-fidelity

map representations, focusing on GS and active scene reconstruction methods.

6.3.1 Gaussian Splatting as Map Representation

Conventional map representations such as voxel grids [@], meshes [H, ], and
point clouds [] often only capture coarse scene structures, struggling to pro-
vide fine-grained geometric and textural information crucial for many robotics

applications [24]. Recent advances in implicit neural representations, such as
NeRFs [, |, show promising results in high-fidelity scene reconstruction by

modeling scene attributes continuously. Although they achieve impressive recon-
struction results, NeRFs require dense sampling along rays for view synthesis,
a computationally intensive process that limits their online applicability, as we
discussed before in our previous approaches in Chapter H and Chapter E

3D GS [@] offers an efficient alternative for high-fidelity scene reconstruction
by combining explicit map structures with volume rendering. Unlike NeRFs, 3D
GS stores scene information using explicit 3D Gaussian primitives, eliminating
the need for inefficient dense sampling during volume rendering. This explicit
nature also makes it well-suited for online incremental mapping, which requires
frequent measurement fusion and scene attributes modification. Follow-up works
further enhance geometric quality by regularizing 3D GS training [@] or directly
adopting 2D GS for improved surface alignment [@, @] 2D GS collapses the
3D primitive volume into 2D oriented planar Gaussian primitives, enabling more

accurate depth estimation and allowing the integration of normal information
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into the optimization process. Motivated by its strong performance, we utilize
2D GS, specifically Gaussian surfel [29], as our GS map representation for active

scene reconstruction.

6.3.2 Active Scene Reconstruction

Active scene reconstruction using autonomous mobile robots is an area of active
research [24]. Given an unknown scene, the goal is to explore and map the
scene by actively planning the robot’s next viewpoints for effective measurement
acquisition. Traditional active scene reconstructions utilize map representations
such as voxel maps [[11,64,80,152,219], meshes [160,[161], or point clouds [45,210].
These approaches primarily focus on fully covering the unknown space, rather
than preserving fine-grained geometric and textural details of the scene. However,
high-fidelity scene reconstruction is crucial for downstream robotic tasks that rely

on accurate map information.

To address this, recent research explores implicit neural representations for
active reconstruction applications. In an object-centric setup, several methods in-
corporate uncertainty estimation into NeRFs [124,139,203] and use this informa-
tion to select next best viewpoints. For scene-level reconstruction, Yan et al. [204]
and Kuang et al. [85] investigate the loss landscape of implicit neural representa-
tions during training to identify under-reconstructed areas. NARUTO [38] learns
an uncertainty grid map alongside a hybrid neural scene representation, guiding
measurement acquisition in uncertain regions. These implicit neural represen-
tations often face challenges such as inefficient map updates and catastrophic
forgetting during incremental mapping.

Several works propose GS-based active scene reconstruction approaches. GS-
Planner [71] and HGS-planner [201] incorporate unknown voxels into the GS
rendering pipeline and detect unseen regions for exploration. Li et al. [92] use
a Voronoi graph to extract a traversable topological map from the GS represen-
tation for path planning. The approach is designed for a 2D planning space,
reducing its effectiveness in cluttered environments. FisherRF [70] evaluates the
information content of a novel view by measuring the Fisher information value
in the GS parameters. This procedure requires computationally expensive gradi-
ent calculations at each previously visited and candidate viewpoint, making view
planning inefficient for online missions. We build upon the idea of using GS for ac-
tive scene reconstruction, while introducing a key innovation: we explicitly model
the confidence of each Gaussian primitive, enabling viewpoint sampling around
low-confidence Gaussian primitives for targeted inspection and fast feed-forward

confidence rendering for efficient viewpoint evaluation.
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6.4 Conclusion

In this chapter, we propose ActiveGS, a GS-based active scene reconstruction
approach. Our approach employs a hybrid map representation that combines
the high-fidelity scene reconstruction capabilities of the GS map with the spa-
tial modeling strengths of the voxel map. We present an effective method for
confidence modeling of Gaussian primitives, enabling targeted viewpoint genera-
tion and informative viewpoint evaluation. Our view planning strategy leverages
the confidence information of Gaussian primitives to inspect under-reconstructed
areas, while also considering unexplored regions in the voxel map for exploration.

We conduct planning experiments in various indoor scenes in a simulator. Ex-
perimental results demonstrate that ActiveGS outperforms baseline approaches
in both rendering and mesh quality, compared to state-of-the-art NeRF-based
and GS-based active scene reconstruction approaches. We further validate our
approach in real-world experiments using a UAV equipped with an RGB-D cam-

era, demonstrating its applicability for active scene reconstruction.
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Chapter 7

Conclusion

UTONOMOUS robots must perceive and understand their environment

to perform tasks successfully. A core aspect of this robot perception

capability is to actively explore its surroundings and acquire informa-

tive sensor measurements. In contrast to passive perception, which
follows predefined path patterns, fixed heuristics, or fully relies on external super-
vision, active perception leverages view planning to enable autonomous decision-
making regarding where to gather measurements based on the robot’s current
understanding of the environment, allowing the robot to focus on acquiring the
most valuable information for the task at hand. This is especially important when
deploying robots in unknown environments under mission constraints, where no
prior knowledge exists and the perception strategy must be optimized online. In
such cases, effective view planning can significantly improve performance in tasks
such as localization, object recognition, and mapping.

This thesis focuses on the problem of autonomous mapping in unknown en-
vironments and investigates the integration of active perception strategies with
robot mapping systems. Our goal is to enable robots to construct accurate spa-
tial representations of their surroundings by actively and intelligently collecting
sensor measurements during missions. Although prior work has explored active
perception for robot mapping, many existing approaches do not focus on pre-
serving fine-grained environmental details, which bottlenecks their application in
tasks requiring high-fidelity scene modeling. This limitation is largely caused by
the reliance on conventional map representations in these approaches, often re-
sulting in loss of geometric and textural information during the mapping process,
due to their rigid and discrete nature. Our work is motivated by the challenge of
actively building high-fidelity map representations that can capture scene details
of an initially unknown environment.

To address this challenge, we propose novel approaches that leverage learning-

based mapping techniques capable of modeling the environment in a continuous
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manner. Such techniques allow for the generation of more accurate map repre-
sentations, enabling robot mapping systems to retain fine-grained geometric and
textural information that traditional methods fail to capture. The primary con-
tribution of this thesis is the development of active perception approaches that
integrate different learning-based mapping techniques to enable autonomous and
high-fidelity robot mapping. Central to these approaches is the adaptation of map
representations and the design of utility formulations that assess the expected use-
fulness of measurements taken at candidate viewpoints with respect to specific
mapping objectives, enabling the integration of active perception strategies. To
verify the effectiveness of our approaches, we conduct extensive evaluations in
both simulated and real-world scenarios, demonstrating consistent improvements

in mapping quality and computational efficiency over baselines.

7.1 Short Summary of the Key Contributions

This thesis presents four distinct active perception approaches for robot map-
ping, each leveraging different learning-based map representations capable of
modeling scenes continuously to achieve high-fidelity reconstructions. We ad-
dress our research question of effective integration of active perception strategies
with learning-based mapping techniques from varying perspectives. Our solu-
tions are based on the characteristics of the employed mapping methods and the
specific mapping objectives. Below, we summarize the key contributions of each
chapter and highlight the new capabilities enabled by this work, which were not
possible at the beginning of this PhD research.

In Chapter E, we explore GPs to model the spatial distribution of environmen-
tal properties, e.g., temperature distribution. For online incremental mapping, we
initialize a spatially correlated grid map with a GP prior and perform sequential
Bayesian fusion to incorporate new measurements. Leveraging the natural un-
certainty modeling provided by GPs, we develop an active perception strategy in
which the robot selects viewpoints that maximize uncertainty reduction in regions
of interest through forward simulation. A significant contribution of this chap-
ter is the introduction of an integral kernel for GPs, enabling the maintenance
of an adaptive-resolution grid map in a computationally efficient and theoreti-
cally sound manner, a capability that was not previously available in GP fusion
methods. This adaptive strategy retains the probabilistic nature of GPs while
reducing resolution in less interesting areas, leading to lower memory usage and
faster inference. These properties make it possible to perform efficient view plan-
ning in GP-based map representations during online missions. We demonstrate
the effectiveness of this approach in a 2D temperature field mapping scenario

using a UAV. We believe that this work could benefit scalar field mapping tasks,
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such as weed density and soil moisture mapping in agricultural applications.

In Chapter @, we address the challenge of photorealistic object modeling using
an image-based neural rendering technique in the context of active perception.
Our approach trains a neural network to synthesize photorealistic views from
posed RGB reference images and aims to actively collect these reference images
in an unknown scene to enhance the network’s rendering performance. The key
innovation here is probabilistically modeling the color rendering process in our
network, providing uncertainty estimates based on the predicted variance of color
rendering at each pixel. This uncertainty highlights areas where the network
is less confident in the contents it renders, given the current reference images.
This is one of the first approaches that provides uncertainty modeling in image-
based neural rendering, and we further use this uncertainty to direct the robot to
acquire new measurements at viewpoints with the highest predicted uncertainty
to enhance its understanding of the scene. The collected images and the rendering
network together form the internal map, enabling scene information retrieval from
novel viewpoints. This introduces a novel NBV planning paradigm that allows
the robot to gather informative measurements without explicitly updating a map
during the mission, which could become costly, especially when using implicit

neural representations or operating in large-scale environments.

In Chapter a, we introduce a novel semantic-targeted active perception ap-
proach for robot mapping. Our goal is to selectively reconstruct task-relevant
object classes in an unknown environment, while deprioritizing irrelevant areas.
We combine NeRFs with semantic information as the map representation, and
derive uncertainty estimates from the density distribution of NeRFs to identify
regions of high geometric ambiguity. By rendering dense semantic and uncer-
tainty views from novel viewpoints, our view planning method selects the most
informative viewpoints for collecting new measurements, improving the recon-
struction of target objects. This targeted view planning strategy is crucial in
task-driven scenarios, where the robot must focus its mission budgets on impor-
tant objects. For example, in robot manipulation, our approach enables the robot
to efficiently reconstruct the objects of interest, providing important information

for subsequent manipulation actions.

Different from the map representations in the previous two chapters that re-
quire computationally inefficient volume rendering, we utilize a more efficient
learning-based map representation in Chapter B We propose one of the first
active perception approaches for scene-level robot mapping based on GS. Our
approach combines GS with a coarse voxel map to leverage the strengths of both
representations: high-fidelity scene reconstruction with GS and spatial modeling
with voxels. The core in this approach is an effective confidence modeling tech-

nique that assigns confidence values to each primitive in the GS map based on
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the viewpoint distribution, helping to identify under-reconstructed areas. Addi-
tionally, we use voxel map information to target unexplored regions and assist
with collision-free path planning. By actively collecting measurements in both
under-reconstructed and unexplored areas, our approach achieves superior GS
reconstruction in indoor scenarios.

Overall, the contributions presented in this thesis support our motivation to
integrate active perception with learning-based map representations and high-
light the potential of this integration to enable high-fidelity autonomous robot
mapping in unknown environments. Furthermore, the different approaches in-
troduced in this thesis offer a glimpse into the rapid evolution of learning-based
map representations within a short period, inspiring future research to further
advance their capabilities.

7.2 Future Work

Besides the research conducted in this thesis, we also identify several promising ar-
eas for future work that could further enhance the mapping quality and efficiency
in autonomous robot mapping tasks. Specifically, we outline here three main
areas for future exploration: (1) leveraging prior information from pretrained
models; (2) extending active perception for robot mapping to active simultane-
ous localization and mapping (SLAM) systems; and (3) scaling the approach to
multi-robot systems.

The first area involves exploiting prior information contained in pretrained
models for robot mapping tasks. For instance, we could utilize diffusion mod-
els [66] to generate 3D contents from 2D images [81,93,94,95], which can be
directly integrated into map representations to complete missing information or
provide a proxy to ground truth to guide the view planning toward incomplete
areas. Although the application of diffusion models in active perception for robot
mapping is still largely limited by its computational cost, combining the genera-
tive capabilities with the active perception strategies could lead to more efficient
and robust mapping. Another promising direction in this domain is to leverage
recent foundation models for 3D reconstruction [91,191,[195,[196]. By training on
large-scale 3D datasets, these models provide strong geometric priors conditioned
on a set of unposed RGB images or video sequences. This can be particularly
useful for RGB-based mapping tasks, where the robot can utilize these priors as a
starting point, and combined with active perception strategies to allow the robot
to focus on refining the map in areas where the prior is uncertain or incomplete.

In this thesis, we primarily focused on active perception for robot mapping,
assuming that the robot is already localized in the environment. However, in

many real-world scenarios, the robot needs to perform SLAM to build a map of the
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environment while also keeping track of its own position. From this perspective,
active perception for robot mapping can be seen as a subproblem of active SLAM,
where the goal shifts toward optimizing mapping objectives without the additional
complexity of simultaneous localization. Therefore, the second area for future
work would be extending the active perception for robot mapping system to
active SLAM systems. To achieve active SLAM, we need to integrate active
perception strategies with both mapping and localization objectives, ensuring
that the robot can effectively build a map of the environment while maintaining
accurate localization. Some recent works have explored the integration of active
perception with SLAM systems by considering both localization and mapping
uncertainties for utility formulation [b,[15,88]. Nevertheless, active SLAM with
learning-based map representations remains a largely open research challenge.
The third area for future work involves extending the active perception for
robot mapping to multi-robot systems [2, 166, 187,200]. While this thesis pri-
marily focused on a single-robot setup, many real-world scenarios, especially for
mapping large-scale environments, could benefit significantly from collaborative
multi-robot systems. In such systems, multiple robots must coordinate their per-
ception strategies to efficiently explore and reconstruct the environment. This
entails developing algorithms for map merging, inter-robot information sharing,
and coordinated decision-making, all while maintaining consistency and efficiency

throughout the mapping process.
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