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Abstract—Unmanned aerial vehicles are rapidly gaining pop-
ularity in many environmental monitoring tasks. A prerequisite
for their autonomous operation is the ability to perform efficient
and accurate mapping online, given limited on-board resources
constraining operation time and computational capacity. To
address this, we present an online adaptive-resolution approach
for field mapping based on Gaussian Process fusion, a strategy
in which Bayesian fusion is applied to update a Gaussian Process
prior map. A key aspect of our approach is an integral kernel
encoding spatial correlation over the areas of grid cells. This
enables efficient information compression in uninteresting areas
to achieve a compact map representation while maintaining
spatial correlations in a theoretically sound fashion. We evaluate
the performance of our approach on both synthetic and real-
world data. Results show that our method is more efficient
in terms of mapping time and memory consumption without
compromising on map quality. Further, we integrate our mapping
strategy into an adaptive path planning framework to show that
it facilitates information gathering efficiency in online settings.

I. INTRODUCTION

Environmental monitoring plays a central role in helping us
better understand the Earth and its natural processes. However,
many commonly observed natural phenomena, e.g., tempera-
ture, humidity, etc., exhibit complex spatial variations that are
difficult to capture using traditional sensing methods, such as
manual sampling or static sensor networks [1, 2]. Recently,
unmanned aerial vehicles (UAVs) have emerged as a more
flexible, cost-efficient alternative for data acquisition in a wide
range of applications, including biomass measurement [1, 3],
signal strength monitoring [4], weed detection [5] and thermal
mapping [1]. To fully exploit these platforms, a key chal-
lenge is developing map representations that can accurately
capture heterogeneous natural variables, while being compact
and computationally efficient for online interpretability and
decision-making on resource-constrained systems.

This paper focuses on mapping methods for terrain moni-
toring scenarios, where the task is to reconstruct a continuous,
non-uniform 2D scalar field, e.g., of temperature, biomass
cover, etc., using measurement information from on-board
sensors. In this setup, our goal is to develop an online
mapping strategy that can accommodate both high-fidelity
field reconstruction in targeted areas of interest, e.g., hotspots
or anomalies, as well as mapping with low computational and
memory requirements. By catering for these two aspects simul-
taneously, our work bridges the gap between environmental
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Fig 1: Our adaptive-resolution Gaussian Process fusion approach for
online field mapping. Left: Synthetic ground truth distribution. Yel-
lower shades indicate higher values we would like to map in greater
detail. Right: Mapping result with uncertainty. Our approach maps
areas of interest at higher resolutions while compressing information
in less interesting regions to increase computational and memory
efficiency. The checkerboard is added for visual interpretation of the
map uncertainty (high opacity means low uncertainty).

monitoring problems and autonomous robotic applications,
e.g., adaptive path planning based on the current map state.

There are several methods for field mapping in environ-
mental monitoring contexts. In the remote sensing community,
most existing approaches exploit aerial data to create high-
resolution reconstructions, e.g., terrain orthomosaics [1, 2].
Although they produce very detailed models, such procedures
often involve heavy postprocessing and are thus not suitable
for online applications. A common strategy to tackle this prob-
lem is to discretize the environment in a grid map and fuse new
measurements into it during a monitoring mission. However,
traditional grid-based methods [6—8] assume independence
between cells, neglecting important spatial correlations which
characterize environmental phenomena, and thereby limiting
the map quality.

We propose a new method for online field mapping. Our
approach is based on Gaussian Process fusion (GPF) [9, 10].
In GPF, a GP model is exploited to initialize a spatially
correlated grid map, which serves as a prior for recursive
Bayesian fusion. The key goal of our work is to adaptively
adjust the GPF map resolution online based on the information
value of associated measurements, such that only areas of
interest are mapped at high resolutions. Different from GP
regression, which pools the entire measurement history to
predict the posterior map state at any resolution at once,
the usage of GPF, although more efficient, poses a major
challenge: in order to account for resolution changes, we need
to modify online not only the map mean, but also the map
covariance. In other words, adapting the map resolution leads
to varying mapping locations in the environment; however,
correlations at these new locations cannot be easily obtained



from the previous measurements or the current map state [11].
The posterior after map resolution change is thus difficult to
retrieve in a theoretically sound and efficient manner. This
hinders the recursive update step and constitutes an open
research question.

To address this, we propose a novel approach adopting an
integral kernel to describe the spatial correlation over the areas
of grid cells instead of points, e.g., grid cell center point.
Combined with an ND-tree structure, we can adapt the map
resolution online while preserving its spatial correlations. This
enables us to retain high-resolution details in targeted areas of
the field, while using coarser resolutions otherwise, as shown
in Fig. 1. This way, we achieve memory and computationally
efficient mapping without sacrificing map quality, as necessary
for online application on platforms, e.g., UAVs, with limited
computing power. In sum, our contributions are:

1) A new method for incrementally mapping scalar fields
online. Our approach combines GPF with the ND-
tree data structure to allow for resolution adaptation of
spatially correlated maps.

2) An integral kernel function to encode the spatial cor-
relations over the areas of 2D grid cells. This enables
efficient merging operation of grid cells to compress
information at any scale in uninteresting regions, while
preserving spatial correlations in the map.

Our mapping approach is evaluated and benchmarked against
state-of-the-art approaches using synthetic and real-world data.
Experimental results show that our method reduces memory
consumption and improves computational efficiency when
compared against mapping baselines. Further, we demonstrate
its applicability for online adaptive path planning.

II. RELATED WORK

A large body of literature has studied mapping methods
for monitoring continuous phenomena in different application
domains [3, 9, 12-15]. Our work focuses on online mapping
methods suitable for robotic monitoring scenarios. Our new
approach introduces an integral kernel for adaptive-resolution
mapping which brings together two key concepts: (1) GP
models and (2) ND-tree structure. The following subsections
review previous studies related to these topics.

A. Gaussian Processes Mapping

Grid maps are the most commonly used representation for
robotic mapping [16]. Despite their successful application, tra-
ditional occupancy grid models assume the stochastic indepen-
dence of grid cells to enhance computational efficiency [17].
However, this representation often poorly captures the spatial
correlations found in natural phenomena, e.g., distributions of
temperature, humidity, etc. To address this, GP models are
applied in environmental monitoring. For instance, GPs are
used to incorporate uncertainty and represent spatially corre-
lated data in 2.5D pipe thickness mapping [9]. Vasudevan et al.
[15] apply GP regression to predict elevation on a field where
sensory information is incomplete. Other applications include
gas distribution mapping [12], occupancy mapping [17], and

aquatic monitoring [13, 14]. Our work follows these lines by
using GPs to model the latent scalar field.

The main limitation of applying standard GP regression for
online robotic mapping is its cubically growing computational
complexity as measurements accumulate over time [18]. Pre-
vious work has tackled this problem by storing measurements
in a KD-tree structure and using local models to approximate
GPs [15, 17, 19]. To predict the mean and variance of query
points, only nearby measurements are considered. However,
local GPs require performing regression for each query point
individually. To alleviate this problem, the concept of extended
blocks was introduced [20], which applies GPs to the query
points in individual blocks of the map only using the mea-
surements in neighboring blocks. This approach decomposes
a large GP into sub-models and applies regression to infer the
posterior of each block. The multiple regression results are
then fused using a Bayesian Committee Machine (BCM) [21],
whose computational complexity scales cubically with the
number of query points. Based on that, Wang and Englot [22]
introduce test-data octrees, which prune nodes of the same
state to condense the number of query points in regression.

In GP-based occupancy grid mapping with range sensors,
O’Callaghan and Ramos [23] propose an integral kernel to
handle beam line observations directly rather than discretizing
them into point observations, thereby reducing the number of
measurements used for GP regression. Most similar to our
approach, Reid et al. [24] use an integral kernel to capture
spatial correlations between image areas and infer a high-
resolution estimate from a low-resolution observation in a
UAV-based setup. However, inference over the map is still
performed using standard GP regression, which suffers from
poor scalability, especially with dense image data.

In contrast to regression-based methods, our method lever-
ages GPF [9, 10] to reduce the computational burden for
online mapping. This procedure removes the need to preserve
the measurement history and infer the map posterior from
scratch each time new data arrive [11]. A key difference in our
approach with respect to previous fusion-based works [9, 10]
is the proposed integral kernel, which bridges the gap between
GPF and efficient online adaptive-resolution mapping.

B. Multi-Resolution Mapping

In practice, many monitoring scenarios exhibit a non-
uniform distribution of information in the environment, i.e.,
some regions are considered more interesting or informative
for mapping than others. Therefore, maintaining a map with
constant resolution over the whole environment is redundant
and costly. A common method to generate compact map
representations is by using tree structures. A well-known
algorithm in this category is OctoMap [6], which prunes child
nodes with the same state, e.g., occupied, to achieve both
memory-savings and highly precise maps. Funk et al. [7] use
the octree structure in an online mapping system that adjusts
map resolution based on occupancy state. Similarly, Chen et al.
[25] apply quadtrees to build multi-resolution 2D maps. The
ND-tree generalizes these approaches by subdividing any d-
dimensional volume recursively with [V @ children [8]. Rather



than compressing a map only in a postprocessing step, as
in OctoMap, we adapt the map resolution online based on
incoming measurements similarly to Einhorn et al. [8] and
Funk et al. [7]. Our approach shares the same motivation, as
we tailor the map structure to reduce memory consumption and
computation time in applications requiring online mapping,
such as adaptive path planning [4, 10, 14].

Previous works in adaptive-resolution mapping assume cell
independence [6—8], such that no correlation information needs
to be maintained. This substantially simplifies mapping at the
cost of map quality. However, in our online mapping setup,
the covariance must be modified to account for resolution
changes, which is challenging in the GPF framework. Popovié
et al. [3] introduce an approach for incrementally fusing
variable-resolution measurements into a spatially correlated
map. However, their method still considers a fixed-resolution
map. In contrast, our strategy supports adaptive-resolution
mapping while preserving spatial correlations.

III. ADAPTIVE-RESOLUTION GAUSSIAN PROCESS FUSION

This section introduces our online field mapping approach.
We initialize the map using a GP model and store it in an
ND-tree structure. This map is then recursively updated with
new measurements using Bayesian fusion. We first present the
theory behind GPs with the integral kernel function and define
an ‘average measurement’ model, in which the state of a grid
cell represents the average value of a latent scalar function
in the area it covers. Then, we explain our Bayesian fusion
update and the merging operation for incrementally building
multi-resolution field maps. Bringing together these elements,
our key contribution is the ability to efficiently merge grid
cells in GPF without losing spatial correlations. Note that our
setting in this work considers a UAV-based terrain mapping
scenario. However, our approach is also applicable for general
2.5D mapping problems.

A. Gaussian Processes and Integral Kernel

A GP is the generalization of a Gaussian distribution over
a finite vector space to an infinite-dimensional function space.
It is fully described by its mean p(a) and kernel function
k(x, x'), where x is an arbitrary point in input space. In
practice, a GP regression model is used to encode spatial
correlations in a probabilistic non-parametric manner and
infer function values at a finite set of query points given
observed data [18]. Different from GP regression, previous
studies in GPF [9, 10] exploit the GP mean and kernel
function to calculate the prior in predefined mapping positions,
e.g., grid cell center points. The posteriors at these points
are then recursively updated with grid cell measurements
using Bayesian fusion. This GPF setting largely enhances
the mapping efficiency compared to standard GP regression.
However, as the map posterior is only maintained in fixed
mapping positions, adaptive-resolution is hard to achieve.

To address this problem, we propose a new GPF approach
leveraging an integral kernel. The mapping target in our
problem is assumed to be a stationary continuous function
described by a GP: f(x) ~ GP(u, k) : € — R, where

& C R? is the 2D rectangular input space and = € &.
Similar to Reid et al. [24], we modify the given kernel function
k(x, ') to correctly encode the spatial correlations between
areas of grid cells in our mapping framework. We define
¢(R) = % [ f(=)dx to represent the average of the latent
function f over a rectangular domain R C R? with area
A € R. Since applying a linear operator to a GP leads to
another GP [26], we obtain the new GP: ((R) ~ GP(uu, k1),
whose mean and kernel function are described as follows:

1
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where © and x’ are the point positions contained within
the rectangular domains R; with area A; and R; with area
A;j respectively. The area-related terms in Eqs. (1) and (2)
simply transform the integral into average, which makes the
physical meaning of mean and covariance in accordance with
our measurement model introduced in Sec. III-B.

We initialize our grid map using this new GP model. For
rectangular cells and squared exponential (SE) kernel, we can
find a closed-form solution to Eq. (2). In general, numerical
integration is required to determine the kernel integration
[23]. Note that, the integral calculation is only conducted
in initialization step and does not burden online mapping.
The fact that our model is a GP allows us to initialize
the prior map at any resolution. We sequentially discretize
the input space into rectangular grid cells using an ND-tree
until maximal depth ¢ is reached. Only leaf grid cells are
shown and updated in the map C = {c, ..., ¢,}, where
n = (N with d = 2 as we focus on 2D field mapping;
¢; = [0 gMaX] x [ymin M) g the parametrization of grid
cell ¢; € £ and C = [y, ..., ¢, is the vectorization of
C'. This prior map, with prior mean vector p~ and covariance
matrix K~ calculated by Egs. (1) and (2), can be seen as
a multivariate Gaussian distribution from the perspective of
recursive update introduced in Sec. III-C:

MI(Cl) kI(Cl,Cl)
p=1 |, K = :

MI(Cn)

kI(Ch Cn)

k](Cn,Cl) kl(cnacn)
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In our online mapping framework, we initialize the map to
the highest resolution and adaptively merge uninteresting grid
cells during mapping. Note that, since our underlying model
is a GP, we can still infer the function values at arbitrary
resolutions using mean function, kernel function, and map
posteriors as described by Reece and Roberts [11]. As this
procedure is computationally heavy, we only consider it as a
post-processing step to recover a high-resolution map after an
online mission is complete.

B. Sensor Model

In our GPF setting, we consider a Gaussian sensor model
to account for noisy measurement data. For each observed



Fig 2: The ‘average measurement’ sensor model provides the mea-
surements of averaged function value over a grid cell. For instance,
the measurement z2 observed from c; is the average of 4 single mea-
surement values {m2, m3, ms, mg}. For calculating o7 ;, Acover is
the green area on the terrain and A, is the area of ¢y itself.

grid cell ¢; € C, the sensor provides a measurement z;
capturing the average value of function f over the area of
thlS cell as z; ~ N(ps,i,0%;), where pu; is the mean and
, 1s the variance expressing uncertainty in z;. The variance
can be further decomposed into two parts. First, we assume
measurements taken from higher altitudes are more susceptible
to environmental noise such as light conditions. To this end, we
describe the degraded accuracy of sensor information at higher
altitude by o2, = ah, where a € R* and h is the sensor’s
altitude. Second we consider uncertainty caused by observing
incomplete grid cells. In our mapping framework, some grid
cells are only partially covered by the current sensor footprint,
especially when the grid cells occupy larger area after they
are merged. Directly assigning the average measurements as
the observation of these grid cells would be an over-confident
assumption, as the unobserved part of these grid cells may
contradict the current measurements, e.g., when grid cells
span over the domain of heterogeneous function values. To
tackle this problem we propose the coverage-ratio-dependent
-8(1-
B e Rt isa werghtrng and A., Acover are the area of the
grid cell and the part covered by the footprint. Note that this
variance term decreases linearly with respect to coverage ratio
and disappears under complete observation. This captures the
intuition that partial observations contribute less to the update.
For each new measurement, its data are generated as fol-
lows: the sensor footprint is determined given the known
intrinsic and extrinsic parameters. First, we query the grid
cells having overlap with the footprint using depth-first tree
search with pruning. Second, for observed grid cell c;, we
calculate the corresponding averaged measurement value z;
as illustrated in Fig. 2. Third, we sum o7 ; and o?; as the
total variance of each measurement z;. '

eover

variance 0 ) in our sensor model, where

C. Sequential Map Update

A major difference between GP regression and our GPF
approach lies in the map update rule. During the online
mapping mission, the map state is fully described by the
mean vector p(C) and covariance matrix K (C, C'), which is
initialized by a GP model as shown in Eq. (3) and recursively
updated by Bayesian fusion with new measurements.

For each update step, z is defined as a vector consisting of
m new average function value measurements observed from m
corresponding grid cells as introduced in Sec. III-B. The pos-
terior density p(¢|z, C) x p(z|¢,C) - p(¢|C) can be directly
computed using the Kalman Filter update equations [11]:

pt =p" + T, 4)
Kt=K —-THK", (5)

where I' = K~ H 'S~ is the Kalman gain; v = 2 — Hu~
and S = HK~H T + R are the measurement and covariance
innovations; R is a diagonal m X m matrix composed of
variance term a?m + Uai associated with each measurement z;
and H is a m X n observation matrix denoting the part of the
map observed by z, where n and m are the number of grid
cells in the current map and observed grid cells respectively.
Note that the current map only contains leaf grid cells and a
small matrix S € R™*"" is inverted at each update.

D. Merging

Given a non-uniform target field for mapping, our goal is
to use coarser (larger) grid cells to map uninteresting regions
and denser (smaller) grid cells to retain details in interesting
parts. Previous works in GPF [9, 10] do not support efficient
resolution changes. By using our new GPF method with
the integral kernel, however, we naturally encode the states
of parent nodes in their children, which enables efficiently
retrieving a parent’s posterior from its children on-the-fly.

C,

original

C,

merged

—

v oo SO w

Fig 3: Illustration of the merging operation in our map. Top and
bottom rows show the grid cell map and its corresponding ND-tree
(with N = d = 2) structure. Only leaf nodes (blue and orange) are
considered in the map update. After merging (right), the states of
child grid cells are summarized into their parent in the new map.

The online merging operation allows us to summarize
information in larger areas and thus monotonically reduce
the total number of grid cells in the map, which facilitates
mapping efficiency and memory usage. For this, we subdivide
our map into uninteresting regions (UR) and hotspots (HS):

< fin}, Cus = C\ Cyr,
(6)
where p;* and Ki,ﬁ are the posterior mean and variance
of grid cell ¢;; the design parameter v is chosen to specify
the margin to the threshold fy, [13]. fi can be defined by
expert knowledge in a certain application, e.g., in agricultural
scenarios, high temperature may indicate crop health issues,
see Sec. IV-B. This setting avoids merging grid cells with
possibly high mean values, which would cause detail loss in
interesting regions. Thus, grid cells are only merged if there
is a strong belief that they fall within uninteresting bounds.

Cur={c e C|w" +vK;;*



For a parent grid cell, if all of its P = N? child grid cells
are uninteresting leaves (grid cells in Cygr), these child grid
cells can be replaced by their parent grid cell. When we merge
the information of P children into their parent, based on the
definition of grid cell variable and the correlation encoded by
the integral kernel, we have the parent grid cell defined as:

1 P
Cparem = F ; Cchild,i . @)

The parent grid cell now represents the average function
value of the entire region covered by its children. For the
grid map, the merging operation can be described as a linear
transformation of a multivariate Gaussian as follows:

l,l,+ (Cmerged> = MN+ (Coriginal)a (8)
K+ (Cmerged7 Cmerged) =MK" (Coriginah Coriginal>MT7 9

where Clrigina Tepresents the map including n grid cells before
merging and Clyergeq is the newly-merged map. In the simplest
case, where only one parent’s children cells are merged,
Cerged> Coriginal, and M can be expressed as:

e ]
€1
Cr— :
Coriginal = c Pil s Cmerged = . ’ (10)
n— np
Cn—P+1
L S
I 0
M — (n—P)x(n—P) (n_g)xp ’ an
1x(n—P) 1% P

assuming that ¢,,— p41 in Ciyerged NOW represents the parent of
grid cells {¢p,—p11,..., cn} in Coigina and Q is [%, ce %}
A simple illustration is given in Fig. 3. The merging operation
is performed for eligible grid cells after every map update. As
the multivariate Gaussian distribution is closed under linear
transformations, we now treat the map after the merging
operation as a prior map for the next Bayesian fusion update.

IV. EXPERIMENTAL RESULTS

This section presents our experimental results. We first eval-
uate our proposed mapping strategy by comparing it against
different benchmarks in terrain mapping scenarios. Then, we
validate our approach using real-world surface temperature
data and integrate it into an adaptive path planning framework
to demonstrate its benefits for online robotic applications.

A. Mapping Evaluation

We evaluate mapping performance with total mapping time,
mapping quality in terms of root mean square error (RMSE),
intersection over union (IoU) of hotspots, memory consump-
tion ratio, and number of grid cells in the final maps. The total
mapping time is obtained by aggregating the individual update
times over the mapping task; RMSE and IoU are calculated by
comparing resulting maps and ground truth at the ground truth

map resolution; memory usage is reported as a ratio relative
to the approach with the highest memory consumption. We
compare six different mapping approaches:

e FR-IDP: vanilla fixed-resolution mapping under indepen-
dence assumption [16];

e AR-IDP: adaptive-resolution mapping under indepen-
dence assumption. Uninteresting grid cells are pruned
during mapping as proposed in [8];

e AR-BCM: adaptive-resolution mapping using BCM and
test-data tree, as adapted from [22]. Uninteresting grid
cells are pruned to reduce the number of query points in
BCM. Note that we do not follow nested BCM approach
as our whole map can be seen as a block in their case;

e AR-GPR-IK: adaptive-resolution GP regression with in-
tegral kernel based on the original approach proposed in
[24]. We take one step further to recursively merge grid
cells if they are uninteresting after each regression update;

e FR-GPF: fixed-resolution GPF proposed in [3];

e Ours: our new adaptive-resolution mapping strategy
based on GPF with integral kernel as described in Sec. III.

We simulate 20 20m x 20m Gaussian random fields with
400x400 resolution as ground truth environments representing
a spatially correlated field on a terrain. For simplification,
the ground truth field values are normalized to [0, 1] and we
define regions with values greater than 0.7 as hotspots of
interest. To assess mapping performance at different scales,
we conduct experiments at 3 different maximal resolutions:
16 x 16, 32 x 32, and 64 x 64 grid cell maps corresponding to
adaptive-resolution approaches with maximum tree depths of
4, 5, and 6, respectively, in a quadtree configuration. Note that
different maximal resolution settings are possible by adopting
the general ND-tree decomposition.

The terrains are mapped using a lawnmower pattern to focus
on comparing the methods in terms of mapping performance
only, excluding the influence of path variations. To simulate
a UAV mission, we take 16 non-overlapping measurements
as shown in Fig. 4a to fully cover the terrain, assuming a
flight altitude of 2.5m and 5m X 5m sensor footprint on the
ground. All GP-based mapping approaches (AR-BCM, AR-
GPR-IK, FR-GPF, Ours) use the SE kernel function with
hyperparameters 8 = {02, [} = {1, 2.36} and a constant prior
mean of 0.5. This design choice is based on our assumption
on smooth latent function and access to the ground truth. In
general, the domain knowledge should be exploited in kernel
function selection and the hyperparameters can be optimized
using prior information, e.g., data sets from an earlier sampling
campaign or similar fields. For approaches using an integral
kernel (AR-GPR-IK, Ours), we follow Egs. (1) and (2) to
calculate the prior maps. For mapping under independence
assumption (FR-IDP, AR-IDP), we use the same prior mean
and variance, while ignoring all cross-correlation terms to
isolate each grid cell. We consider the ‘average measurement’
model in all mapping approaches. For merging operation in
adaptive-resolution approaches, we choose {7, fn} = {2,0.7}
in Eq. (6). Note that all these hyperparameters are manually
tuned but used consistently in all experiments.

The results are summarized in Tab. I and Fig. 4. In all
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Fig 4: Qualitative comparison of our approach (g) against benchmarks (b)-(f). The terrain is mapped using a lawnmower strategy, as shown in
(a). The red line and black dots indicate the travelled path and measurement locations. All approaches use a map size of 32 x 32 grid cells. By
mapping adaptively, our method compresses information in areas with low information value (blue) while preserving details in higher-value
areas of interest (yellow) to achieve an efficient, compact map representation for online applications. (h) shows the offline higher-resolution
(50 x 50) reconstruction from our online mapping result (g), illustrating how the map can be decompressed after the mission.

Map RMSE IoU Mapping Memory Number of

size Method RMSE | (hotspots) | (hotspots) 1 time [ms] usage ratio [%] |  map cells |

16 x 16  FR-IDP 0.045 +0.002 0.045+0.002 0.813+0.024 5.575+ 0.466 4.187+0 256 +£ 0
AR-IDP 0.071 +£0.003 0.046 +£0.002 0.8124+0.024 7.299 4+ 0.901 2.155 +1.127 125.2 + 18.258
AR-BMC 0.071 +0.003 0.038 +£0.003 0.856 +£0.023  273.546 £ 69.549 49.892 +11.433  115.22 +16.167
AR-GPR-IK  0.065 +0.003 0.037 +0.002 0.856 +£0.024 59.379 + 20.680 40.692 + 8.282 118.62 + 16.907
FR-GPF 0.037 +£0.002 0.037 £0.002 0.857+£0.023 11.375 % 0.965 100+ 0 256 £ 0
Ours 0.065 + 0.003 0.037 +£0.002 0.857+£0.026 10.168 +1.119 38.729 +9.416 114.4 +19.754

32 x 32 FR-IDP 0.065 +0.004 0.065+0.004 0.723 £0.021 28.968 + 0.834 1.067£0 1024 £0
AR-IDP 0.079 +£0.005 0.067 +£0.003 0.725+0.020 63.796 + 6.880 0.529 + 0.068 508 £+ 65.121
AR-BMC 0.071 +0.005 0.025+0.003 0.864 £0.023 13100.225 4+ 2009.709  26.433 + 5.359 356.25 4+ 74.012
AR-GPR-IK  0.066 +0.004 0.026 + 0.003 0.866 + 0.024 1747.631 + 677.670 17.538 + 5.640 371.3 £ 74.279
FR-GPF 0.027 £0.002 0.026 £0.002 0.867 £0.024  430.843 + 7.447 100+ 0 1024 4+0
Ours 0.065 + 0.004 0.026 +£0.003 0.867 £0.025 261.763 £ 24.443 16.632 + 5.112 360.4 + 71.003

64 x 64  FR-IDP 0.123 +£0.003  0.123 +£0.008 0.625+ 0.056  123.562 £ 4.271 0.268 + 0 4096 + 0
AR-IDP 0.127 £ 0.004 0.124 +0.008 0.623 £ 0.058 586.427 + 43.362 0.218 £+ 0.023 2687.14 + 383.364
AR-BMC 0.104 £ 0.004 0.025+0.003 0.869 £ 0.028 68645.365 4+ 4606.239  15.782 + 4.125 1258.5 + 473.78
AR-GPR-IK  0.073 +0.004 0.025+0.003 0.872+0.021 18620.558 4 6448.663  11.552 + 4.221 1387 4 443.744
FR-GPF 0.024 +0.002 0.024 +£0.002 0.875+0.023 9977.749 + 251.003 100+ 0 4096 + 0
Ours 0.073 £0.004 0.024 +£0.002 0.876 £ 0.023  4098.029 + 548.881 8.877 +4.824 1271.25 +484.191

TABLE I: Comparison of our approach against benchmarks for varying map sizes. By combining GPF and adaptive-resolution mapping
using an integral kernel, our strategy reduces runtime and memory consumption while delivering highly accurate maps.

cases, approaches relying on the cell independence assumption
yield least accurate maps with highest RMSE and lowest
IoU, since they are most vulnerable to sensor noise or sparse
measurements. This is because they neglect correlations for
mapping, which are key for capturing continuous variables.
In contrast, the four GP-based approaches reflect the smooth
structure of the Gaussian random field, as they incorporate
covariance information into the map update. As expected, the
averaging effect caused by merging cells in adaptive-resolution
approaches leads to higher total RMSE compared to FR-GPF.
However, all GP-based approaches show the same accuracy
in mapping hotspots as well as IoU scores, as required in
our problem setup. In terms of mapping efficiency, AR-BCM

performs the worst as it executes large matrix inversion and
BCM fusion at every update step, leading to prohibitively slow
mapping. Note that BCM benefits from parallelizing several
GP regressions. However, in online mapping scenarios, where
measurements are accumulated incrementally, BCM loses this
strength. AR-GPR-IK is slower than two GPF approaches
(FR-GPF and Ours), due to regression using accumulated
measurements. We point out that by using the integral kernel
together with the ‘average measurement’ model, AR-GPR-IK
already achieves significant speed-up compared to vanilla GP
regression. In all cases, AR-IDP is slower than FR-IDP due to
overhead caused by tree search. The same overhead is expected
in our approach, however, as the major bottleneck in fusion



is the matrix inversion and multiplication in Egs. (4) and (5),
this can be compensated by faster Bayesian fusion update with
less grid cells in our approach. In terms of memory usage, FR-
GPF consumes the most memory space as it maintains a large
constant number of grid cells and a large covariance matrix.
Among the adaptive-resolution approaches, AR-IDP shows the
worst merging ability, as indicated by the number of grid cells
in the final map. This can be explained by heterogeneous
states in children nodes caused by inaccurate mapping, which
potentially reduces the chances of merging operation. Among
the GP-based methods, our new approach achieves the fastest
mapping updates and best memory compression ratios with
competitive map quality. The benefit of online merging opera-
tion can be seen by comparing Ours and FR-GPF. In all cases,
our approach outperforms AR-IDP and FR-IDP in terms of
map quality. In Fig. 4h, we show how our mapping result can
be decompressed to recover a high-resolution reconstruction
in an offline post-processing step.

B. Validation on Real-World Data

We demonstrate our mapping approach using real-world
surface temperature data. The data was collected in a 150m x
150m crop field (50.86° lat., 6.45° lon.) near Jiilich, Germany
on June 25, 2021 using a DJI Matrice 600 UAV platform
equipped with a Vue Pro R 640 thermal sensor. During data
acquisition, the UAV followed a lawnmower path at 100m
altitude to collect images at 15c¢m spatial ground resolution.
The images were processed using Pix4D software to create
an orthomosaic used as a proxy for ground truth in our
experiment. We use a maximal map resolution of 64 x 64.
The entire mapping takes 28.31s considering 81 measurements
with 50% overlap. The aim is to validate our method for
adaptively mapping temperature hotspots (> 28°C) at finer
resolutions using this real data. The mapping result in Fig. 5
confirms that our approach can adapt the map resolution in a
targeted way.

C. Application for Adaptive Path Planning

Finally, we integrate our mapping approach into an adap-
tive path planning framework for UAV-based terrain mon-
itoring [10] to demonstrate its benefits for online robotic
scenarios. The planning task aims at efficient detection of
regions of interest in an initially unknown environment under
time constraints. For this, the UAV must adaptively plan its
path based on the current map to trade off between exploration
and exploitation. This experiment considers the same setup as
described in Sec. IV-A except setting our prior mean to 0.7
to initially encourage exploration. We compare the FR-IDP,
AR-IDP, FR-GPF methods to our approach, as regression-
based mapping approaches are prohibitively slow for online
planning. We use a 3D lattice consisting of 300 total way-
points at altitudes of 2m and 5m to represent the discrete
action space. The planner applies greedy search among these
candidates to find the next best measurement position by
forward-simulating the map update and calculating the reward.
The information-theoretic reward is defined by the posterior
variance reduction in regions of interest divided by the flight

0 50 100 150
0

50

Y [m]

100
Temp () -
-5

20 | M

s BN

S Xm] 150

Fig 5: Validation of our approach for surface temperature mapping.
Top: Experimental setup showing our UAV over a crop field. Bottom-
left: Temperature data of the crop field. Bottom-right: Map generated
by our method. High-temperature areas (red) are mapped at higher
resolutions to preserve detail in these regions of interest.

time to the waypoint candidate. For more technical details,
please refer to the planning framework of Popovic¢ et al. [10].

We conduct experiments on 10 simulated Gaussian random
fields and plot the evolution of RMSE (hotspots) and IoU
over mission time in Fig. 6. The mission time is the sum
of planning time, mapping time, and flight time. The results
show that planning using our mapping approach achieves
the best IoU and RMSE (hotspots) scores with the shortest
mission time, which is favorable for autonomous monitoring
tasks using resource-constrained UAVs. Planning using our
approach outperforms FR-GPF due to more efficient map
updates, which significantly accelerates forward-simulation
during predictive planning. The poorer planning performance
using FR-IDP and AR-IDP is a direct consequence of inac-
curate mapping results. As observed in Sec. IV-A, mapping
approaches using independence assumption neglect important
spatial correlation and are thus more susceptible to sensor
noise. Due to inaccurate mapping, the false positive interesting
areas mislead the UAYV, leading to the close inspection of
actually uninteresting regions. This inaccuracy deprives FR-
IDP and AR-IDP of their advantage in fast planning.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a new approach for online field map-
ping. We introduce a novel use of an integral kernel in GPF
framework and use ND-tree to store our map. Combining
these two elements enables us to adapt the map resolution on-
the-fly while neatly maintaining spatial correlations. Results
show that our approach achieves competitive performance in
terms of mapping efficiency, memory usage, and map quality.
Our mapping approach is validated using real-world surface
temperature data. Moreover, we demonstrate that faster and
more accurate map updates facilitate adaptive path planning
for efficient information gathering in robotic applications.
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Fig 6: Comparison of mapping approaches for adaptive path planning
in terrain monitoring. Our strategy (red) performs best to efficiently
reconstruct hotspot areas in an unknown environment with highest
mapping accuracy (top) and map quality (bottom). Solid lines and
shaded regions represent means and standard deviations over 10 trials.

Our approach has several limitations. First, partitioning the
map to higher resolutions is not considered in our online
mapping framework, which could limit its applicability in
dynamic environments. Second, the tree structure in our ap-
proach prevents merging neighboring grid cells if they have
different parents, which constrains its compression capabilites.
Third, we assume deterministic sensor localization. Several
works have tackled this problem by incorporating localization
noise in GP mapping [17, 27], which improves the robustness.
Finally, the map scale is still limited by maintaining a global
covariance matrix. For mapping at larger scales, our approach
could be used to generate local sub-maps which are fused by a
BCM or the approach proposed by Sun et al. [28]. Future work
will address these issues and apply our approach in domains
with higher spatial variability.
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