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Abstract— Most state estimation procedures in mobile
robotics require information about the locations of the indi-
vidual sensors on the platform. This is especially the case
when estimating geometric properties about the environment
or the robot. In this paper, we present an novel approach
to extrinsic, multi-sensor calibration. Our approach seeks to
find the extrinsic parameters by maximizing the consistency of
the motion estimate that is computed from different sensing
modalities. Our approach formulates constraints between the
movements of the sensors using the Gauss-Helmert model. This
allows us to compute a more accurate solution than the ordinary
least squares approach. We implemented our approach and
tested it using multiple sensors as well as when using a motion
capture studio. The experiments presented in this paper show
that our approach is able to accurately determine the extrinsic
configuration of each sensor and is robust enough for typically
applications in mobile robotics.

I. INTRODUCTION

Most mobile robots perform some form of state estimation
such as localization, mapping, SLAM, or exploration. For
most of such tasks, it is important to know where the
individual sensors are mounted on the robot. The task of
determining the position and orientation of a sensor is often
referred to extrinsic calibration. Without such calibration
information, a lot of the estimation tasks, especially those
related to computing geometric models such as SLAM, do
not work properly and/or provide suboptimal results. Such
extrinsic calibration is also important when the information
from multiple sensors have to be fused.

In this paper, we address the problem of estimating the
extrinsic parameters of multiple sensors relative to each other
or with respect to a base frame of a mobile robot. Our
calibration approach is based on the robot’s motion and does
not rely on external markers, calibration patterns, or a known
environment. We assume that each sensing modality allows
for estimating a (relative) trajectory of the sensor given
the observations. This holds for cameras by using visual
odometry, for laser scanners or RGB-D cameras through
scan matching, and obviously for odometry as well as GPS
receivers. We do not address calibration for sensors that do
not have this property such as a bumper sensor.

Our approach exploits constraints between the motions
of individual sensors and formulates the resulting error
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minimization problem using the Gauss-Helmert model [18].
This allows us to exploit constraints resulting from the fact
that the sensors are rigidly mounted on the platform while
being able to handle noisy observations and compute a
weighted least squares solution. This leads to a statistically
sound estimation providing accurate extrinsic calibration
parameters for multiple sensors and has the potential to yield
better results than traditional least squares.

The main contribution of this paper is a novel motion-
based calibration algorithm for multiple sensors using the
Gauss-Helmert formulation. Our approach makes the as-
sumptions that the sensors are rigidly attached to the robot
and that a relative trajectory estimate can be obtained from
each sensor. Under these assumptions, our approach (i) ac-
curately determines the extrinsic calibration parameters, (ii)
requires an initial guess with an accuracy that can be obtained
through a direct approach, (iii) obtains more accurate results
compared to ordinary least squares using the Gauss-Markov
model, and (iv) can be executed in a reasonable amount of
time to be useful for real world applications. These four
claims are backed up through the paper and its experimental
evaluation.

II. RELATED WORK

The problem of multi-sensor extrinsic calibration ad-
dressed in this paper is strongly related to the hand-eye
calibration problem [14], [15], [17]. Here, the unknown
transformation between a robotic arm and a rigidly mounted
camera is estimated given a series of relative pose measure-
ments. Earlier work by Shiu and Ahmad [14] describes this
problem as solving a homogeneous transform equation in
the form of AX = XB, which relates the relative motions
(A,B) of two devices to the sensors’ relative transformation
(X ). Several efficient closed form solutions are available, by
decoupling the rotation and translation estimation [14], [17],
or by using dual-quaternions formulation to allow for the
estimation of rotation and translation simultaneously [4]. The
direct solutions are comparably simple and fast to compute,
but they are also sensitive to noise. To improve robustness
and accuracy, Horaud and Dornaika [5] propose to jointly
optimize rotation and translation with nonlinear optimization.
A subsequent approach [15] proposes a metric on the special
Euclidean group SE(3) and a corresponding error model for
nonlinear optimization. Finally, Zhao et al. [19] propose
using a L∞ cost function and utilize convex optimization
approach instead of common least squares formulation.

Beside general hand eye problem, there are also works
focused on special calibration problems. Driven by the needs
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Fig. 1: Relative movement at time i. Given rotation and translation
measurements (ra, ta) and (rb, tb) from two sensors, our task is
to find an optimal estimation of parameter (ηb, ξb), which is the
relative orientation and displacement of sensor A in B’s frame.

of information fusion between camera and odometry, camera-
odometry calibration for cars and wheeled mobile robots is
one of the many [7], [8], [3], [13]. Explicit motion-based
sensor calibration has also been addressed by Taylor and
Nieto [16] and also combined with the SLAM problem [9].
Guo et al. [7] proposed a two-step analytical least squares
solution to estimate rotation and translation separately, with-
out using any special hardware or known landmarks. The
approach by Heng et al. follow the formulation of Guo et
al. [7], but only use the direct solution as initial guess to an
extensive least squares estimation problem including camera
and odometry poses, intrinsic and extrinsic parameters, as
well as 3D scene points. In contrast to that, Schneider et
al. [13] reported an online recursive estimation approach
using Unscented Kalman filter.

To the best of our knowledge, no other work exists that
bases the optimization for motion-based calibration on the
Gauss-Helmert model, which jointly optimize the model
parameter and observations together, thereby taking the ob-
servation noise into full account.

III. MOTION-BASED EXTRINSIC CALIBRATION

The goal of motion-based extrinsic sensor calibration is to
determine the position and orientation of each sensor without
markers and only based on the motion of the platform. The
calibration is done with respect ot a reference point, whereas
such reference point can be the robot’s odometry frame or
one of the sensors.

Consider a robot that is equipped with M sensors, which
are rigidly attached to the robot. We index these sensors with
a, b, . . . ,m and each sensor is assumed to provide a (noisy)
relative motion estimate of the sensor. More precisely, at
each time-step i, we have a set of relative pose measurements
consisting of angle-axis rotation r and translation t for each
sensor:

{(rai, tai), . . . , (rmi, tmi) | R(r) ∈ SO(3), t ∈ IR3}, (1)

with i = 1, . . . , N . Each motion is expressed relatively in an
ego-centric frame for each sensor, i.e. the sensor pose of the
previous timestep.

The objective is to estimate the fixed but unknown trans-
formations between all the sensors. Without loss of general-
ity, we define the sensor a as the base sensor and estimate

for each other sensor s ∈ {b, . . . ,m} the relative rotation
and translation (ηs, ξs) of Sai under the frame of Sbi .

{(ηs, ξs) | R(ηs) ∈ SO(3), ξs ∈ IR3, s = b...m} (2)

If we choose Sa to be the base/odometry frame of the
robot, the tuples (ηs, ξs) are a solution to the extrinsic multi-
sensor calibration problem. A point in Sa, written as ap, can
be transfered to the sensor frame Sb by:

bp = R(ηb)
ap+ ξb. (3)

Fig. 1 (left) depicts the geometry for this problem. Suc-
cessive poses of a sensor pair form a virtual quadrilateral or
vector loop, which leads to the hand-eye problem equation:

ξb + R(ηb)ta − R(rb)ξb − tb = 03 (4)

R(ηb)R(ra)R(ηb)
TR(rb)

T = I3. (5)

IV. PROBLEM OF ORDINARY LEAST SQUARES
FOR MOTION-BASED CALIBRATION

The solution provided by closed form method are usually
far from perfect due to the decoupling and simplified noise
assumption (see [6] p.179). It is therefore necessary to
employ an iterative refinement process by means of least
squares estimation, which not only jointly optimizes ξ,η but
also take the full uncertainty relations into account.

A widely used method is to iteratively minimize a
weighted sum of a squared error function, e.g. [7], [15]. In
our case it is:

argmin
η,ξ

∑
i

‖cti‖2wti
+ ‖cri‖2wri

(6)

with

cti := (I3 − R(rbi))ξ + R(q)tai − tbi (7)

cri := log
(
R(η)R(rai)R(η)TR(rbi)

T
)
. (8)

where ‖c‖2w := cTWc and W being a positive definite
weight matrix. The form of cri may varies, alternatives
can be a Frobenius norm of a full rotation matrix, or of
a quaternion [15].

A minimizing of this cost function is easy to implement
with the help of popular off-the-self optimizer such as
g2o[10] or Ceres[1] and therefore it is prominent in the
current literature of calibration problems. An overlooked
point in most works are the values of the weight matrices
W ri,W ti in this formula. And as we will see in the following
discussion, there is a hidden assumption in this optimization
model, which will degrade the estimation accuracy when the
measurement noise-level is high, and therefore only suitable
for low noise situations.

Eq. (6)-(8) is a approach based on the Gauss-Markov
model (GM for short). The principle behind the GM model
is the “Gauss-Markov” theorem, which says the least squares
estimate gives no bias and has minimal variance if the
functional relation l = f(x) is linear and the weights
are chosen to be W = Σ−1ll . The Gauss-Markov theorem
also holds approximately for nonlinear function f if the
variances of the observations are small compared to the



second derivatives of the functions (see [6] p.79). For the
GM model it is important that the observations (l) has to
be explicit functions of the unknown parameters (x), to
guarantee statistical optimality.

To fit in the Gauss-Markov theorem, we see that the
GM model is actually using the residual vectors cti and
cri as their observation entities l rather than the original
measurements {rsi, tsi}. So the weight matrix W ri,W ti

should therefore take the inverse of the covariance matrix
of the residual vectors, i.e. W ri = Σ−1cr , W ti = Σ−1ct . Since
cti and cri are functions of {rsi, tsi}, we can apply error
propagation to Eq. (8)-(7) and obtain

Σcr ≈ JrΣrrJT
r , Σct ≈ JtΣttJT

t + JrΣrrJT
r (9)

where Jr := ∂cri

∂ri
and Jt := ∂cti

∂ti
are the Jacobians, and

Σtt,Σrr are the covariance matrices of the measurement
noise. Given the correct weight matrices, we can proceed
with minimizing Eq. (6) and refine x iteratively.

An issue to point out is that (r, t) is fixed during the
whole estimation process and so are the Jacobians and
the linearized model. If there are significant errors in the
measurement, they will persist and result in a degraded
estimation accuracy. This degradation is what we observed
in the real world application and thus motivated the work
of this paper, its effect is confirmed by our experiment in
Sec. VI.

V. GAUSS-HELMERT-BASED APPROACH
TO MULTI-SENSOR CALIBRATION

To tackle the aforementioned degradation problem in high
noise situation, we propose to formulate the estimation
problem using the Gauss-Helmert model [18], which makes
corrections to not only the unknown parameters but also the
observations at each iteration.

The Gauss-Helmert model is more general than the GM
model, it allow us to handle constraints between observation l
and unknown parameters x by implicit functions of the form
g(x, l) = 0. It is closely related to the total-least-squares
method or the errors-in-variables method developed in statis-
tics. Instead of minimizing residuals in the constraints, the
Gauss-Helmert model strictly enforces the constraints and
makes corrections to not only the unknown parameters but
also the observations. The objective is then to minimize the
corrections to the observation while estimating the unknown
parameters.

Gauss-Markov and Gauss-Helmert model are equivalent
for problems in which observations are explicit functions of
the unknown parameters, e.g l = f(x), because in those
cases the corrections to the parameters x are essentially
corrections to the observation and so all the constraints are
automatically satisfied. However, Eq. (4) and Eq. (5) for
(ξ,η) are obviously not in this explicit form.

A. Model for Multiple Sensors

Most related works consider only the formulation for two
sensor, assuming we can simply apply the 2-sensor case to
each sensor pair in case there are more than two sensors.

But as we will see in the following discussion, explicitly
formulating the multi-sensor case will give us the insight
that there are actually interactions between sensor pairs,
which is a good reason for us to introduce high-accuracy
external measurement in the calibration process, which will
help improving the overall accuracy.

First, we denote the unknown parameters collectively as
x and known observations as l:

x :=



ηb
...
ηm
ξb
...
ξm


, li :=



rai
...
rmi
tai
...
tmi


i = 1, . . . , N (10)

again N is the number of measurement groups/motion
segments considered. From Eq. (4), we can formulate the
following constraints for the translation:

g1(x, l) :=

 (I3 − R(rb))ξb + R(ηb)ta − tb
...

(I3 − R(rm))ξm + R(ηm)ta − tm

 = 0 (11)

and for rotation1

g2(x, l) :=

R(ηb) −I3
...

. . .
R(ηm) −I3


 ra

...
rm

 = 0. (12)

Expressed as one function, this leads to

g(x, l) :=

[
g1(x, l)
g2(x, l)

]
= 0. (13)

Due to the existence of noise, Eq. (13) generally does not
hold for the “raw” measurements (now called l0i ). Thus, cor-
rections on the measurements (and not only to the parameters
as in the Gauss-Markov model) must be made so that they
can fulfill the constraints. This can be expressed through

g(x∗, εi + l
0
i ) = 0, (14)

with the corrections εi.
The goal is to find the optimal x∗ through minimizing

these corrections while the constraints being fulfilled and the
uncertainty of the observations expressed though Σ−1ll being
taken into account:

x∗ = argmin
x,{εi}

1

2

N∑
i

‖εi‖2Σ−1
ll

s.t g(x, εi + l0i ) = 0, ∀i. (15)

Similar to ordinary least squares, we cannot solve the
nonlinear problem directly, we must linearize it around an
initial value and solve it iteratively.

1For sensors that provide no rotation measurement, like GPS, their
constraints in g2 are simply omitted. We can still recover their relative pose
parameter (η) from g1 constraint, which aligns the translation measurement
from different sensors. For example, when in pure translation ‖rb‖ = 0,
g1 becomes R(ηb)ta = tb and has the exact form of g2.



Assume that in the k-th iteration, we have the estimated
measurements as well as parameters lki ,x

k and update them
by

lk+1
i = ∆li + l

k
i and xk+1 = ∆x+ xk. (16)

Eq. (14) can be approximated around (xk, lki ) through lin-
earization by:

g(xk, lki ) + Aki∆x+ Bki∆li = 0, (17)

with Aki ,B
k
i being the Jacobians with respect to the pa-

rameters (Aki ) and to the observations (Bki ). Thus, after
linearization, our optimization problem in Eq. (15) becomes

argmin
{∆x,∆li}

1

2

∑
i

‖∆li + εki ‖2Σ−1
ll

(18)

s.t. g(xk, lki ) + Aki∆x+ Bki∆li = 0, ∀i.

The terms εki := lki−l
0
i are the corresponding k-th iteration

measurement-errors. The solution to Eq. (18) for the k-th
iteration is:

∆x =
∑
i

(∑
i

AT
i W iAi

)−1
AT
i W ici (19)

∆li = ΣllBT
i W i(ci − Ai∆x)− εki (20)

with

W i := (BiΣllBT
i )
−1 and ci := −g(xk, lki ) + Biεki . (21)

This allows us to update the estimate

xk+1 := xk +∆x, lk+1
i := lki +∆li (22)

and repeat the process until convergence. Finally, the theo-
retical precision of the optimal x∗ is given by

Σxx :=

(∑
i

AT
i (BiΣllB

T
i )
−1Ai

)−1
. (23)

The solution obtained here is best and unbiased, given the
observation errors are normally distributed, see [2]. The term
best means that the solution has minimum variance compared
to all other quadratic-based unbiased estimators. A detail
discussion of the necessary and sufficient conditions for
the existence of a unique solution for both the observation
correction as well as the estimated parameter can be found
at [11].

B. Exploiting Inter-Sensor Constraints

The constraints in Eq. (12) have a simpler form than those
in Eq. (5) due to the angle-axis representation of our ap-
proach. Note that Eq. (12) not only provides the information
to estimate the η, but also an inter-sensor constraints on the
rotation measurement between sensors, due to:

θi := ‖rbi‖ = ‖Rbrai‖ = ‖rai‖ = · · · = ‖rmi‖. (24)

This means that rotations within the same time step i will be
corrected to have the same magnitude θi, averaged by their
uncertainty level. This provide a very valuable insight of how
to improve the overall calibration accuracy. This can be done

by introducing accurate rotational measurement, even if it is
only temporary for the calibration.

For this reason, we can use an temporary external mea-
surement with a high rotational accuracy while performing
calibration.

C. Global Optimality for Multiple Sensors

In the constraint formulation in Eq. (11) and Eq. (12),
we connect all the sensors (s = b, . . . ,m) to a base
sensor (a) in a star network fashion and thereby form one
joint optimization problem. Despite the fact that the network
is not fully connected, we claim that this does not impact
optimality. Let us refer to sensor a as the root and sensors
s = b, . . . ,m as leaves. As shown below, we can proof
that once the root-to-leaf constraints are fulfilled, all leaf-
to-leaf constraints are fulfilled automatically. Therefore, the
star topology does not impact optimality.

To be more clear, we extent the notation used so far
and denote the original parameter (ηs, ξs) as (ηsa, ξsa) for
s = b, . . . ,m as this allow us to specify the (unnecessary)
constraints between leaves.

After the optimization, the root-to-leaf constraints are
fulfilled be definition. Thus, for all sensors s = b, . . . ,m
holds:

ξsa + R(ηsa)ta − R(rs)ξsa − ts = 0 (25)

R(ηsa)R(ra)RT(ηsa)R
T(rs) = I3. (26)

Without loss of generality, let us consider the leaf nodes
m and b. If we set

R(ηbm) = R(ηba)R
T(ηma)

ξbm = ξba − R(ηbm)ξma,

being the transformation between b and m, then we can prove
that following equations are fulfilled:

ξbm + R(ηbm)tm − R(rb)ξbm − tb = 0 (27)

R(ηbm)R(rm)RT(ηbm)RT(rb) = I3. (28)

First, we proof that Eq. (28) holds. We start from Eq. (26)
and set s to b and m respectively to obtain

R(rb)R(ηba) = R(ηba)R(ra)

RT(ηma)R(rm) = R(ra)RT(ηma).

Thus, we start from the left hand side of Eq. (28) and
obtain

R(ηbm)R(rm)− R(rb)R(ηbm)

= R(ηba)R
T(ηma)R(rm)− R(rb)R(ηba)R

T(ηma)

= R(ηba)R(ra)RT(ηma)− R(ηba)R(ra)RT(ηma)

= 0.

Thus, the first part has been proven.
Second, we continues with Eq. (27) starting with Eq. (25)

and obtain similar to above

ξba − R(rb)ξba − tb = −R(ηba)ta

tm − ξma = R(ηma)ta − R(rm)ξma.



Fig. 2: Examples stereo images pairs used for calibration.

We start from the left hand side of Eq. (27) and expand ξbm,
which leads to
ξbm − R(rb)ξbm + R(ηbm)tm − tb
= [ξba − R(ηbm)ξma] + R(ηbm)tm − R(rb)[ξba − R(ηbm)ξma]− tb
= [ξba − R(rb)ξba − tb] + R(ηbm)[tm − ξma] + R(rb)R(ηbm)ξma

= −R(ηba)ta + R(ηbm)[R(ηma)ta − R(rm)ξma] + R(rb)R(ηbm)ξma

= [R(rb)R(ηbm)− R(ηbm)R(rm)]ξma

= 0.

Thus, the second part has been proved. As a result, the ful-
fillment of the root-to-leaf constraints automatically satisfies
all leaf-to-leaf constraints and thus they do not need to be
modeled explicitly and thus the star topology does not impact
optimality.

VI. EXPERIMENTAL RESULTS

The experiments are designed to show the capabilities of
our method and to support our key claims. We claim that our
approach (i) accurately determines the extrinsic calibration
parameters, (ii) requires an initial guess with a level of
accuracy that can be provided by a direct method, (iii) obtains
more accurate results compared to ordinary least squares
using the Gauss-Markov model, and (iv) can be executed
in a reasonable amount of time to be useful for real world
applications. We perform the evaluations on own real-world
as well as simulated datasets to support these claims.

A. Real World and Simulated Data

To evaluate our approach, we use simulated as well as real
world data. For the real world setup, we use a UAV with two
stereo camera pairs (called A and B later on), one pointing
forward and one pointing backwards. Example images of this
calibration data can be found in Fig. 2. In addition to that,
we place markers of a motion capture studio on the UAV to
simulate an additional sensor that has be calibrated.

In the experiment, we recorded a total of N = 1655
relative motion-segments estimated through our own visual
odometry pipeline [12]. Around 25 of the segments are
outliers as the visual odometry lost track. The maximum
rotation angle of the inlier data is 7.6◦ and the data is
recorded at 20 fps. Fig. 3 depicts a histogram of the rotation
angle and translation magnitude of the gathered data.

Fig. 3: Histogram of the rotation and translation magnitude of our
real world dataset. Left column shows the rotation (‖r‖, in degree),
and right column shows the translation (‖t‖, in meters). From top
to bottom, each rows represent stereo pair A, pair B and the motion
capture studio respectively.

TABLE I: Standard deviation of the measurement noise

σr [◦] σt [mm]
Stereo pair A 0.0286 2
Stereo pair B 0.0286 3

Mocap 0.573 0.2

We first obtain an initial guess by the SVD-based di-
rect method (e.g, [7]) then run our approach to obtain an
improved solution as well as the corresponding theoretical
precision. The covariance matrices are heuristically set to
Σrr = σrI3 and Σtt = σtI3 with σr, σt given in Tab. I.
We also assume the noise are independent and identically
distributed random variables.

B. Accuracy Comparison

The first set of experiments is designed to show that
our approach computes the calibration parameters more
accurately than an SVD-based solution and than a typical
least squares solution based on the Gauss-Markov model.

We first performed the calibration on the real world data,
and our GH approach converged at the 4th iterations. The
theoretical precision given by our approach is depicted in
Tab. II. They are the square roots of the main diagonal of
the covariance matrix in Eq. (23).

As this is a real world experiment, the ground truth is un-
fortunately not available, so we cannot make an ground truth
comparison. But judging from the measurement-residual
distribution (shown in Fig. 4) given by our model after the
estimation, it is clear that i) the Gaussian noise assumption
holds for our dataset to larger extent, ii) our constraint model
is correct and there is no bias in the estimation, otherwise
the residual histograms will not be symmetrically centered
around zero. Therefore we have a good reason to believe that
the theoretical precision given by our approach is plausible.
To provide a more quantitative experiments, we performed



Fig. 4: Distribution of measurement-residuals ε after the refinement
by our approach. Columns from left to right are for stereo A, B and
Mocap respectively. Rows from top to bottom are the 6 measure-
ment components, namely r1, r2, r3 for rotation and t1, t2, t3 for
translation. It is clear that the Gaussian noise assumption holds for
our real world dataset to a large extent, and our constraint model
is correct since there is no bias.

the analysis of the accuracy in simulation, which is the
second experiment.

In the simulation we generated in total 30,000 experiments
(1000 per noise level), with noise levels starting with the
values shown in Tab. I and scaled them with a factor varying
from 1 to 30. With a factor of 30, the rotation error of the
motion measurement can be as much as ±25◦ according to
the 3σ principle, which is quite high compared to real motion
sensors.

The methods we compared are: (i) the SVD-based direct
solution (called SVD), (ii) least squares estimator based
the Gauss-Markov model (called GM), and (iii) our Gauss-
Helmert based approach (called GH). Both GH and GM
are using Eq. (11) and Eq. (12) as constraint functions
(or residual vectors). The initial guess to GH and GM are
perturbed ground-truth values by uniform additive noise. For
reasons of comparison, we also provided a ground truth
initialization. The metric for comparison is the averaged
Root-Mean-Square-Error (RMSE) of the estimated 6 rotation
parameters and 6 translation parameters from 1,000 trials.

The result of the simulation is depicted in Fig. 5. From
this plot, we can draw several conclusions. First, the GH and
GM perform always better than SVD. The only advantage of
the SVD is that it is a direct solution and requires no initial

TABLE II: Precision of the estimated parameters ξ,η

σξ1 σξ2 σξ3 ση1
ση2

ση3

Stereo B 2.8 mm 1.90 mm 2.8 mm 0.041◦ 0.032◦ 0.033◦

Mocap 1.43 mm 1.97 mm 1.13 mm 0.165◦ 0.191◦ 0.202◦
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Fig. 5: Accuracy comparison through Monte-Carlo simulation. The
x-axis show the factor by which we scale the input noise for
the translational (left) and rotational (right) component. The plots
show the RMSE for the direct SVD approach, the GM as well as
GH model using a noisy initialization, and finally the GH model
initialized with the ground truth as the initial guess. The GH
model outperforms the other approaches as expected and performs
identical if initialized with noisy values or the ground truth ones.

guess. Second, the GH and GM approaches produce identical
results as long as the noise-level is small. Third, as the noise
level increases, the accuracy of the GM solution degrades
while our GH solution does not. The error of the GH solution
grows linearly with the increased input noise, which is the
expected theoretical result. Thus, we can conclude that over
the spectrum of all situations, our GH approach performs
best. At the highest noise-levels, GH is better than GM
by 75% in translation (0.0287 vs. 0.1150), and by 71% in
rotation (0.0095 vs. 0.0314) in this simulation setup. Only
for situation with low noise (eg, a factor smaller than three),
GH and GM show the same performance as can be expected
given our explanation in Sec. IV. Finally, we can see that
the GH approach produces the same results if using the GT
for initialization or a noisy variant of it.

C. Robustness with Respect to the Initial Guess

This experiment is designed to show that our approach is
robust enough to use an initial values from a direct approach
In the previous experiments, we compared a ground truth
initialization to perturbed values for the sake of comparison.
But in reality, however, we have to obtain the initial guess
either by manual measure or by utilizing a direct approach. In
this experiment, we perform a similar experiment as before
but with the initial guess coming from the SVD method,
i.e. without any knowledge about the true configuration. We
compare these to the results, which are obtained when using
the ground truth as the initial guess. The results are depicted
in Fig. 6 and show that the RMSE curves are identical for
both initializations, hence we conclude that our approach
is robust enough to be used in combination with SVD for
providing the start value for the optimization.

D. Runtime

The last set of experiments in designed to illustrate the
computation requirements of our approach and to show that
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Fig. 6: Accuracy in relation to the initial guess for different noise
levels on the translational and roitational component. In all cases,
the initialized via the SVD result or with the ground truth produces
the same results. Thus, we conclude that we can safely use SVD
to initialize our GH optimization.

real world calibration can be done easily. For our real world
calibration, we considered 1,630 poses extracted from each
of the three sensors. The timings of our Python code running
on a i5 notebook computer are approx. 6 s for the overall
approach. Around 600 ms is used for computing the initial
solution using SVD and around 1.2 s-1.5 s is required per
iteration. These timing involves all computations, except the
motion estimation from the sensors itself, in this case the
visual odometry. At least in our setup, computing the visual
odometry takes longer than the calibration itself.

E. Summary

In summary, our real world and simulation experiments
suggest that our Gauss-Helmert based calibration approach
outperforms the direct SVD-based approach as well as the
ordinary least squares solution that is based on the Gauss-
Markov model. The use of the Gauss-Helmert model with
constraints allows us to provide better results than all other
approach at high noise levels and produces the identical
result than the Gauss-Markov model for small noise levels.
We furthermore showed that our approach is robust enough
with respect to the initial guess provided by the direct SVD
approach. In real world settings, the optimization is faster
than the time needed to compute a visual odometry and we
required 6 s in a i5 notebook to calibrate 3 sensors with
1,630 poses each. Thus, we supported our claims with this
experimental evaluation.

VII. CONCLUSION

In this paper, we presented a novel approach to compute
the extrinsic parameters of multiple sensors installed on a
moving platform. Our approach defines constraints between
the motions of the individual sensors given that they are
rigidly mounted in the robot and then computes the extrinsic
parameters in a statistically sound way using the Gauss-
Helmert model. This allows us to successfully determine the
relative transformations between the origins of the sensor
coordinate systems as the robot’s base. We implemented and
evaluated our approach in simulations as well as on real data.
The experiments suggest that our approach can accurately
determine the extrinsic parameters of the individual sensors
under realistic conditions. We provided comparisons to a

direct SVD approach as well as to the ordinary Gauss-
Markov least squares estimation and furthermore supported
all claims made in this paper through our evaluation.
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