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Abstract—Mobile robots increasingly operate in real-world
environments that are subject to change over time. Accurate and
robust localization is, however, crucial for the effective operation
of autonomous mobile systems. In this paper, we tackle the
challenge of developing a generalizable learned filter for long-
term localization based on scan-to-map matching, using only 3D
LiDAR data. Our primary objective is to enhance the reliability
of mobile robot localization in dynamic environments. To obtain
a strong generalization capability of the learned filter, we exploit
the discrepancy between scan and map data. Our approach
involves applying sparse 4D convolutions on a joint sparse voxel
grid that encompasses both, scan voxels and their corresponding
map voxels. This allows us to segment scan points into stable
and unstable points based on a predicted long-term stability
confidence score for each scan point. Our experimental results
demonstrate that utilizing the stable points for localization im-
proves the performance of scan-matching algorithms, especially
in environments where changes in appearance are frequent. By
exploiting the discrepancy between scan and map voxels, we
enhance the segmentation of stable points. As a result, our
approach generalizes to new, unseen environments.

Index Terms—Object Detection, Segmentation and Categoriza-
tion; Localization; Field Robots

I. INTRODUCTION

EFFECTIVE localization is key for robot operation in
many domains. Often, robots use a map as reference data

and require their sensor readings against this map to localize
themselves. Outdoor environments, however, may undergo
significant changes over time, which imposes challenges for
onboard vehicle localization systems. Achieving robust and
accurate localization in such environments is a fundamental
capability for autonomous systems. Accurate localization is
essential for all other mobile robotic tasks, such as path plan-
ning and obstacle avoidance. GNSS-based outdoor localization
is the go-to solution that can even operate without a prior map.
GNSS, however, may not always be available.
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Fig. 1: Our method segments stable and unstable points in 3D LiDAR
scans exploiting the discrepancy of scan voxels and overlapping map
voxels (highlighted as submap voxels). We showcase two LiDAR
scans captured during separate localization sessions within an outdoor
vineyard. The scan on the left depicts the vineyard state in April,
while the scan on the right reveals environmental changes in plant
growth in June.

Map-based mobile robot localization utilizes onboard sen-
sors [25], [41] (i.e. cameras, LiDARs) for vehicle pose estima-
tion by matching the sensory data with the robot’s prior belief
(i.e. map) about the environment. In this work, we focus on
LiDAR-based systems due to the robustness of LiDAR sensors
against illumination changes and their ability to measure
distances robustly. A common method for LiDAR-based pose
estimation is scan matching algorithms [3], [5]. However, due
to changes in the environment, scan matching systems may
fail since some scan points may not have correspondences in
the map, thus leading to failure in accurate estimation of the
vehicle pose.

One possibility to improve scan matching localization per-
formance in changing environments is to segment the LiDAR
scan into stable and unstable points and to utilize the stable
points only for localization. Stable points typically represent
elements of a stable object, such as walls, poles, light posts,
and tree trunks. To isolate these points, one approach is
to employ hand-crafted features for segmentation based on
the shape of the object [29], [30]. However, such methods’
robustness can be compromised by the varying density of point
cloud data, leading to errors in stable points segmentation, thus
causing a failure in the localization.

An alternative is to employ deep learning approaches to
learn to segment stable points from LiDAR scans, as seen
in [13], [21], [33]. Despite the potential of deep learning,
these methods often demand substantial amounts of manually
annotated data and frequently struggle to generalize effectively
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to new, unseen data. To address the issue of labeling, LTS-
NET [15] implicitly learns the inherent stable structure in
the environment in a self-supervised fashion and utilizes this
structure as a landmark to improve vehicle localization in
changing environments. The self-supervised training avoids an
expensive manual labeling process, however, the generaliza-
tion capabilities in novel scenes is poor.

In this work, we explore the challenge of enhancing the
generalization capabilities of a 3D LiDAR-based learned filter
to improve vehicle pose estimation in previously unseen en-
vironments. The aim is to enhance the system’s adaptability
to novel environments that were not encountered during the
training of the filter. We propose a generalizable stable points
segmentation learned filter by exploiting the discrepancy be-
tween the scan and a prior map. For the network part, we
utilize sparse convolutions [8] due to their efficiency. To this
end, we segment the scan point cloud data into two categories,
stable and unstable points, see Fig. 1. In this example, the
stable points are the points that belong to long-term stable
objects like buildings and poles, while the unstable points are
the points that belong to both moving objects in the current
scene like walking humans, and objects that tend to change
over time such as plant vegetation.

In contrast to the task of moving object segmentation [20],
stable points segmentation in 3D LiDAR scan data can seg-
ment both present dynamic entities and stationary objects that
may undergo positional or perceptual alterations in subsequent
instances. Furthermore, unlike supervised semantic segmenta-
tion, our method does not require a complex class annotation
to supervise the learning, our method can be trained in a self-
supervised manner with no manual annotation by leveraging
previous observations.

The main contribution of this paper is a novel real-time
approach for segmenting stable points from a 3D LiDAR scan.
Using these stable points for localization, our approach can
enhance scan-to-map matching in changing environments. We
achieve this by training a 4D sparse convolutional neural net-
work in a self-supervised manner, allowing it to predict spatio-
temporal features in the current scan through the exploitation
of discrepancies between the scan and the map data.

In sum, we make two key claims: Our approach is able
to (i) segment scan points into stable and unstable points,
and utilize the stable points to increase the accuracy of
robot long-term localization, (ii) generalize across diverse and
unseen environments including settings not encountered during
training, leading to improved localization performance, while
suitable for online operation on a mobile robot. These claims
are backed up by the paper and our experimental evaluation.

II. RELATED WORK

When dealing with localization based on a given map,
a common distinction is made between local and global
localization. In the latter, the goal is to determine the robot’s
pose in a map with no prior pose information available. In local
localization, i.e. pose tracking, the robot starts from a known
pose and it is updated as time progresses. In this work, we
address local localization using 3D LiDAR data in a changing
environment, commonly known as long-term localization.

LiDAR Map-Based Localization – Two popular ap-
proaches for robot LiDAR localization in a pre-built map are
probabilistic methods and feature-based methods. Examples of
probabilistic methods include Kalman filters [34] and Monte
Carlo localization (MCL) [11], which are widely used for
robot localization [1], [7], [18]. For instance, Chen et al. [7]
utilize MCL to estimate the vehicle’s local and global pose
within a pre-built mesh-based map representation utilizing
range images derived from 3D LiDAR data. On the other hand,
feature-based methods such as scan matching techniques [3],
[5] estimate the robot pose by aligning the current sensor
readings (raw laser scans or visual features) with a pre-built
map [17], [22], [28]. Some techniques even combine grids and
features [39]. In contrast to the probabilistic methods, scan-
matching methods need a good guess of the robot’s initial
pose. However, they often estimate a smoother trajectory.
Therefore, we focus on scan-matching systems and aim to
improve their performance in dynamic environments.

Dynamic Environment Localization – In terms of long-
term localization, the environment may gradually or suddenly
change over time which may impact the accuracy of the
robot’s pose estimation for scan-matching algorithms [10].
Therefore, researchers explore incorporating new information
into the map. For instance, Biber and Duckett [4] introduce
an adaptive map that is continuously updated over time. Wal-
cott et al. [38] embed time into mapping to sustain an accurate
map in dynamic environments by removing inactive scans and
adding new scans. Others exploit sequence information [37]
or propose long-term localization approaches [31], [36] that
involve temporal mapping. If the current observations do
not align with the static map resulting in a failure in pose
tracking, a temporary map is generated. This temporary map
is later fused with the static map to be utilized in subsequent
localization runs. Contrary to the above, our approach does
not require a complex map update process, since it uses the
initial environment map.

Deep Learning in Long-Term Localization – Several
recent methods exploit deep neural networks and semantic in-
formation for long-term localization. For example, Tinchev et
al. [35] propose a learning-based method for segment matching
of trees and localization in diverse environments. At the same
time, Kim et al. [16] present a long-term localization method
based on a point cloud descriptor called ScanContext, which
utilizes a convolutional neural network for localization on
a grid map. Lately, Zimmerman et al. [43] overcome the
discrepancy between the sensory data and the static map by
leveraging human-readable cues. While those methods avoid
map updates and work on the sensory data, they are either
bound to indoor environments, rely on handcrafted features,
or need supervised training. In contrast, our method learns the
features in a self-supervised fashion.

Compared to previous works, we propose a novel self-
supervised stable points segmentation method by exploiting
4D sparse convolutions. Our method can improve long-term
localization performance by using stable points for localiza-
tion. The use of sparse representations allows us to achieve
stable points segmentation in real-time.
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III. OUR APPROACH

In this paper, we propose a generalizable stable points
segmentation filter to increase the robustness of pose estima-
tion for scan-matching algorithms in changing environments.
The pipeline is illustrated in Fig. 2. To this end, we first
transform the scan into the global map frame using an initial
pose estimate (detailed in Sec. III-A). Then we employ 4D
sparse convolutions in Sec. III-B across scan and submap
voxels to exploit their discrepancy and increase the network’s
generalization capability as outlined in Sec. III-C. The 4D
sparse CNN is trained in a self-supervised manner, leveraging
prior environmental observations to generate long-term stabil-
ity training labels, as described in Sec. III-D.

A. Map-based 3D LiDAR Localization

When estimating the robot’s pose xt in a given map M
and sensor reading zt at time t, the most used localization
algorithm is Monte Carlo localization [11]. It can achieve both,
local and global localization Alternatively, scan-matching al-
gorithms such as iterative closest point [3] or normal distri-
butions transform [5] can achieve accurate robot localization
within a known map. However, unlike Monte Carlo localiza-
tion they can estimate smoother robot trajectories, but require
strong guess of the initial pose and are less robust [1]. In
this work, we focus on scan-matching algorithms. We proceed
with the assumption of an initial estimate being available.
This assumption holds for many robotics applications targeted
repeated missions such as data recording and site inspection
missions, where the mobile robot typically starts its operations
from a fixed initial pose.

The concepts presented in this work are versatile and
applicable to both ICP and NDT. However, for this study, we
chose NDT due to its efficiency and robustness compared to
ICP [19]. To facilitate this, we utilized the NDT localization
framework [17], which performs unscented Kalman filter-
based pose estimation [34]. The estimated pose provides a
strong initial estimate for NDT during scan registration. The
sensor transformation matrix to be estimated at time t is
defined as follows:

T t =

[
Rt tt
0 1

]
(1)

where tt is the position and Rt is the rotation matrix of
the sensor with respect to the point cloud map M. NDT
aims to find T t of the current scan St that maximizes the
likelihood that St lies on the reference map M surface.
Without loss of generality, we omit the superscript t since all
the processes happened at the current time step t. We estimate
the transformation matrix T ∗ as follows:

T ∗= argmax
T

∑
i

exp

(
−d

2
M

2

)
, (2)

where dM is the Mahalanobis distance

dM =

√
(p′i−µi)

TΣ−1i (p′i−µi) (3)

using the transformed query points p′i = T (pi,T ) obtained
by the transformation function T . The expressions Σi and µi

are the covariance matrix and the mean of the corresponding
NDT voxel for the point p′i looked up in the NDT voxels of
the map M.

In a non-static environment, the LiDAR scan measurements
are taken from both stable and unstable objects, expressed as:

S =Ss ∪ Su. (4)

Here, Ss denotes the subset of points that are measured from
stable objects, while Su encompasses the points associated
with unstable objects. Unstable points are characterized by
their lack of corresponding points in the map. The process
of filtering out these unstable points serves to enhance the
accuracy of scan-matching algorithms by improving the data
association between the current scan and map points. We
explain the data processing and segmentation steps in the
remainder of this section.

B. 4D Sparse Convolution Neural Network

Sparse convolutions are designed to handle sparse data
structures efficiently. In the context of 3D point clouds, this
is crucial because most of the space in a 3D environment is
empty, and processing all empty voxels can be computationally
expensive. Several network architectures were proposed to
work directly on point cloud data such as PointNet [26],
PointNet++ [27], KPConv [32] and PointNetLK [2]. However,
most architectures are computationally expensive and can not
generalize well for high dimensional spaces [8]. Therefore, for
this work, we exploit Minkowski networks [8] since they are
memory efficient and fast.

The input to the network consists of a sparse tensor, a
representation that efficiently encodes the sparse nature of
the point cloud, comprising both the point coordinates C and
the corresponding features F . The sparse tensor is formulated
in the following manner, where each entry corresponds to a
voxel:

C =

 b1 x1 y1 z1 t1
...

bN xN yN zN tN

 F =

f
T
1
...
fT
N

 , (5)

where bi is the batch index, ti is the time index of the
4D tensor and f i is the feature vector associated to the i-
th coordinate voxel. We follow 4DMOS and use a constant
feature f i = 0.5 such that the spatio-temporal information is
extracted only from the non-empty voxels represented by the
4D coordinates.

C. Generalizable Scan-based Stable Points Segmentation

Enhancing the generalization ability of a network to segment
points from 3D LiDAR frames in unfamiliar environments typ-
ically involves resource-intensive methods such as expanding
the training dataset, regularization, reducing the network size,
and employing data augmentation techniques. However, these
approaches come with significant costs. Our approach solely
uses the spatio-temporal discrepancy between the LiDAR
frame and the point cloud map to decide which points are
stable, therefore enabling a generalizable setup that does not
rely on additional information such as semantics.
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Fig. 2: An overview of our method: Initially, we transform the scan using an initial pose estimate. Next, we voxelize both scan and map
points and extract overlapping map voxels, i.e. submap voxels. Both the scan and map voxels are represented as a 4D sparse tensor, with
the fourth dimension denoting time t. We then apply sparse 4D convolutions on a joint sparse voxel grid that encompasses both the scan
and submap points, leading to the prediction of long-term stability scores for the scan points.

To find the discrepancy between the scan and map point,
we first start by transforming the LiDAR scan S = {pi}N−1i=0

into the global map frame utilizing the initial pose prediction
from the unscented Kalman filter T ′, resulting in S ′. Then
we add a timestamp t to the scan and map points to form a
4D tensor with each point represented as pi = [xi, yi, zi, ti]

T,
where we use a fixed time tm for the map points and a fixed
time ts for the transformed scan points S ′. The motivation
behind this is mainly to distinguish between scan and map
points that are falling in the same voxels at later steps.
Subsequently, we discretize the scan and map 4D tensors into
sparse 4D tensors, utilizing a predefined spatial resolution. The
scan and map sparse voxel grid coordinates are denoted as
follows: CS ∈ R4×n and CM ∈ R4×m. Here, n and m are
the numbers of scan and map voxels, respectively. Each voxel
coordinate is represented using its central Cartesian position.
It is important to note that the original point coordinates are
preserved within their respective voxels to recover a per-point
segmentation.

Next, we merge the scan and map 4D tensors into a unified
tensor. Given that scan and map voxels share the same coordi-
nate frame, this merging process highlights the discrepancies
between the scan and map voxels, revealing three possible
scenarios for a voxel. Firstly, if a voxel encompasses both
scan and map timestamps, it suggests association with a stable
object. Secondly, if a spatial voxel exclusively contains the
scan timestamp, it indicates a potential association with an
unstable object. Lastly, if a voxel solely possesses the map
timestamp, it signifies that the voxel is either beyond the scan
range or has been obscured by another object.

To estimate the stability confidence score for each point,
we employ a sparse CNN designed for stability inference
through regression. This involves applying sparse convolution
to the unified scan and map sparse 4D tensor. Our sparse
CNN is derived from the modified MinkUNet14 [8], initially
introduced in 4DMOS [20]. We repurpose this network as
a regression model, with a specific modification to the final
layer. In this adaptation, we utilize the sigmoid function to
predict confidence scores for stable points, ensuring the values

range between 0 and 1 for each point.

Passing the complete unified 4D tensor to the network could
adversely affect the network’s inference time performance,
primarily due to the substantial size of the unified tensor,
driven by the dimension of the map tensor. To tackle this
challenge and enhance inference speed, we opt to prune the
unified sparse tensor. Specifically, we eliminate sparse voxels
exclusively containing the map timestamp only. We keep only
the voxels that contain at least the scan timestamp as illustrated
in Fig. 3. This decision stems from our specific interest in
inferring stability confidence scores only for the scan points.

Finally, we segment the stable points Ss from the current
scan S based on the predicted stability confidence scores as-
signed to S, where we apply a fixed threshold ε for segmenting
the stable points. Unlike our prior work [15], our approach
leverages this scan-map discrepancy effectively in segmenting
stable points, contributing significantly to the network’s robust
generalization performance.

Merge Prune
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0 1 2
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(0, 0, tm)
C

(0, 1, tm)
(0, 2, tm)
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CNN

C
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Fig. 3: Our method prunes map voxels without scan correspondence,
significantly improving performance by eliminating unnecessary vox-
els. In this example, the map depicts a wall corner, and the illustrated
scan voxels reveal the occlusion of some map voxels caused by an
obstacle. We show the resulting voxel coordinates C before and after
pruning and indicate the map and scan timestamps as tm and ts,
respectively.
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D. Training Labels for Sparse CNN

We generate the training labels for the sparse CNN in an
unsupervised fashion based on prior work [15], mainly to
avoid the manual labeling process as it is time-consuming. A
point is considered stable if we have at least two observations
of its environment. We first build point cloud maps of the ob-
servations denoted as {M}k0 using a simultaneous localization
and mapping system such as FAST-LIO [40], where k is the
number of observations of the environment, along with their
associated occupancy grid OctoMaps [14].

Assuming the point cloud maps are roughly aligned, we
fine-align them using ICP. The labeling procedure starts
with selecting a reference map Mi to be labeled. For each
point p ∈ Mi, a spatio-temporal stability label is assigned
based on the maximum spatial distance d to the nearest point
in all other maps while accounting for occlusions by querying
the occupancy of the point location in the query map.

This distance value is transformed into a unitless value
using the cumulative distribution function of an exponential
function: F (d) = 1 − exp(−d). This transformation bounds
the continuous value between 0 and 1, effectively representing
long-term spatio-temporal stability, where a value close to
0 suggests a stable point, whereas a value approaching 1
signifies an unstable point. For an in-depth understanding of
this labeling pipeline and our approach to handle occlusions,
we direct the interested reader to our prior work [15].

IV. EXPERIMENTAL EVALUATION

The main focus of this work is to segment unstable points
from LiDAR scans and utilize the remaining stable points
to improve the localization performance of scan-matching
algorithms in changing environments. We present our exper-
iments to show the capabilities of our method. The results
of our experiments also support our key claims, which are:
(i) increasing the robustness of robot long-term localization,
(ii) generalizing well to different environments without model
retraining.

A. Experimental Setup

1) Datasets: We demonstrate our method’s effectiveness in
learning to segment stable points and improving long-term
localization using the Bacchus long-term (BLT) dataset [23].
This dataset was collected in semi-structured agricultural en-
vironments over several months. Additionally, we assess our
approach’s generalization by employing two more datasets.
One is Riseholme, which is a vineyard at Riseholme campus
and also part of BLT. The other dataset is a parking lot from
the north campus long-term (NCLT) dataset [6], which has
diverse objects not found in BLT, thus challenging our model’s
transfer capabilities.

2) Baselines: We compared our approach to four baseline
methods: (i) raw, which uses the unfiltered scans for localiza-
tion, (ii) mask, which utilizes the masked submap voxels that
are associated with scan voxels, (iii) 4DMOS [20], which is a
method that filters dynamic objects in a sequence of past scans
not considering the prior map and therefore the points’ long-
term stability, and (iv) LTS-NET [15], which filters unstable

points based on long-term stability labels but does not leverage
the scan-map discrepancy.

3) Implementation Details: We set the quantization size
for the sparse voxel grid to 0.1 m mainly to not lose details
of the features. We train our 4D sparse CNN in a self-
supervised manner by using the auto-generated stability la-
bels Sec. III-D, as a cost function we use the root mean
square error (RMSE) L loss, and we supervise the training
on scan data only. For generating the training data, we utilize
the BLT dataset. Specifically, we use sequences from April
20th and June 1st for training, while sequences from June
8th are used for validation. The model undergoes training for
60 epochs, and we save the best-performing model based on
its performance on the validation dataset. Additionally, we
augment the training batches by applying random flipping,
rotating, and scaling, as outlined in [20]. After predicting long-
term stability confidence score with our method, we use a
fixed threshold of ε = 0.84 for filtering stable points which is
chosen based on the localization performance on the training
and validation set.

Both the presented approach and LTS-NET were trained
on the automated data generated from the BLT dataset, while
we did not train 4DMOS on this dataset for two reasons:
(i) 4DMOS claims to generalize well in new unseen envi-
ronments, (ii) the auto-generated labels from the BLT dataset
will not work with 4DMOS since the labels do not indicate if
the object is currently moving.

B. Localization Performance in Agricultural Environments

In this section, we conduct experiments to back up our
first claim and evaluate the ability of our method to localize
in changing environments using the segmented stable stable
points only.

To evaluate the performance of improving the accuracy of
scan-to-map localization in changing environments through the
utilization of stable scan points, we first build a base map
using earlier sequences of the BLT dataset. Particularly, we
use the April 6th sequence of an early growth stage therefore
containing only stable objects. Subsequently, we utilize the
data from the later sessions to perform localization within the
base map. For the quantitative evaluation, we use the RMSE
of the absolute trajectory error (ATE) [42]. However, it is
important to note that the localization algorithm might fail to
estimate a reliable pose and start providing inaccurate poses.
To account for this, we consider the localization as failed if
the ATE exceeds a specific threshold τ (τ = 1.5 m for our use
case), marking the time when the localizer failed. We excluded
estimated poses beyond this point from the evaluation. To
conduct a fair trajectory evaluation, we employ the trajectory
duration ratio metric [9]. It represents the ratio between the
duration of the estimated trajectory (est) and the total duration
of the ground truth trajectory (gt). Specifically:

Rts =
∆ test

∆ tgt
, (6)

where a value closer to 100 % indicates a more accurate
estimation. The localization performance of all methods is
summarized in Tab. I.
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Method Raw Mask 4DMOS LTS-NET Ours
Seq/Metric RMSE Rts RMSE Rts RMSE Rts RMSE Rts RMSE Rts

April-20th* 0.133±0 100±0 0.385±0.03 64.8±12 0.132±0 100±0 0.093±0 100±0 0.128±0 100±0
June-1st* 0.352±0 72±0 0.777±0.10 8.8±2 0.546±0 100±0 0.3±0 100±0 0.288±0 100±0

June-8th** 0.382±0 100±0 0.697±0.08 8.2±4 0.366±0 100±0 0.272±0 100±0 0.281±0 100±0
June-29th 0.483±0 8.8±0 0.610±0.01 8.2±1 0.451±0 8.8±0 0.469±0 100±0 0.528±0.02 90.7±0
July-13th 0.281±0.03 75±0 0.663±0.02 12.2±0.04 0.201±0 73.7±0 0.416±0 11.1±0 0.350±0.06 87±0

TABLE I: Averaged localization performance comparison between baseline methods and our proposed approach (’Ours’) from five
experiments, including standard deviations. RMSE results are reported in meters, and Rts values are expressed in percentage. The * indicates
the training sequences of the stable points segmentation and the ** indicates the validation sequence.
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Fig. 4: Plots of the cumulative distribution function of the transla-
tional localization error for the BLT sequences June-29th and July-
13th.

In the initial vineyard stages on April 20th, when the envi-
ronment was relatively stable, most methods exhibit similar
localization performance, with a slight advantage for LTS-
NET. However, the mask baseline fails when the robot rotated
at the end of a row. Subsequent sessions show degradation
and eventual failure in the localization performance of both
raw scans and 4DMOS-segmented scans, particularly in the
June 29th sequence. This is due to 4DMOS’s limitation
in segmenting only dynamic objects, such as pedestrians,
while neglecting unstable objects like overgrown vegetation.
These unstable points will not have a map correspondence
as illustrated in Fig. 1, thus causing scan matching failure.
Conversely, our method and LTS-NET consistently deliver
competitive performance across various sequences and met-
rics. An interesting observation is the results for the July
13th session, where LTS-NET initially tracks only about 11%
of the trajectory, while our method exhibits a more robust
performance, tracking 87% of the entire trajectory. In addition
to RMSE and Rts, we visualize the empirical cumulative
distribution function [24] to evaluate the robustness of the
system and to assess the registration accuracy between the base
map and the LiDAR scan. We show the cumulative distribution
function plots for the test sequences in Fig. 4. The closer the
curve is towards the upper left corner, the smaller are the
expected errors and the more robust is the system. The results
verify that the proposed approach is more robust compared to
the baseline.

The mask baseline consistently fails in all sessions. The
reason behind this failure is that this baseline relies on the
accuracy of the estimated scan pose to segment the true
associated map voxels; thus a misalignment between the scan
and the map larger than the size of the voxelization can result
in a failure to segment the true associated map points, thus
causing a failure in the localization.

C. Generalization Capabilities

Dataset/Method Raw 4DMOS LTS-NET Ours
Riseholme 0.264 0.263 0.290 0.261
NCLT-115 0.165 0.166 0.165 0.157
NCLT-202 0.163 0.160 0.167 0.157
NCLT-219 0.170 0.164 0.158 0.156

TABLE II: Generalization performance of the proposed method
compared to the baselines in new environments. We report the RMSE
of the estimated trajectory in meters.

Next, we assess our second claim about the proposed
method’s generalization capability to segment the stable points
and to enhance long-term localization in new and diverse en-
vironments. We conducted experiments in two environments.
The first environment is a vineyard located at the Riseholme
campus of the University of Lincoln, while the second setup
is a parking lot from the NCLT dataset. In both cases, we
do not retrain the models or use any domain adaptation
techniques. Further, we employ a base map representing the
static structure. In the vineyard, we observe changes due
to plant growth, while the parking lot poses two distinct
challenges: alterations in the parking lot shape based on the
number of cars and the presence of plant vegetation as well
as moving objects in the sequence. For the NCLT dataset,
we use data from the sequences 2012-01-15, 2012-02-02, and
2012-02-19, denoted as NCLT-115, NCLT-202, and NCLT-
219, respectively.

Tab. II summarizes the method’s localization performance
compared to the baseline. The reported results are the averages
of five runs. The deviation of the runs is not presented since
the results were consistent. Additionally, we do not report
the Rts metric and only report the RMSE of the ATE since
the localizer effectively tracks the robot throughout the entire
trajectory for all methods. We exclude the mask baseline from
these experiments as it consistently fails in all trials due to
initial pose misalignment.

The results in Tab. II confirm the validity of our second
claim. Notably, the localization performance of raw scans and
segmented scans from 4DMOS exhibit similarities, suggesting
that dynamic objects such as moving pedestrians or cars have
minimal impact on the localization performance. To back this
up, we manually labeled the dynamic objects and found their
proportion to be 0.73 % of all points in the three sequences
and 4.22 % of the points belonging to movable objects like
pedestrians and cars. This indicates that the majority of
movable and therefore unstable points is not dynamic. We
hypothesize that the utilization of stable points significantly
influence the localization performance. Furthermore, the uti-
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Fig. 5: Comparison of the generalization ability of our method to
multiple baselines. Riseholme is recorded in an agricultural environ-
ment with walking persons and changing vegetation whereas NCLT
is a parking lot with parked cars.

lization of both scan and submap voxels as an indication of
discrepancy enhances the system’s generalization capability,
making it more capable at segmenting and utilizing stable
points in new and diverse environments as shown in Fig. 5. The
proposed method successfully segments unstable elements in
the Riseholme dataset, including humans and vegetation, while
in the NCLT dataset, it accurately identifies parking cars and
pedestrians as unstable objects, a task where both 4DMOS and
LTS-NET fail. Possible reasons are that 4DMOS segments
stable points based on their current motion and LTS-NET
based on object shapes it has seen during training which is
an agricultural environment in this experiment.

D. Filtering of Unstable Points

The previous experiments suggest that our approach suc-
cessfully localizes in changing environments by segmenting
and filtering unstable points. To give a more detailed reasoning
why our system improves upon existing methods, we provide a
quantitative evaluation of the classification performance of un-
stable points. We report standard metrics such as intersection-
over-union (IoU), precision, recall, and F1 score [12] for
unstable points on the validation and test set of BLT and
NCLT. We focus on the evaluation of unstable points since
their removal is more critical than for example keeping all
static points. It is important to note that we use the auto-
generated labels from Sec. III-D for evaluation, as no ground
truth labels are available. The results in Tab. III and Tab. IV
illustrate the system’s effectiveness in segmenting unstable
points in contrast to the baselines. Our approach achieves the
highest recall and therefore removes more unstable points than
the baselines resulting in a better localization in Sec. IV-B
and Sec. IV-C. Additionally, the results in Tab. IV again con-
firm the ability of our proposed method to segment unstable
points across novel and unseen environments. Note that the
performance gap for 4DMOS is due to the fact that 4DMOS
segments moving objects only which is only a subset of the
moving points.

Seq Method IoU Precision Recall F1
4DMOS 0.039 0.554 0.039 0.072

LTS-NET 0.643 0.836 0.738 0.779June-8th**
Ours 0.727 0.861 0.827 0.839

4DMOS 0.065 0.47 0.068 0.105
LTS-NET 0.637 0.878 0.701 0.775June-29th

Ours 0.784 0.924 0.836 0.877
4DMOS 0.006 0.541 0.006 0.012

LTS-NET 0.611 0.846 0.687 0.755July-13th
Ours 0.78 0.875 0.881 0.875

TABLE III: Segmentation performance of unstable points for the
validation and test sequences of the BLT dataset. We report the
average over all scans in the corresponding sequence. All metrics
are computed for the unstable points. Best results in bold. The **
indicates data used for validating the stable points segmentation.

Seq Method IoU Precision Recall F1
4DMOS 0.113 0.359 0.139 0.174

LTS-NET 0.054 0.269 0.07 0.099115
Ours 0.262 0.382 0.483 0.391

4DMOS 0.198 0.649 0.23 0.302
LTS-NET 0.152 0.601 0.167 0.251202

Ours 0.585 0.684 0.785 0.721
4DMOS 0.115 0.446 0.129 0.174

LTS-NET 0.075 0.277 0.096 0.132219
Ours 0.502 0.616 0.717 0.638

TABLE IV: Segmentation performance of unstable points for the
NCLT dataset. The reported results are averaged over all scans. All
metrics are computed for the unstable points. Best results in bold.

E. Runtime

We summarize the inference time of our method compared
to 4DMOS and LTS-NET in Tab. V on an NVIDIA GTX
1080ti GPU. The results demonstrate that the proposed ap-
proach can run sufficiently fast for mobile robots. Furthermore,
our approach shows a smaller GPU memory demand of
1047 MB compared to 1703 MB for 4DMOS, and 9487 MB
for LTS-NET.

Dataset LiDAR 4DMOS LTS-NET Ours
BLT 16-beams 0.052 (19.1) 0.095 (10.5) 0.037 (27.3)

NCLT 32-beams 0.048 (20.7) 0.101 (9.9) 0.036 (27.8)

TABLE V: Average inference time for 3D LiDAR frames, the results
presented in seconds and (Hz).

V. CONCLUSION

In this paper, we presented a novel approach to increase
the accuracy of scan-to-map-based localization in changing
environments. Our approach segments the scan points into sta-
ble and unstable points based on their long-term stability, and
we use only the stable points for localization. The backbone
of our method is a 4D sparse CNN that we train in a self-
supervised fashion. Initially, we train and evaluate our method
using the BLT dataset, followed by assessing its generalization
capabilities in two additional datasets. The outcome indicates
an improvement in localization performance, successful gen-
eralization to unseen data, and a runtime suitable for mobile
robots, which supports all claims made in this paper.

Despite the effectiveness of our proposed approach, we
rely on an accurate pose estimate for the initial alignment of
the scan with the map to accurately determine discrepancies
between scan and map data. This alignment should be a rea-
sonable initial guess to avoid wrong segmentation leading to
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a localization failure. In future research, we aim to strengthen
the robustness of the initial estimate by incorporating more
odometry data.
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