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Fig. 1: A database over previously seen local maps is queried for matching a new local map (left). We perform feature matching on
features computed on the bird’s eye view density images of these maps to detect closures (center). Finally, a RANSAC-based 2D rigid
body alignment is used to obtain the 2D pose estimate between loop closed local maps (right).

Abstract— The ability to detect loop closures plays an essen-
tial role in any SLAM system. Loop closures allow correcting
the drifting pose estimates from a sensor odometry pipeline. In
this paper, we address the problem of effectively detecting loop
closures in LiDAR SLAM systems in various environments with
longer lengths of sequences and agnostic of the scanning pattern
of the sensor. While many approaches for loop closures using
3D LiDAR sensors rely on individual scans, we propose the
usage of local maps generated from locally consistent odometry
estimates. Several recent approaches compute the maximum
elevation map on a bird’s eye view projection of point clouds to
compute feature descriptors. In contrast, we use a density image
bird’s eye view representation, which is robust to viewpoint
changes. The utilization of dense local maps allows us to reduce
the complexity of features describing these maps, as well as the
size of the database required to store these features over a long
sequence. This yields a real-time application of our approach
for a typical robotic 3D LiDAR sensor. We perform extensive
experiments to evaluate our approach against other state-of-the-
art approaches and show the benefits of our proposed approach.

I. INTRODUCTION

Autonomous mobile robots must accurately estimate their
ego motion while traversing through previously unseen en-
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vironments. This task forms a core element of a simulta-
neous localization and mapping (SLAM) system [6], [28].
Sequential odometry estimates often suffer from drift, es-
pecially over long traversals. This drift can occur due to
the inherent noise in the robot motion and sensor data,
dynamics in the environment, and non-trivial data association
problems. When a robot revisits a known place, its belief
may indicate a completely different location because of such
drift. To overcome this problem, detecting revisited locations,
also known as loop closures, is paramount for any SLAM
pipeline. Robust loop closure detection is a prerequisite for
drift correction through the integration of pose constraints
often done in the underlying pose-graph [6].

Detecting previously seen places from sensor data [22],
[35], [36] requires crafting an as-unique-as-possible descrip-
tion of the sensed environment. At the same time, this
description should be invariant to changes in the viewpoint,
scan pattern of LiDARs, and dynamics in the sensed en-
vironment. Furthermore, to incorporate loop closures in a
SLAM system, this description should preferably capture the
geometry of the scene to enable relative pose estimation.

Traditional methods either work directly on the maps [7],
[31], [37] or rely on computing a description for each LiDAR
scan [5], [8], [10], [15], [17]. Subsequently, they use a
matching algorithm to compare these descriptions and detect
loop closures. The bird’s eye view (BEV) projection of point
clouds is one popular approach [15], [17] towards detecting
loop closures, providing a compact 2D representation for
faster feature detection and matching.

The main contribution of this paper is a simple yet



effective approach, see Fig. 1, for detecting loop closures in
online LiDAR SLAM systems. Local maps generated using
locally consistent sensor odometry estimates form the core
element of our approach. We show that a simple feature
detection and matching pipeline exploiting density images
from the BEV projections of the local maps can effectively
detect loop closures. We also provide a validation step to
perform a geometric verification of detected loop closures
and provide a complete 2D rigid body transform between
the loop-closed local maps. Our approach (i) can effectively
detect loop closures between two temporally separated local
maps in a variety of environments, (ii) provides a 2D rigid
body transform between the detected loop closures, and
(iii) is agnostic of the sensor scan pattern by exploiting
local maps. The open-source implementation of our ap-
proach is available at: https://github.com/PRBonn/
MapClosures.git.

II. RELATED WORK

The task of loop closing in the domain of 3D ranging
sensors has been discussed in many recent works, as laid
out thoroughly by Zhang et al. [40]. Many approaches [1],
[10], [25], [26], [38] propose 3D point features inspired by
image-based localization. They discretize the neighborhood
around a point into a geometrical grid and compute the local
descriptor based on the height, density, distance, or angle
of the points within. These methods are partially affected
by the sparsity of typical LiDAR point clouds and are not
viewpoint-invariant.

Learning-based approaches such as SegMap [4] segment
point clouds using a region-growing algorithm and compute
data-driven descriptors of these segments to detect loop
closures. OverlapNet [3] computes overlap between the
range-image representation of two scans using a deep neural
network. Such approaches, though, require a training step
along with GPU acceleration.

Several approaches project the 3D point cloud into a 2D
spherical-view range image [29], [30] or a BEV image [17],
[18], [19], and then use established techniques in image
processing to compute descriptors. Some methods [8], [13],
[15], [21] use BEV projections to define a global descriptor
capturing holistic information from each scan.

The popular ScanContext [15] proposes a polar elevation
map centered at the local reference frame of the LiDAR
scan. This allows the computation of a rotation-invariant
global descriptor but loses translational invariance. They try
to overcome this by manually shifting the reference frame
of scans by the expected translation during revisits. Scan-
Context++ [13] computes Cartesian elevation maps along
with polar elevation maps. However, most of these global
descriptors assume a spherical scan pattern of conventional
LiDARs, and, as such, they are not well suited for other scan
patterns, such as the Livox LiDAR.

ContourContext [9] generates BEV projections at pre-
defined heights and clusters (contours) the projected points
within these elevation maps. They use the statistics com-
puted from these contours to define a global descriptor for

matching. Another recent work by Yuan et al. [39] proposes
stable triangle descriptors (STD) computed using keypoints
within a local neighborhood. These keypoints too, are based
on a local BEV projection of the points within a voxel at the
boundary of a planar region. They accumulate a fixed number
of consecutive scans for computing these descriptors to have
a sufficient point cloud density. However, these methods use
the elevation map as the 2D representation, which is sensitive
to the sensor viewpoint. BVMatch [18] proposes using a
density map representation but requires training a bag-of-
words model on features detected from individual scans to
detect loop closures. Thus, it is not ideal for online SLAM
in novel environments.

Among the 2D projection based approaches, BEV projec-
tions [13], [15], [17], [18], [19] seem to be preferred over
the range image based approaches [3], [20]. A key reason is
that the range images lose depth information while projecting
spherically. On the other hand, BEV projections preserve 2D
geometry along the local XY plane, which is crucial for most
autonomous ground robots/vehicles.

Our proposed method uses local maps as the primary
representation, where we accumulate scans based on travel
distance criteria rather than naively accumulating a fixed
number of consecutive scans. Such maps allow us the
benefit of having a dense collection of points representing
the environment, which show a stronger invariance towards
viewpoint changes and sensor scan patterns. We use 2D
density images [18] of these local maps instead of elevation
images to increase robustness against viewpoint changes
and noise in the sensing process. Utilizing existing feature
descriptors from the computer vision community [24], we
compute local features on these density maps and store them
in an efficient binary search tree [27] for matching with query
maps. This allows us to provide a complete 2D relative pose
estimate between detected map-level closures, which aids the
final 3D registration step in any geometric SLAM pipeline.

III. OUR APPROACH TO LOOP CLOSURE DETECTION

Our proposed approach detects loop closures at a local
map level and provides a complete 2D initial guess on
the relative pose between matched maps. We generate local
maps using odometry estimates and represent them as a
density image as explained in Sec. III-A and Sec. III-B.
Then, we compute local features on these images and create
a database for matching with query maps, see Sec. III-C.
Finally, in Sec. III-D, we show the geometrical verification
and alignment of the loop closures. Fig. 1 shows the overall
pipeline.

A. Local Maps

Our approach for detecting loop closures in SLAM uses lo-
cal maps. We build a local map by accumulating consecutive
scans with their relative pose estimates obtained from an ICP
odometry pipeline. In particular, we use the KISS-ICP [34]
odometry pipeline, a state-of-the-art approach for LiDAR
odometry with strong open-source community support.

https://github.com/PRBonn/MapClosures.git
https://github.com/PRBonn/MapClosures.git


To generate these local maps, we consider a set of n
consecutive 3D point clouds {Pi, . . . , Pi+n−1} in their local
reference frame, and transform them into the reference frame
of the ith scan {iPi, . . . ,

iPi+n−1} as follows:

iPi+n−1 = T−1
i Ti+n−1Pi+n−1, (1)

where Ti ∈ SE(3) is the odometry estimate of the pose
connected to the ith scan. We aggregate all these scans
into a local map Mi using a voxel grid with a resolution
of νmap meters per voxel. The local map Mi is centered
at the frame Ti, the first scan of the map. To ensure
a uniform density of points in the voxel grid cells, we
retain a maximum of 20 points per cell. The size of this
map Mi is decided based on the distance traveled by the
sensing platform. We accumulate n consecutive scans until
the travel distance ∥ti+n−1− ti∥2 exceeds a threshold of τm
meters, where ti ∈ R3 is the translational component of the
odometry pose estimate Ti.

B. Density Images

The BEV projection of point clouds is a widely used
approach in place recognition using LiDARs [13], [15], [17],
[18], [19]. Such a projection preserves local 2D geometry
and, at the same time, also reduces the computational com-
plexity of algorithms due to a reduced dimension to process.
However, many traditional BEV projection approaches [13],
[15], [17], [19] store the maximum height (elevation map) of
the points in each bin, not point densities. The elevation map
is sensitive to the orientation of the sensor as the maximum
height recorded varies with the distance between the scanner
and the object. The density of points scanned on a surface,
on the other hand, is less sensitive to viewpoint changes.

For a local map Mi, we project all the points to the
local ground plane through an orthographic BEV projection.
When the reference frame Ti of the local map Mi has its
xy-plane parallel to the ground, as is the case for ground
robots/vehicles, this would correspond to simply dropping
the z-coordinate of all the individual points. For other robots,
such as UAVs, we require a gravity vector that one can
directly obtain from an IMU. The BEV projection gives us
a set of points Bi in R2 bounded by a rectangular window
from [xl

i, y
l
i]
T to [xu

i , y
u
i ]

T meters where,[
xu
i

yui

]
= max

x,y
Bi ;

[
xl
i

yli

]
= min

x,y
Bi. (2)

Furthermore, we discretize Bi into a 2D Cartesian grid
Ni(u, v) ∈ NWi×Hi

0 of resolution νres meters per cell where,

Wi =

[
xu
i − xl

i

νres

]
; Hi =

[
yui − yli
νres

]
. (3)

Each cell in this grid N(u, v) stores the number of points
contained in that cell after discretization. The grayscale
density image Ii(u, v) of the local map Mi is then defined
as,

Ii(u, v) =
N(u, v)−Nmin

Nmax −Nmin
∈ RWi×Hi , (4)

Fig. 2: ORB features (red) and matches (green) between two density
images from the same location, revisited from a different viewpoint.

Nmax = max
u,v

Ni(u, v) ; Nmin = min
u,v

Ni(u, v). (5)

We set all the image pixels (u, v) with density lower
than 5% of the maximum value to be zero. This helps to
reduce the noise in the local maps and to remove the ground
plane, which is typically insignificant for feature detection.
These density images capture 2D floorplan-like information
from the local maps, like building facades and trees, as seen
in the density maps in Fig. 2. These rigid structures provide
reliable features to track for place recognition.

C. Feature Detection and Database Creation

Facilitated by accumulating information in the form of
the local map density images Ij , we utilize the well-known
ORB [24] feature descriptors to capture corner-like features
from them. To speed up computation, we compute ORB
features without scale-invariance. We can do this since the
density image is an orthographic projection of the 3D world
and has no scale ambiguity as regular camera images. Fig. 2
shows the ORB features computed on sample density images
in red.

Furthermore, the binary domain of ORB descriptors allows
for efficient feature storage and matching by leveraging the
Hamming distance metric. In particular, we employ the Ham-
ming distance embedding binary search tree (HBST) [27]
to store the set of feature descriptors Di obtained from
each density image Ii(u, v) along with the corresponding
map index i. The depth of the HBST is bounded by the
number of bits in the binary descriptor (256). It implies that
a query descriptor would have a maximum of 256 bitwise
comparisons with the tree’s nodes before it terminates in one
of the leaf nodes. Furthermore, the capacity of each leaf node
is limited to a maximum of 100 descriptors per leaf node.
Fixing these two design parameters imposes an upper bound
on the computational time of the feature-matching process
while not introducing any restriction in the practical use of
our approach. Although the binary tree is not a complete
data structure for a nearest-neighbor computation, it provides
a good initial guess on the feature matches for subsequent
geometric verification and refinement.

After obtaining a new set of descriptors Dq from the query
local map’s density image Iq , we find the nearest match for
each descriptor in Dq from the binary tree database. We use
a threshold of 50 bits on the Hamming distance between two



ORB descriptors to call them a match. Since the binary tree
stores descriptors along with an index i of the corresponding
map they were obtained from, we cast a vote over the map
indices for each such match. After processing all the query
descriptors, we select the reference maps corresponding to
top-N votes from this voting scheme. We set N to equal
half the number of local maps in the database at any time.
This dynamic factor allows us to find multiple potential loop
closures at the same physical location, the chances of which
increase with the number of local maps in the database. As
a result, we obtain a list of feature matches between the
query map and the reference maps in the database, on which
we perform a geometrical verification. Fig. 2 visualizes the
corresponding set of feature matches between two density
images.

D. Loop Detection and Map Alignment

The geometrical verification step involves a 2D alignment
of the matched features. It implies computing a 2D rigid
body transformation (3 degrees of freedom) that best aligns
the matched features from the binary tree based on a distance
metric. This is similar to the image-alignment problem but
limited to an SE(2) transform instead of a homography.
We use a Random Sampling Consensus (RANSAC)-based
alignment strategy to reject outlier associations due to the
incompleteness of the binary tree-based matching. This ver-
ification step is performed for matches between the query
map and each of the top-N reference maps separately.

We only need two sets of matching keypoints to compute
a rigid body alignment in 2D. Using this fact, we design a
RANSAC scheme, randomly drawing 2 feature matches from
the entire set of feature matches between a query (Iq) and
a reference (Ip) density image. We compute the relative 2D
alignment between them using the Kabsch-Umeyama [12],
[32] algorithm. It provides us with a rotation matrix R ∈
SO(2) and a translation vector t ∈ R2, which can be
composed into a homogenous transformation qTp ∈ SE(2).
Using this 2D alignment, we transform all the features
from Ip to the reference frame of Iq .

We compute the point-wise error between the matching
features for verification within RANSAC as the Euclidean
distance between the matched point sets. Matches with
distances larger than 1.5m (3 pixels for νres = 0.5m) are
considered as outliers. The RANSAC scheme terminates
after a fixed number of iterations or if we find a high-quality
solution, i.e., in case more than 30 inliers are obtained.

We define a threshold γ for the minimum number of
inliers required from the RANSAC alignment to conclude
whether two local maps belong to the same location. The
associated 2D transform between the two density images is
a reasonable initial estimate for the complete 3D transform
between local maps for ground robots/vehicles. Note that we
scale the translation vector by the voxel size (νrest) to undo
the effect of the discretization while generating the density
images. We can later use this initial alignment as an initial
guess for a fine point cloud registration in 3D.

IV. EXPERIMENTAL EVALUATION

This work provides a pipeline to compute loop closures
for SLAM using local maps. We present our experiments
to show the capabilities of our method. The results of our
experiments also support our key claims, which are: (i) we
can effectively detect loop closures between two temporally
separated local maps in a variety of environments, (ii) we
provide a 2D rigid body transform between detected loop
closures, and (iii) our approach is agnostic of the sensor scan
pattern by exploiting local maps.

A. Evaluation Criteria

To assess the performance of loop closure detection, we
identify scan-wise reference closures based on the volumetric
overlap of measured point clouds. The community needs
more consensus on what a ground-truth loop closure is, as
highlighted by Jiang et al. [9]. Related works [9], [15], [39]
usually consider two scans as a true positive closure if the
distance between the corresponding reference locations is
below a certain threshold. This criterion implies a potentially
wrong assumption that a sensor observes the same objects
when being at a similar location. It does not hold when other
objects occlude the previously seen area, the sensor has a
limited field of view, or when the orientation differs strongly.

Instead, we propose to use the volumetric overlap of scans
to decide if a loop should be closed. We argue that if the
point clouds from two different points in time overlap, we
can find their relative pose and integrate it into a pose-
graph. The first step of our reference identification is to
sample the reference trajectory at equidistant locations (2m)
to reduce the number of candidates. Next, we accumulate
the registered scans between two consecutive key locations
for a dense representation of the local environment. We find
all possible pairs of key locations within a distance of the
sensor’s maximum range with a minimum travel distance.
Further, we voxelize the accumulated point clouds of both
keyframes. We use a voxel size of 0.5m. Finally, we compute
the overlap o ∈ [0, 1] between two non-empty voxel grids Vi

and Vj using the overlap coefficient [33] as in Eq. (6), also
called the Szymkiewicz-Simpson coefficient:

o (Vi,Vj) =
|Vi ∩ Vj |

min (|Vi| , |Vj |)
. (6)

We consider two keyframes to be a loop closure if their
overlap o > 0.5.

To also evaluate and compare predicted closures between
local maps, we need to compute scan index closures eventu-
ally since other benchmarks provide closures on individual
scans. To achieve this, we apply the 2D pose correction qTp

between maps to the individual scans comprising these maps,
transforming them to a common reference frame. Then,
we compare all the pairs of scan-level poses between the
two maps, computing the pairwise distance between them.
Finally, we use a distance threshold τd to classify whether
or not two scan indices are predicted to be a loop closure.



TABLE I: Precision (P), Recall (R) and F1 scores of state-of-the-art baselines and our approach for all datasets.

Datasets MK03 MR02 MS01 NCD HT01

P R F1 P R F1 P R F1 P R F1 P R F1

SC [15] 0.890 0.450 0.598 0.259 0.071 0.111 0.027 0.126 0.045 0.415 0.007 0.013 N/A N/A N/A
CC [9] 0.798 0.424 0.554 0.695 0.080 0.144 0.244 0.076 0.116 0.226 0.030 0.053 N/A N/A N/A
STD [39] 0.679 0.435 0.530 0.491 0.042 0.078 − − − − − − − − −

Ours 0.730 0.668 0.698 0.939 0.731 0.822 0.983 0.298 0.458 0.927 0.068 0.127 0.473 0.669 0.554
Ours (E) 0.759 0.606 0.674 0.639 0.118 0.199 0.978 0.296 0.454 0.933 0.043 0.083 − − −

B. Experimental Setup

We evaluate our work on the MulRan [14], Newer Col-
lege [23], and HeLiPR [11] datasets. From the MulRan
dataset, we use the KAIST03 (MK03), Riverside02 (MR02),
and Sejong01 (MS01) sequences, which contain loop clo-
sures from varying viewpoints. They also cover a variety of
driving scenarios like city and highway scenes and longer
trajectories. The Newer College 01 short experiment (NCD)
sequence provides data recorded from a hand-held scanning
platform in contrast to the car-mounted scanner in MulRan.
For HeLiPR, we use the Town01 (HT01) sequence with scans
from a Livox LiDAR with a small field of view and an
irregular scanning pattern.

We compare our approach against three other baselines:
ScanContext-10 (SC) [15], ContourContext (CC) [9], and
STD [39]. SC is widely used in the context of SLAM and
among the current state-of-the-art methods. CC and STD
are recently published approaches for loop closures using
LiDARs. All these baselines provide a publicly available
working code for evaluation. We adapt their source code to
provide all possible loop closure candidates for each query
scan instead of only the best candidate. It ensures a fair
comparison, as our approach also provides multiple closure
candidates. The STD pipeline proposes accumulation of 10
consecutive scans into a local map, so we utilize the same
method as in our approach, to obtain scan index closures
from map index closures, with τd = 6m. We set all the other
parameters for the baselines to the default values provided
in their respective implementations.

For our approach, we set the maximum range of the
scanner r as well as the local map truncation distance τm
to 100m. For the KISS-ICP odometry, we use the default
parameters provided. We use a voxel size of νmap = 1.0m
for the voxel grid used to generate the local maps and a
resolution of νres = 0.5m for the density images. We use
the default parameters provided for ORB feature descriptors,
only disabling the parameters controlling scale invariance.
We require a minimum of 25 feature matches from the
HBST within a Hamming distance of 50 bits. All other
parameters of the binary tree are set to the defaults. Finally,
we predict two local maps to be loop closures based on
the number of inliers obtained from the RANSAC-based
alignment, the threshold for which is set to be γ = 10.
Finally, to compute scan index loop closures for quantitative
evaluation, we use a distance threshold of τd = 6m. We
maintain these parameters across all datasets except for the

HeLiPR Town01 dataset, for which we use a maximum range
of r = 50m, νmap = 0.5m, and a minimum of 10 feature
matches from the HBST. This is to account for the small
field-of-view and the scan pattern of the Livox LiDAR.

C. Performance Evaluation
The performance of our approach is shown in Tab. I as

a comparison of precision, recall, and F1 scores between
each of the baselines and our approach for all the datasets
mentioned above. We report the precision and recall scores
corresponding to the best achievable F1 scores for each
approach, including ours. The F1 score, being the harmonic
mean of precision and recall, is a suitable statistic for
comparison. It is evident from Tab. I that our approach
has the best F1 score among all baselines for all datasets.
Furthermore, we achieve these F1 scores at a significantly
high precision, which is important for incorporating loop
closures into a SLAM pipeline.

One can observe comparable performance across all ap-
proaches for the MulRan KAIST03 (MK03) dataset since it is
a regular city-like environment about 6.1 km long. However,
we see a significant performance gap between our approach
and other baselines for the MulRan Sejong01 (MS01) se-
quence, which is a 23.4 km long highway sequence with
sparsely distributed features as well as dynamic obstacles.
The STD [39] baseline even fails to run over such long
sequences having more than 15000 scans.

In Fig. 3, we also provide the precision-recall curves for
the MulRan KAIST03 and Riverside02 sequences, highlight-
ing the range of performance each approach offers. Our
approach not only provides the best F1 score for these
datasets as highlighted in Tab. I but also can be adapted
to provide either high precision or high recall based on the
distance threshold parameter (τd).

We also ablate our choice of density images over elevation
maps by modifying our pipeline to use elevation images of
the local maps. We present the results for the same in the last
row (Ours (E)) of Tab. I. We observe that the elevation image-
based approach performs at par or worse than our proposed
density image-based approach. Also, it fails on the HeLiPR
Town01 (HT01) dataset due to the limited field-of-view of
the Livox LiDAR.

Overall, this evaluation highlights our approach’s ability
to detect loop closures in a variety of environments. Further-
more, it is an indirect evaluation of our 2D pose estimates
between detected loops, as we use these estimates when
computing the scan index level closures.
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Fig. 3: The precision-recall curves for our approach and other
baselines.

D. Livox LiDAR Scan Pattern

The HeLiPR dataset provides scans recorded from a Livox
Horizon LiDAR, which has an irregular scanning pattern
compared to traditional LiDARs, with a higher density but
small field-of-view. This poses a significant challenge in de-
tecting loop closures. However, our approach can overcome
these challenges, primarily due to the use of local maps. As
seen from the last column (HT01) in Tab. I, we achieve an
F1 score of 0.554 on this dataset, also being the only method
to work on this dataset. STD [39], even though capable of
processing Livox scans due to aggregation of a fixed number
of scans, fails on this dataset due to the large size of the HT01
sequence.

E. Offline Optimization with Detected Loop Closures

In this final experiment, we showcase the ability of our
approach to perform drift correction in a SLAM pipeline. We
perform an offline pose-graph optimization, which includes
all the detected map-level loops. We perform a fine ICP

TABLE II: Absolute Pose Error (APE) in translation and rotation,
with (w) and without (w/o) loop closures.

Datasets # Closures

APE tra. (m) (rms) APE rot. (rms)

w w/o w w/o

MK03 73 3.04 14.64 0.05 0.09

MR02 33 12.70 32.58 0.08 0.11

MS01 2 206.6 1248.6 0.48 0.63

NCD 7 0.61 0.62 0.03 0.03

HT01 2 12.92 18.48 0.14 0.15
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Fig. 4: MulRan Sejong01 sequence poses before and after pose-
graph optimization.

registration on the detected loops between local maps with
the initial guess provided by our pipeline. The refined 3D
pose estimate between the local maps is then incorporated
as a constraint in the pose-graph along with the odometry
constraints. We use g2o [16] and robust kernels [2].

In Fig. 4, we show a comparison of pose estimates for the
MulRan Sejong01 dataset which is a 23.4 km long highway
sequence, with an odometry drift in the order of a few
thousand meters. We observe that including our detected loop
closures reduces the drift by a significant amount. This is
further confirmed by the values of absolute pose error (APE)
in translation and rotation with respect to the ground-truth
poses, as shown in Tab. II. We provide the APE values
with and without the inclusion of loop closures for all the
datasets to highlight the significant impact our approach
for detecting loop closures can have over the odometry
estimation. Furthermore, we achieve this improvement in
APE with a significantly lower number of loop closures as
seen in Tab. II, allowing for faster optimization of the pose-
graph.

In summary, our evaluation suggests that our method can
effectively detect loop closures with local maps, with a
better or at par performance compared to other approaches
on a variety of datasets. The accumulation of scans into
local maps makes our method agnostic of the sensor scan
pattern and density. Finally, we also demonstrated that our
detected loops significantly reduce drift when incorporated
into a pose-graph. Thus, we supported all our claims with
this experimental evaluation.

V. CONCLUSION

In this paper, we presented a novel approach to computing
loop closures for SLAM. Our approach exploits local maps
generated using local odometry estimates and compresses
them into a BEV density image representation. This allows
us to successfully detect map-level closures that can be
effectively incorporated into a pose-graph for optimization.
We implemented and evaluated our approach on different
datasets to show the generalizability of our approach to dif-
ferent scenarios and provided comparisons to other existing
techniques. We provide a thorough experimental evaluation
supporting all claims made in this paper. Our conclusion
from these experiments is that utilizing local density maps
for detecting loop closures is a useful direction for building
SLAM systems.
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