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Fig. 1: Our proposed SLAM system can accurately estimate the trajectory for a drive of more than 9 km length in real-time. Using the
same parameter configuration, we achieve a similar output for two different LiDAR sensors with different scan patterns and resolutions
from the HeLiPR dataset [19]. In both cases, our system can compute the odometry, successfully find loop closures across large time
spans, and output a globally consistent trajectory.

Abstract— Robust and accurate localization and mapping of
an environment using laser scanners, so-called LiDAR SLAM, is
essential to many robotic applications. Early 3D LiDAR SLAM
methods often exploited additional information from IMU or
GNSS sensors to enhance localization accuracy and mitigate
drift. Later, advanced systems further improved the estimation
at the cost of a higher runtime and complexity. This paper
explores the limits of what can be achieved with a LiDAR-

* Authors contributed equally

Tiziano Guadagnino, Benedikt Mersch, Saurabh Gupta, Ignacio Vizzo,
and Cyrill Stachniss are with the University of Bonn, Center for Robotics.
Giorgio Grisetti is with Sapienza, University of Rome, Italy. Cyrill Stachniss
is additionally with the Lamarr Institute for Machine Learning and Artificial
Intelligence.

This work has partially been funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy, EXC-2070 – 390732324 – PhenoRob, by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under STA 1051/5-1
within the FOR 5351 (AID4Crops), and by the German Federal Ministry
of Education and Research (BMBF) in the project “Robotics Institute
Germany”, grant No. 16ME0999.

only SLAM approach while following the “Keep It Small
and Simple” (KISS) principle. By leveraging this minimalist
design principle, our system, KISS-SLAM, achieves state-of-the-
art performance in pose accuracy while requiring little to no
parameter tuning for deployment across diverse environments,
sensors, and motion profiles. We follow best practices in graph-
based SLAM and build upon LiDAR odometry to compute
the relative motion between scans and construct local maps
of the environment. To correct drift, we match local maps
and optimize the trajectory in a pose graph optimization
step. The experimental results demonstrate that this design
achieves competitive performance while reducing complexity
and reliance on additional sensor modalities. By prioritizing
simplicity, this work provides a new strong baseline for LiDAR-
only SLAM and a high-performing starting point for future
research. Furthermore, our pipeline builds consistent maps that
can be used directly for downstream tasks like navigation. Our
open-source system operates faster than the sensor frame rate in
all presented datasets and is designed for real-world scenarios.



I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is an

essential building block for any mobile robot autonomously

navigating in unknown environments [9], [12]. Several

3D LiDAR SLAM approaches combine multiple sensor

sources [27], [29], [38], fusing 3D LiDAR readings with

inertial measurement units or GNSS data [39], [40], [41],

[42]. This sensor fusion approach helps reduce tracking er-

rors and enhances the precision of pose estimation. However,

managing multiple sensors in a sensor fusion pipeline can

be challenging due to the need for accurate inter-sensor cal-

ibration and time synchronization [34]. Besides that, several

recent SLAM systems make use of neural map representa-

tions [20], [25], [36], [37] or complex architectures [3], [5],

[6], [22]. These pipelines often overfit to the environment

and the specific sensor configuration or motion profile in

use, requiring extensive parameter tuning or training steps to

enhance performance in unseen scenarios.

In this paper, we present KISS-SLAM, a 3D LiDAR-only

SLAM pipeline that follows the “Keep It Small and Simple”

principle [14], [33]. The main goal is to provide a highly

performant SLAM system while minimizing the number of

components and parameters. We aim to reduce the system

complexity to enhance the generalization of our SLAM sys-

tem to different environments, sensor resolutions, and motion

profiles. Our approach challenges existing geometric SLAM

systems and modern deep learning-based solutions. The same

system parameters work in various challenging scenarios,

such as highway driving of robot cars, handheld devices,

and Segways. Furthermore, our method can generalize to

different scanning patterns and resolutions.

The main contribution of this paper is a simple yet highly

effective approach to LiDAR SLAM that can accurately

compute a robot’s pose and the corresponding map online

while navigating through an environment. We identify and

integrate the core components of a SLAM system using

established modules and conduct a comprehensive evaluation

of the resulting architecture. We show that we obtain highly

accurate globally consistent pose estimates while minimizing

the number of parameters that require tuning. In sum, we

make three key claims: Our “Keep It Small and Simple”

SLAM approach (i) is on par or better than state-of-the-art

SLAM systems in terms of pose accuracy, (ii) can accurately

compute the robot’s pose and map in a large variety of

environments, sensor characteristics, and motion profiles

with the same system configuration, and (iii) we can use

its mapping output for robot navigation. The paper and our

experimental evaluation back up these claims. We provide an

open-source implementation at: https://github.com/

PRBonn/kiss-slam that precisely follows the description

of this paper.

II. RELATED WORK

The development of 3D LiDAR-only SLAM emerged

to reduce hardware complexity and enhance applicability

in GPS-denied environments [4], [18], [29], [30], [35].

SuMa [1] is a pipeline designed for rotating LiDAR scanners

based on rendered views from a surfel map of the environ-

ment for data association and loop closure detection. Other

approaches like MULLS [24] classify points in a scan based

on their geometric features like ground, facades, or pillars

and optimize the pose using different loss functions. Direct

SLAM pipelines like MD-SLAM unify LiDAR and RGB-

D sensor processing through dense photometric alignment,

bypassing geometric assumptions and feature extraction [5].

CT-ICP [3] demonstrates that LiDAR-centric SLAM can

rival fused systems by refining temporal continuity and

motion prediction without inertial data. It integrates loop

closures based on features extracted on an elevation grid.

Although accurate, CT-ICP requires quite some parameter

tuning to operate in unseen environments. Moreover, the

system configuration must be adjusted to match the specific

motion profile of the platform in use. In contrast, our

proposed system does not require parameter tuning based

on the platform motion profile.

Loop closing is an essential functionality for 3D LiDAR

SLAM. In our system, we leverage the approach of Gupta et

al. [15] for loop closing, which utilizes ORB descriptors [28]

on a 2D density-based projection of local maps to effectively

re-localize the robot. This approach achieves state-of-the-

art performances, requiring little to no parameter tuning for

unseen scenarios.

Recent advances in neural representations include PIN-

SLAM [25], which integrates LiDAR odometry with a

probability-based implicit neural mapping framework. This

approach achieves accurate 3D reconstruction and loop clo-

sure without pose graph optimization by leveraging signed

distance fields and uncertainty-aware ray casting. These types

of systems have a high computational load and require

powerful GPUs to run. As such, these approaches currently

do not operate at the sensor frame rate when considering

the typical hardware settings available on a real robot. Our

system aims to deliver globally accurate pose estimates while

operating at a higher frequency than the sensor frame rate.

KISS-ICP [33] achieves accurate 3D LiDAR odometry

through minimalistic point-to-point ICP, eliminating the need

for IMU integration while achieving real-time performance

through adaptive motion compensation. The system performs

impressively with little to no parameter tuning required when

deployed in an unseen environment. Although KISS-ICP

performs well in terms of pose error while tracking [33], the

lack of a loop closing and pose graph optimization module

limits its performance. This work aims to extend KISS-ICP

to a complete SLAM pipeline. Following the “Keep It Small

and Simple” principle, we design a system that requires low

parameter tuning, delivers robust and accurate performances,

and has real-time capabilities.

III. OUR APPROACH TO LIDAR-BASED SLAM

This section presents the main components of KISS-

SLAM, our proposed LiDAR-based SLAM system. Given

a new LiDAR scan, we first estimate the odometry of the

platform based on sensor data in Sec. III-A. We then combine

the scan measurement and the ego-motion information into

https://github.com/PRBonn/kiss-slam
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our local mapping module in Sec. III-B. Upon completing

a map, we check for loop closures with previous local

maps in Sec. III-C. If a closure is detected, we perform a

pose graph optimization of the local map reference frames.

Finally, we output the resulting map as a 3D occupancy grid

in Sec. III-D. Fig. 2 illustrates our pipeline.

A. LiDAR Odometry Using KISS-ICP

To obtain the pose Tt ∈ SE(3) of the LiDAR sensor in the

odometry frame at time t, we first pre-process the incom-

ing point cloud P = {pi |pi ∈R
3} expressed in the sensor

frame by de-skewing and voxel downsampling resulting

in S = {si | si ∈R
3}, see [33]. Given the previous estimate

of the LiDAR pose Tt−1 and a constant velocity motion

model prediction ∆Tt ∈ SE(3), we compute an initial guess

for the current LiDAR pose as

T̂t = Tt−1 ∆Tt. (1)

We then refine this estimate by using the point-to-point it-

erative closest point (ICP) algorithm. At each iteration, we

obtain a set of correspondences between the source S and

our local map points Q= {qi | qi ∈R
3} which are stored in a

voxel grid as in KISS-ICP [33] and updated after registration.

We define the residual r between the point q and the point s

transformed by T as

r(T) = Ts− q. (2)

We then define our point-to-point cost function as:

χ(T̂t) =
∑

(s,q)∈C

∥

∥

∥
r

(

T̂t

)∥

∥

∥

2

2
, (3)

where C is the set of nearest neighbor correspondences. We

can then minimize Eq. (3) in a least squares fashion as:

∆ω = argmin
∆ω

χ(T̂t ⊞∆ω), (4)

where ∆ω ∈R
6 is the correction vector, and ⊞ applies the

correction vector to the current pose estimate. We repeat this

process, including nearest neighbor correspondence search

and least squares optimization, until convergence, resulting

in the new pose estimate Tt. After convergence, we update

the local map with a downsampled version of the registered

scan.

B. Local Mapping and Pose Graph Construction

Like several existing methods, our approach avoids main-

taining a single global map through a local map-splitting

strategy. This design exploits the inherent local consistency

of our odometry estimates, which yields precise short-

term trajectories within individual map segments. In our

system, each local map Mk contains a keypose refer-

ence frame Tk ∈ SE(3), an odometry-derived local trajec-

tory Tk ∈{Tt→t+1 | ts ≤ t < te}, and a keypose-centered

voxel grid Vk containing the local map points. Here, ts
and te denote the beginning and end times of the local map’s

construction.

We first integrate subsampled, deskewed scans into the

current local map using the odometry motion estimation pre-

sented in Sec. III-A. Next, we evaluate the total distance from

the sensor’s estimated pose with respect to the keypose Tk

of the current local map Mk. We create a new local map

when the traveled distance exceeds a certain threshold β. The

keypose of this new local map is initialized with the current

global pose estimate, which is a combination of the previous

keypose and the current odometry estimate. Then, we reset

the odometry frame and initialize the new voxel grid with a

spatially cropped version of the previous local map.

The system maintains a pose graph where nodes represent

keypose-anchored local maps connected through odometric

edge constraints. Subsequent sections detail our loop closure

detection methodology and explain how we integrate them

into the pose graph to enforce global consistency.

C. Loop Closing

After splitting the local maps, we search for loop closures

between our last local map and all previous local maps

generated. Such loop closures provide additional constraints

for the pose graph to correct the drift from odometry toward

global consistency.

To search for a closure, we use the approach by Gupta et

al. [15], [16]. First, we identify the ground points in the

local map and align the point cloud with the xy-plane of

the keypose reference frame. Next, we project the local

map into a bird’s eye view representation by computing

the density of projected 3D LiDAR points for each 2D

grid cell. We compute binary ORB [28] feature descriptors

from the 2D density image and search for matches in a

database of descriptors from all previous local map density

images. When we find a loop closure candidate, we perform

a RANSAC-based geometric validation that provides a 2D

alignment of the density images. We combine it with the

initial ground alignment to obtain an initial alignment of the

matched local maps T̂i→j .

To ensure that we can effectively use the detected loop

closure to correct for odometry drift, we perform a val-

idation step based on the 3D information stored in the

local maps. To this end, for each voxel in a local map,

we compute the mean µi of the point coordinates and a

per-voxel normal vector ni based on a principal compo-

nent analysis within the voxel points, resulting in a point

cloud Nk = {{µi,ni} |µi,ni ∈R
3}. We apply the initial

guess T̂i→j and perform a point cloud registration step

between the voxel-based point clouds Ni and Nj that corre-

spond to the local maps involved in the closure, resulting in

a transformation Ti→j . We then compute the Szymkiewicz-

Simpson overlap coefficient [32] between the point cloud as:

Γ(Ni,Nj ,Ti→j) =
|Nj ∩ Ti→j ⊕Ni|

min(|Nj |, |Ni|)
, (5)

where T ⊕ N applies the transformation T to the point

cloud N , ∩ indicates the intersection between the point

clouds based on the voxel size, and |N | is the size of the

point cloud. We accept a loop closure in the optimization if
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Fig. 2: Overview of KISS-SLAM. Our pipeline processes each LiDAR scan and first computes the odometry of the scanner, see Sec. III-A.
Successively, the system integrates the LiDAR point cloud with the motion estimate into a local map, as described in Sec. III-B. When the
LiDAR moton exceeds β meters, the system updates the pose graph and searches for loop closures, see Sec. III-C. If they are positively
validated based on overlap criteria, we perform a pose graph optimization step.

the value of Γ is above a certain threshold Γ0, which we

set fixed to 40 %. In that case, we add a loop closure edge

based on Ti→j and optimize the pose graph to obtain the

most up-to-date estimate of the keyposes.

D. Fine-Grained Pose Graph Optimization

After processing all scans, we perform fine-grained pose

graph optimization by fixing the nodes corresponding to

the keyposes and adding new nodes and edges using the

local trajectories stored in the local maps. This way, we can

optimize the scan poses within the local maps, allowing us

to redistribute minor drift errors among the poses in a local

chunk of trajectory. This procedure can be seen as an offline

implementation of the approach of Grisetti et al. [10].

IV. EXPERIMENTAL EVALUATION

The main focus of this paper is a simple yet highly

effective approach for LiDAR SLAM that can accurately

estimate a robot’s pose and the corresponding map of the

environment while the platform navigates through it. The

experiments reported here support our key claims, which are

that our KISS-SLAM approach is (i) on par or better than

state-of-the-art SLAM systems in terms of pose accuracy,

(ii) can accurately compute the robot’s pose and map in

a large variety of environments, sensor characteristics, and

motion profiles with the same system configuration, and (iii)

we demonstrate how to use the mapping output of the system

for a robotics navigation task.

A. Experimental Setup

We employ various datasets and established evaluation

methodologies to assess our system’s performance. To exam-

ine our approach’s effectiveness across different autonomous

driving datasets utilizing diverse sensors, we evaluate it on

the MulRan [21], HeLiPR [19], and Apollo [17] datasets.

HeLiPR, in particular, presents four different LiDAR sensors

with different ranging technologies and scanning patterns.

Method 2012-01-08

PIN-SLAM 1.69 / 0.30

SuMa 316.48 / 50.41
CT-ICP - / -
MULLS 6.44 / 0.59
Ours 3.00 / 0.61

TABLE I: Quantitative results on the NCLT dataset, we report
the absolute trajectory error (ATE) in meters and the relative
KITTI odometry metric in percentage as [m] / [%]. The best and
second best performing methods are reported in bold and underline,
respectively.

Method DCC KAIST Riv Sej

PIN-SLAM 3.57 / 1.37 2.42 / 0.32 7.55 / 0.46 782.96 / 7.68
SuMa 39.41 / 4.15 26.65 / 1.34 - / - - / -
CT-ICP 4.03 / 1.43 2.76 / 0.50 8.37 / 0.58 - / -
MULLS 27.30 / 1.72 34.21 / 0.60 66.60 / 2.27 1082.55 / 2.53
KISS-ICP 10.72 / 1.38 14.00 / 0.31 37.39 / 0.29 316.20 / 0.27
Ours 3.67 / 1.44 2.98 / 0.34 7.96 / 0.40 178.88 / 0.25

TABLE II: Quantitative results on the MulRan dataset, we report
the ATE in meters and the relative KITTI odometry metric in
percentage as [m] / [%]. The best and second best performing
methods are reported in bold and underline, respectively.

We exclude HeLiPR sequences recorded with the Velodyne

VLP-16 because of its self-occlusion with surrounding sen-

sors. Furthermore, we demonstrate our method’s versatility

by applying it to highly dynamic motion profiles, such

as those presented in the NCLT [2] dataset, which uses

a Segway platform, and the Newer College dataset [26],

captured with a handheld device.

B. Pose Accuracy Evaluation

The first experiment evaluates the performance of our

approach. It also supports our first claim, namely that our

system reports state-of-the-art performance in pose accuracy.

We use the standard ATE to measure absolute pose estima-

tion performances. We use the KITTI metric [7] to assess the

relative error. We use the open-source implementation from



Method
Bri

Aeva
Bri

Avia
Bri

Ouster
Rou
Aeva

Rou
Avia

Rou
Ouster

To
Aeva

To
Avia

To
Ouster

PIN-SLAM - / - 365.72 / 2.15 19.23 / 0.13 - / - 7.02 / 0.51 1.47 / 0.11 41.19 / 1.03 11.40 / 0.64 2.55 / 0.12

SuMa - / - - / - 140.01 / 1.08 - / - - / - 14.88 / 0.46 132.17 / 3.16 - / - - / -
CT-ICP - / - 41.47 / 0.36 579.62 / 0.89 10.04 / 0.72 3.36 / 0.25 1.81 / 0.16 65.29 / 1.37 63.72 / 2.02 - / -
MULLS 356.06 / 9.17 321.87 / 4.06 52.65 / 0.68 19.08 / 1.43 16.39 / 1.06 2.65 / 0.24 39.82 / 2.85 14.93 / 1.35 4.45 / 0.27
Ours 98.61 / 1.57 148.88 / 1.82 19.47 / 0.28 6.06 / 0.47 3.84 / 0.23 1.18 / 0.17 14.44 / 0.85 12.01 / 0.46 1.99 / 0.21

TABLE III: Quantitative results on the Bridge (Bri), Roundabout (Rou) and Town (To) sequences of the HeLiPR dataset, we report
the ATE in meters and the relative KITTI odometry metric in percentage as [m] / [%]. The best and second best performing methods are
reported in bold and underline, respectively.

Method
BTS

2018-10-12
CP

2018-10-11
H237

2018-10-12
MAVE

2018-10-12
SB

2018-10-03

SJD
2018-10-11

1

SJD
2018-10-11

2

PIN-SLAM 6.10 / 0.24 0.64 / 0.16 97.11 / 1.66 7.06 / 0.20 2.23 / 0.25 1.86 / 0.22 1.15 / 0.18
SuMa 181.19 / 3.55 - / - 366.66 / 9.51 79.68 / 0.43 - / - - / - - / -
CT-ICP 10.81 / 0.27 0.97 / 0.30 258.87 / 0.62 61.39 / 0.33 667.28 / 1.60 0.78 / 0.16 1.09 / 0.17

MULLS 104.14 / 0.27 47.03 / 0.90 354.21 / 0.39 182.59 / 0.16 - / - 13.38 / 0.32 11.41 / 0.56
Ours 3.74 / 0.23 0.80 / 0.22 30.16 / 0.40 9.08 / 0.26 2.51 / 0.25 2.00 / 0.17 0.66 / 0.17

TABLE IV: Quantitative results on the Apollo dataset, we report the ATE in meters and the relative KITTI odometry metric in percentage
as [m] / [%]. The best and second best performing methods are reported in bold and underline, respectively.

Method
2020

01-short
2020

02-long
2021

cloister
2021

math e
2021

quad e
2021
stairs

2021
underground e

PIN-SLAM 0.42 / 0.33 0.31 / 0.22 0.15 / 0.62 0.08 / 0.29 0.09 / 0.12 0.06 / n.a. 0.07 / n.a.
SuMa 2.06 / 9.11 5.77 / 3.04 0.17 / 0.79 0.16 / 0.32 0.21 / 0.66 1.85 / n.a. 0.11 / n.a.
CT-ICP 0.63 / 0.42 25.06 / 3.01 0.17 / 0.31 0.09 / 0.14 0.19 / 0.14 - / n.a. 0.15 / n.a.
MULLS 0.47 / 0.17 8.47 / 4633.62 0.13 / 0.17 0.13 / 0.02 0.16 / 0.34 1.82 / n.a. 0.69 / n.a.
Ours 0.30 / 0.26 1.58 / 2.14 0.40 / 1.18 0.15 / 0.61 0.16 / 0.03 3.58 / n.a. 0.12 / n.a.

TABLE V: Quantitative results on the Newer College dataset, we report the ATE in meters and the relative KITTI odometry metric in
percentage as [m] / [%]. The best and second best performing methods are reported in bold and underline, respectively. Note that in some
cases, the relative KITTI metric is not applicable (n.a.) due to the short trajectory length.

the evo package [13] instead of a custom implementation

for both metrics. We do this to standardize the experimental

evaluation of the results and simplify reproducibility. For the

MulRan and HeLiPR datasets, we report the average value

of the metrics over each scene, as for both datasets, three

different runs are performed per scene.

To assess the performance of our proposed SLAM system,

we compare the results to various state-of-the-art open-

source LiDAR-only SLAM systems such as SuMa [1],

MULLS [24], CT-ICP [3], and PIN-SLAM [25]. We report

the results in Tab. I to Tab. V. Note that we consider a run

failed (-) if the errors exceed a sequence-specific threshold.

The results show that our system consistently delivers state-

of-the-art performance in terms of pose accuracy, regardless

of the motion profile, scanning pattern, and sensor resolution,

often ranking first or second. Furthermore, KISS-SLAM is

the only approach that can effectively compute the poses

in all the reported scenarios. For example, in Tab. III, we

can see how our SLAM pipeline can successfully run on

the challenging Aeva sensor in HeLiPR, showcasing the

robustness and versatility of our approach, even compared

with more sophisticated neural SLAM techniques like PIN-

SLAM. Additionally, Tab. II compares our approach with

KISS-ICP [33], showing the benefits of a full SLAM pipeline

over odometry-only methods in terms of pose estimation

accuracy. Note that we obtain all our results with the same

system configuration, with no parameter tuning applied.

Furthermore, KISS-SLAM can compute the pose and map

estimate above the sensor frame rate. In contrast, the clos-

est baseline regarding pose accuracy, PIN-SLAM, needs to

balance runtime and performance. As investigated by Pan et

al. [25], the PIN-SLAM configuration needed to achieve the

level of pose accuracy that we report in our analysis does

not allow the pipeline to run at sensor frame rate on a single

NVIDIA A4000 GPU.

C. Ablation on Parameter Change

This experiment supports our second claim that our system

can accurately estimate the robot’s pose and map in many

environments, sensor characteristics, and motion profiles

with the same configuration. In contrast, existing SLAM

approaches usually require fine-tuning parameters to work

successfully with different setups.

Note that this section does not evaluate the total number

of parameters because this quantity is not straightforward

to measure. In fact, the number of parameters exposed in a

configuration file may not include all parameters, as some

are set as constants in the implementation.

In this experiment, we count the parameters that had to

be changed between different runs to achieve the results

reported in Tab. III and Tab. V, because they impose chal-

lenging changes in the data. For HeLiPR, we can compare

multiple sensor resolutions and scanning patterns using the

Avia, Aeva, and Ouster data recorded with the same motion



HeLiPR Ae HeLiPR Ae HeLiPR Av HeLiPR O
l l l l

HeLiPR Av HeLiPR O HeLiPR O NCD-2020

PIN-SLAM 12 11 13 23
SuMa 7 9 9 19
CT-ICP 16 16 16 16
MULLS - - 0 25
Ours 0 0 0 0

TABLE VI: Number of changed parameters between configurations
for different sensors and motion profiles. For HeLiPR, “Ae” denotes
the Aeva sensor, “Av” is Avia, and “O” is the Ouster scanner. Note
that “-” means that there is no working set of parameters for at least
one of the sequences. The lower the number of changed parameters,
the easier it is to run the approach on new data. The lowest number
of changed parameters is in bold.

profile in the same environment. We include data recorded

with a substantially different motion profile with the Newer

College handheld dataset. Note that we also consider data-

dependent parameters because, typically, these values influ-

ence other parameters in the pipeline [25], [33].

We can see in Tab. VI that multiple parameters must be

modified for all baselines when running the approaches on

the different sensors of the HeLiPR dataset. We also evaluate

the number of parameters that must be adjusted when running

the approach on data acquired by an autonomous vehicle

versus a dataset recorded with a handheld device. Again, all

baselines require a substantial change in the configuration,

whereas our approach works out of the box. This experiment

illustrates the robust generalization capabilities of our SLAM

method, which maintains high performance across diverse

sensor configurations, motion profiles, and environments

without requiring manual parameter tuning.

D. Navigation Experiment on Real Robot

Finally, our last experiment supports our third claim that

we can use the output of KISS-SLAM to perform robotic

navigation tasks. To illustrate the usability of a global map

computed using the pose estimates from our approach, we

build a 2D occupancy grid map of an office-like environment

and perform a global localization experiment. This demon-

strates the general applicability of our approach when using

different platforms for mapping and localization.

We start by recording a sequence of 3D LiDAR scans

using a Hesai XT-32 scanner mounted on a Clearpath Husky

robot. We run KISS-SLAM on this sequence and generate a

3D occupancy grid map of the environment, with a resolution

of 0.05m per voxel, following a standard occupancy grid

mapping algorithm [31]. For this experiment, we reduce the

maximum range of the points that KISS-SLAM processes

from 100meters to 50meters, as the office environment is

relatively small compared to an outdoor scene. Other than

this value, we leave the pipeline configuration untouched.

We would like to point out that KISS-SLAM could run

faster than the sensor frame rate on the robot’s onboard

computer, an Intel NUC equipped with an Intel i7 processor

and 32 GB of RAM. Additionally, we run the grid mapping

pipeline on the same computer.

To create a 2D occupancy grid, we process a horizontal

slice of the 3D occupancy map within a specific height

range, [zmin, zmax]. We assign the 2D cells occupancy values

based on the maximum occupancy within the corresponding

vertical column of the horizontal slice. Once we create a

map this way, we aim to globally localize and track the pose

of a second robot, the Clearpath Dingo, equipped with a

SICK TiM781S 2D LiDAR. Since the 2D LiDAR is mounted

at 0.16m above the ground, we initially set zmin = 0.1m

and zmax = 0.2m for the 2D occupancy grid construction.

The resulting maps are depicted in Fig. 3. The final 2D

map is shown in Fig. 3. We use a Monte-Carlo localization

(MCL) implementation from the Sapienza Robots Vision and

Perception group (RVP) [8], which we abbreviate here as

RVP-Loc, to perform localization with the Dingo equipped

with a 2D LiDAR. To measure the quality of our occupancy

map, we compare the localization performances of RVP-Loc

obtained using our map against an occupancy grid generated

with GMapping [11]. This second map is based on data

recorded in the same environment but with the Dingo robot

and its 2D LiDAR.

For our evaluation, we assess global localization perfor-

mance and pose-tracking accuracy after convergence. To

achieve this, we initialize RVP-Loc with 10,000 particles

uniformly distributed across the free space in the occupancy

map. We define the convergence criterion based on the

localizer’s reported pose covariance. Specifically, we require

the standard deviation of the largest principal component of

the translational part to be below 0.2 m and the standard

deviation of the heading angle to be under 10°. We measure

the convergence time that is required for the estimate to

converge. After achieving convergence, we evaluate pose-

tracking accuracy using ground truth poses derived from

AprilTags [23] placed on the ceiling of the office, captured

with an upward-looking camera. To ensure robustness, we

run RVP-Loc 10 times on each sequence, each time with a

randomly initialized seed. We provide the results, including

the mean and standard deviation over these 10 runs for

each sequence in Tab. VII. The results show no significant

difference between the two map representations, showcasing

that our system can effectively generate a map suitable for

global localization and tracking, validating the real-world

applicability of KISS-SLAM.

V. CONCLUSION

This paper presents KISS-SLAM, a simple yet highly

effective approach to LiDAR SLAM. Our approach operates

solely on LiDAR scans and does not require additional

sensors to compute the robot’s trajectory and map of the

environment. Our approach exploits a minimalist design

that can be employed in different challenging environments,

such as highway driving, handheld devices, and Segways.

Moreover, the system is not tailored to specific range-sensing

technologies or scanning patterns. We only assume that

point clouds are generated sequentially as the robot moves

through the environment. We implemented and evaluated

our approach on different datasets, provided comparisons

to other existing techniques, supported all claims made in



Global Localization Pose Tracking: Absolute Trajectory Error (ATE)
Sequence SLAM Method Convergence Success ATE translation [cm] ATE rotation [°]

Time [s] ↓ Rate [%] ↑ RMS ↓ Max ↓ RMS ↓ Max ↓

Static Sequence 1
GMapping 11.27± 5.68 100 9.48 ± 0.05 16.97± 0.11 1.89 ± 0.01 6.49 ± 0.07

Ours 10.34 ± 4.14 100 9.71± 0.02 16.01 ± 0.13 1.97± 0.01 7.81± 0.07

Static Sequence 2
GMapping 5.68 ± 1.37 100 9.88± 0.02 15.70 ± 0.20 1.77 ± 0.01 5.33 ± 0.06

Ours 6.19± 0.88 100 9.26 ± 0.05 17.85± 2.45 1.90± 0.01 7.61± 0.06

Static Sequence 3
GMapping 10.51 ± 1.93 100 9.68± 0.13 16.42± 0.11 1.80± 0.01 4.99 ± 0.07

Ours 11.73± 1.73 100 8.51 ± 0.20 14.23 ± 0.43 1.79 ± 0.06 5.55± 0.66

Dynamic Sequence 1
GMapping 11.81± 5.05 90 5.71 ± 0.18 11.06 ± 0.37 1.81 ± 0.01 6.74 ± 0.09

Ours 11.25 ± 1.87 90 9.57± 0.12 17.54± 0.08 1.99± 0.01 6.80± 0.07

Dynamic Sequence 2
GMapping 14.06 ± 5.52 100 7.43 ± 0.10 17.60 ± 0.36 2.38 ± 0.03 7.99± 0.08

Ours 22.66± 7.34 100 10.42± 0.05 23.73± 0.17 2.67± 0.05 7.92 ± 0.11

TABLE VII: Quantitative evaluation of 2D localization performance using our SLAM-generated 2D occupancy grid map and comparison
with a GMapping grid map. The evaluation is based on five sequences recorded in an office environment containing static and dynamic
scenes. We report localization metrics’ mean and standard deviation over 10 runs of RVP-Loc. The best results are in bold.

Clearpath Dingo

2D LiDAR

SICK TiM781S

Hesai XT-32
3D LiDAR

Sliced 2D Occupancy Map

3D Occupancy Grid from KISS-SLAM

Used For Localization

Mapping

Localization

[zmin, zmax]

Clearpath Husky
Used For Mapping

Fig. 3: Occupancy grid maps generated with our approach. The top shows the 3D occupancy grid we generate using KISS-SLAM, after
processing all the 3D scans from an Hesai XT-32 with a Clearpath Husky. The bottom displays the corresponding 2D grid generated by
slicing the 3D map. We then use this map to perform 2D localization using the approach of Grisetti et al. [8].

this paper, and released our code. The experiments suggest

that our approach is on par or better than substantially more

sophisticated state-of-the-art LiDAR SLAM systems. Yet, it

relies only on a few parameters and performs well on various

datasets under different conditions with the same parameter

set. Furthermore, the system’s output can be effectively

used to perform downstream tasks like robot navigation.

Finally, our system operates faster than the sensor frame

rate in all presented datasets. We believe this work will

be a new baseline for future LiDAR SLAM systems and

a high-performing starting point for future approaches. Our

open-source code is robust and simple, easy to extend, and

performs well, pushing the state-of-the-art LiDAR SLAM to

its limits and challenging more sophisticated systems.
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