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Fast Sparse LiDAR Odometry
Using Self-Supervised Feature Selection

on Intensity Images
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Abstract—Ego-motion estimation is a fundamental building
block of any autonomous system that needs to navigate in an
environment. In large-scale outdoor scenes, 3D LiDARs are
often used for this task, as they provide a large number of
range measurements at high precision. In this paper, we propose
a novel approach that exploits the intensity channel of 3D
LiDAR scans to compute an accurate odometry estimate at a
high frequency. In contrast to existing methods that operate
on full point clouds, our approach extracts a sparse set of
salient points from intensity images using data-driven feature
extraction architectures originally designed for RGB images.
These salient points are then used to compute the relative pose
between successive scans. Furthermore, we propose a novel self-
supervised procedure to fine-tune the feature extraction network
online during navigation, which exploits the estimated relative
motion but does not require ground truth data. The experimental
evaluation suggests that the proposed approach provides a solid
ego-motion estimation at a much higher frequency than the
sensor frame rate while improving its estimation accuracy online.

Index Terms—SLAM, Vision-Based Navigation

I. INTRODUCTION

THE ability to accurately estimate the ego-motion of an
autonomous vehicle is essential in many areas of mobile

robotics. In the context of autonomous driving and outdoor
robotics, 3D LiDARs are often employed for this task, as
they provide accurate range measurements of the surrounding
environment without being affected by illumination. This prop-
erty allows estimating the poses even in low-light conditions,
such as night, where cameras often do not provide sufficient
information. In the robotics community, many algorithms have
been proposed to compute odometry using 3D LiDAR point
clouds [2][7][35], most of which rely on the Iterative Closest
Point (ICP) algorithm [3] and variants of it [4][24]. To provide
robust and accurate results, these algorithms typically exploit
the local geometry around each point of the cloud. These
features come in the form of normals [4][25], smoothness
of the local surface [35], or a probabilistic distribution of
neighboring points [20][24].
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Fig. 1: An example of salient points extraction of our odometry
pipeline. We first project the intensity channel of the LiDAR scans
into a cylindrical image (bottom) and then extract keypoints using
SuperPoint (red dots). We can directly identify the corresponding 3D
salient points on the point cloud (top). We then use these points in
our odometry pipeline to provide state-of-the-art pose estimation at
high frequency.

The main drawback of these algorithms is that they process
all points in the scans to estimate the relative pose. The
task is particularly challenging on modern 3D LiDARs, as
they typically provide a large amount of data (around one
million points per second). Furthermore, the data is redundant
for the motion estimation problem as, under ideal conditions,
three points are sufficient to determine the rigid transformation
between two point clouds. Even though these conditions are
usually not met in real-world scenarios, it is evident that most
of the computations in LiDAR odometry systems might be
used on little informative points of the scans.

In this work, we investigate the possibility of exploiting the
intensity channel of the LiDAR scans to extract salient points
in the scene and then use them to compute the odometry more
efficiently. Our subset of the point cloud is small enough to
allow fast processing and, at the same time, contains enough
information to perform the task at an accuracy on par or better
than standard point cloud registration algorithms.
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The main contribution of this paper is a sparse LiDAR
odometry pipeline that relies only on intensity images for
feature selection. Moreover, we do not use a LiDAR-based
detector for identifying these points but instead rely on the
SuperPoint [9] architecture, a well-known feature extractor
network for RGB images. To boost the odometry beyond
the SuperPoint performance, we propose a self-supervised
procedure for fine-tuning the architecture online to the scene
at hand while computing the relative pose. This procedure
requires neither labels nor ground truth poses. It only relies
on the relative poses estimated by the odometry pipeline itself.
The fine-tuning allows the system to adapt the feature selection
process to the structure of the scene in which it is operating,
improving the pose estimation accuracy.

In sum, we make three key claims: our approach is able to
(i) compute solid frame-to-frame odometry relying solely on
intensity images for feature selection, (ii) improve its odometry
performance on the fly by fine-tuning the salient point detector
during navigation, and (iii) it runs online at 30 frame-per-
second and even faster. These claims are backed up by our
experimental evaluation.

II. RELATED WORK

3D laser-based odometry is a widely investigated topic
in robotics. It builds upon point cloud registration methods
to incrementally estimate the pose of a mobile platform by
aligning successive scans.

The Iterative Closest Point algorithm (ICP) [3] is one of the
most used methods for point cloud registration. It is an iterative
algorithm that refines an initial relative pose estimate. At
each iteration, the algorithm searches for corresponding points
between the clouds. Then, it performs an optimization step to
update the pose by minimizing the point-to-point distance of
these correspondences.

Chen et al. [4] modifies the objective of the original ICP
algorithm to capture the knowledge that points collected by
range sensors are discrete samples of continuous surfaces. This
more robust cost function, named point-to-plane, improves the
ICP convergence speed and accuracy. Segal et al. [24] devel-
oped a probabilistic formulation of ICP called Generalized-
ICP (G-ICP). In this framework, the author introduces a novel
objective considering the point distributions in both scans. This
further improves estimation accuracy and is considered the
gold standard for point cloud registration.

Della Corte et al. [7] proposes a general methodology for
3D photometric registration that can be used on both RGB-D
and LiDAR data. The approach does not require explicit data
association and can exploit multiple information sources, such
as range, depth, color and normals.

All the above mentioned approaches operate on all points to
estimate the relative transformation between the point clouds.
They are highly time-consuming and cannot be employed
online with modern LiDARs, as they provide a massive
amount of points per frame. The research community proposes
different strategies to reduce the 3D point cloud data while
maintaining the pose estimate accuracy to overcome this limi-
tation. These approaches rely on subsampling [19][32], NDT-
representations [29][23][6], or distinctive features [35][22][18]

to extract few meaningful points that are then used for the
registration. Our approach belongs to the latter category, as it
extracts salient features from the intensity channel of the scans.
While also previous works [35][18] extract distinct points from
the scans, it does so by evaluating the smoothness of the local
surface around each point. The selected points correspond to
planar patches and corners, which is substantially different to
our approach that instead select salient features using only
intensity values.

Recently, researchers have developed many data-driven al-
gorithms to extract salient points and descriptors directly from
point clouds. Choy et al. [5] presents a fully convolutional fea-
ture network for extracting dense descriptors on point clouds.
They then rely on random sampling to identify the salient
points. Building upon this architecture, Bai et al. [1] proposes
D3Feat, which computes a dense map for interest points and
descriptors simultaneously. Deng et al. [8] proposes 3DFeat-
Net, a two-stage network that first computes the keypoints and
then calculates the descriptors for the selected points only.
Shi et al. [26] proposes a graph neural network to extract and
match keypoints between two point clouds.

All these methods require ground truth poses for training.
Moreover, to the best of our knowledge, none of the above
data-driven approaches were used to compute the odometry
online, but rather an offline registration between the point
clouds. In contrast to these approaches, our method does not
require ground truth data and can compute the odometry at
the sensor frame rate.

Similarly to our method, the approach of Yoon et al. [34]
does not require ground truth and it is trained using only the
LiDAR scans. The authors present an unsupervised learning
algorithm that combines odometry estimation with keypoints
prediction and uncertainty estimation using a single learning
objective. However, the algorithm cannot compute the odom-
etry at sensor frame rate.

Wang et al. [33] proposes a SLAM pipeline that combines
geometric and intensity information to enhance estimation
accuracy. The approach exploits the intensity as an additional
cue in the feature selection step and the map representation.
Nevertheless, the system heavily relies on geometric infor-
mation to detect distinctive points from the LiDAR scans.
Conversely, our work aims to show that salient points can
be extracted by relying solely on intensity values.

Di Giammarino et al. [10] shows that the intensity channel
of LiDAR scans can be effectively used to detect loop clo-
sures using traditional visual place recognition algorithms. In
contrast, our work focus on exploiting the intensity images to
compute an accurate frame-to-frame odometry.

A method related to our approach is the work by Streiff et
al. [30], where the authors train a convolutional neural network
to extract salient points and descriptors using an image repre-
sentation of the scans. Their method exploits both the range
and the point coordinates, and it is trained from scratch using
ground truth trajectories. In contrast, our method relies on a
pre-trained network on RGB images, exploits only intensity
information, and can be trained online using the estimated
relative pose in a self-supervised fashion. Thus, no external
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Fig. 2: Our approach in a nutshell. The SuperPoint architecture processes intensity images in successive frames to obtain salient point locations
in image coordinates. We then extract the corresponding 3D points from the scan. These keypoints K, together with the corresponding
descriptors D, are then passed to our odometry algorithm to estimate the relative pose R, t that aligns the scans. We then use this pose to
generate pseudo-labels which we exploit to train SuperPoint online.

ground truth is needed in our case, which is a significant
advantage of our approach.

III. FEATURE-BASED POINT CLOUD REGISTRATION

Point cloud registration methods compute and iteratively
refine an initial estimate of the relative pose between two
point clouds. During each iteration, these algorithms search
for corresponding points between the clouds and perform an
optimization step based on the correspondences to minimize
the distance between associated points. We can roughly di-
vide these algorithms into two categories based on the data-
association strategy to find corresponding points. Geometric
approaches rely on simple heuristics based on nearest neighbor
search [3][4][24][25]. They are effective only when a good
initial estimate of the relative pose is available.

Feature-based methods in contrast compute a descriptor vec-
tor that incorporates the surrounding geometry and appearance
of each point in the clouds [22][28]. As these descriptors
are informative enough to identify corresponding points, these
approaches usually rely on a RANSAC scheme [11] combined
with the Umeyama algorithm [31] to compute a robust initial
alignment between the point clouds. As such, these methods do
not require an externally provided initial estimate. However,
the descriptor computation and RANSAC runtime limit the
real-time application of this type of algorithm, especially on
dense point clouds.

Our method relies on feature-based registration components
and builds on top of them, but we do not claim a novelty for
that part.

IV. OUR APPROACH

Our approach aims to compute an accurate frame-to-frame
odometry using sparse keypoint sets extracted from the inten-
sity channel of 3D LiDAR scans. At the same time, we exploit
the odometry estimate to fine-tune the interest point detector in
a self-supervised fashion. We provide an overview of the ap-
proach in Fig. 2. To identify the interest points, we project the
LiDAR point cloud into an image where pixels contain both
the coordinates and the intensity values of the corresponding

points (see Sec. IV-A). Keypoint/descriptor pairs are extracted
from the intensity channel of this image using the SuperPoint
architecture [9] (see Sec. IV-B). The relative pose is estimated
using this sparse point clouds in a feature-based registration
fashion (see Sec. IV-C). Note that, to initially compute the
odometry, we do not pre-train the network on LiDAR intensity
but instead rely on the original model trained on RGB images1.
Using the information given by the relative poses, we generate
pseudo-ground truth salient point locations and back-propagate
them through the network (Sec. IV-D). The overall system runs
online at 30 frame-per-second.

A. Intensity Image Generation

The key idea of the proposed approach is to use interest
points extracted from an image representation of LiDAR scans
to compute the odometry of the vehicle. We represent the point
cloud as a set of points P = {(p, i)}, where p = (x, y, z) are
the spatial coordinates and i is the corresponding intensity
value. We project the point cloud into a cylindrical image I ∈
RH×W×4, where each pixel contains the nearest point (p, i)
projected into that pixel. More specifically, we convert p to
image coordinates (u, v) using the mapping Π : R3 7→ R2 [2]:(

u
v

)
=

(
1
2

(
1− arctan (y, x)π−1

)
W(

1− (arcsin (zr−1) + fup)f−1
)
H

)
, (1)

where r =
√
x2 + y2 + z2 is the range, f = fup + fdown is the

vertical field-of-view of the sensor, and W,H are the width
and height of the resulting image I, respectively. Given the
image I, we can extract the individual channels Ix, Iy , Iz ,
Ii by simple slicing operations.

B. Interest Point Detection using SuperPoint

For each generated image I, we extract keypoint-descriptor
pairs from the intensity channel Ii using the SuperPoint
architecture. An example of interest point detection is shown

1The pre-trained model can be found at https://github.com/magicleap/
SuperPointPretrainedNetwork

https://github.com/magicleap/SuperPointPretrainedNetwork
https://github.com/magicleap/SuperPointPretrainedNetwork


4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

in Fig. 1. This fully convolutional network has a VGG-
like [27] encoder that maps the input image Ii ∈ RH×W

to an intermediate tensor B ∈ RH
8 ×

W
8 ×C with smaller spatial

dimension and larger depth. After the encoder, the architecture
splits into two decoders. One detects the salient point loca-
tions, and the other computes point descriptors. The peculiarity
of these decoders is that they are both composed of a single
Conv-ReLU-Conv block, while the remaining up-sampling
operations have no trainable parameters. For more details
about the SuperPoint architecture, we refer to the original
paper of DeTone et al. [9]. Due to its lightweight structure,
this neural network can be trained effectively on small memory
GPUs, which makes it suitable for online training.

C. Odometry Algorithm

Our approach relies on the intensity values returned by the
LiDAR sensor to compute features and, on top of that, the
relative pose between scans P(t) and P(t−1). The algorithm
is a feature-based point cloud registration method as presented
in Sec. III, applied to sparse point sets extracted from intensity
images. We first extract the 3D points coordinates of the
keypoints K(t), K(t−1) from the images I(t) and I(t−1) using
the locations given by SuperPoint. Further, we obtain the
corresponding descriptors from the second decoder of the
network. As the number of extracted salient points per frame is
small, we perform an exhaustive search among the descriptors
sets D(t), D(t−1) to establish the first set of correspondences.
As we compute the descriptors using only the intensity chan-
nels, it might happen that points with matching descriptors do
not correspond to the same spatial location.

To filter out these outliers, we rely on RANSAC [11] as
classical feature-based registration methods do. In particular,
at each iteration, we sample three random correspondences and
compute the relative transformation between the two frames
using the Umeyama algorithm [31]. We consider a point
correspondence an inlier if the associated points are closer
than a threshold τ . We then select the transformation with the
largest number of inliers.

Once inlier correspondences are determined, we refine the
relative pose by minimizing the point-to-point error using non-
linear ICP:

R∗, t∗ = argmin
R,t

∑
j,k∈C

ρ(‖p(t−1)
k −Rp

(t)
j + t‖2), (2)

where R, t are the relative rotation and translation, C is the set
of inlier correspondences. p(t)

j ,p
(t−1)
k are the coordinates of

the corresponding points and ρ is the Geman-McClure robust
cost [13].

D. Self-Supervision Optimization of the Features

Given the relative pose estimated by the odometry algo-
rithm, we design a procedure for fine-tuning the interest
point detector in a self-supervised way so that the odome-
try estimation improves. To this end, we first identify the
subset of keypoints that constitute the consensus set of the
transformation given by RANSAC and use them as labels for
the salient points’ locations during the training. If we naively

apply the above procedure, the network will constantly reduce
the number of points extracted, as the inliers are just a subset
of the keypoints set.

Instead, we want to identify new salient points to keep a
reasonable size of the consensus set to enhance the robustness
and, potentially, the pose estimate accuracy. To this end, we
select points with a small residual that are not in K(t), using
the same threshold τ that we used in RANSAC. As in this case,
we do not have correspondences between points, we projec-
tively compute the residuals using the image representation of
the target cloud I(t−1) and the projection function Π. A point
p
(t)
j in the source cloud is first transformed and then converted

to image coordinates using:(
uj
vj

)
= Π(Rp

(t)
j + t). (3)

We can then evaluate the point-to-point error via:

E(p
(t)
j , I(t−1),R, t) = ‖p(t−1)

j −Rp
(t)
j + t‖2, (4)

where p
(t−1)
j are the point coordinates stored in the pixel

(uj , vj) of I(t−1). We can efficiently compute the residual for
all the points through this method without the explicit need of
a nearest neighbor search for point-to-point correspondences.

However, the number of candidate keypoints is directly
related to the relative motion of the LiDAR. In the limit case
in which the sensor is not moving, all the scan points could be
selected. Furthermore, it is not straightforward for the salient
point detector to identify these points, as it does have access
just to the intensity values, not the point coordinates. We
filter out points with low gradient magnitude on the intensity
image to tackle these problems. In this way, we sparsify the
candidate keypoints set and give a clear hint to the network
about the salient points’ locations. Overall, a point is selected
as a new keypoint if the projective residual is less than τ
and the magnitude of the intensity gradient is above a certain
threshold γ. Once we identify the new keypoints K̃ in both
LiDAR scans, we generate the corresponding pseudo labels
for both the source and target intensity image.

To train the SuperPoint architecture, we use the same loss
functions of the original paper [9]. The loss is optimized on a
frame-to-frame basis using Stochastic Gradient Descent [15].
Thanks to the lightweight structure of SuperPoint and our
efficient strategy to generate pseudo labels, we can perform
the fine-tuning of the network while the system is computing
the odometry. Moreover, the overall pipeline runs at the sensor
frame rate.

Nevertheless, as we will show in the experiments, the pre-
trained model on RGB images already provides competitive
pose accuracy. As such, we can activate the fine-tuning on-
the-fly depending on the specific operating conditions of the
system. For instance, in highly dynamic environments, it might
be convenient to turn on the self-supervision to push most of
the keypoints towards the static parts of the scene.

E. Implementation Details

We report the evaluations for both the pipeline that uses
the pre-trained model on RGB images, named Sparse LiDAR
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Fig. 3: Average processing frequency for all the approaches on the
selected datasets. The dashed line indicates the sensor frame rate.

Odometry (SLO), and the online fine-tuned variant (SLO++).
In both cases, τ is set to 0.3m, while in SLO++ γ is set
to the mean magnitude of the gradient in the current image.
Furthermore, for SLO++ the loss is optimized using Stochastic
Gradient Descent with a batch size of 2, meaning that we
consider only the pair of frames used to compute the odometry
at each step. We would like to point out that we do not perform
multiple epochs on the datasets but rather discard the pseudo-
labels and the images once we perform an optimization step.
As such, the network sees each sample just once.

V. EXPERIMENTAL EVALUATION

We present our experiments to showcase the capabilities of
our method and to support our key claims that our approach
can (i) compute solid frame-to-frame odometry relying solely
on intensity images for feature selection, (ii) improve its
odometry performance on-the-fly by fine-tuning the salient
point detector during navigation, and (iii) it runs online at
30 frame-per-second and even faster.

A. Odometry Baselines

In the following experiments, we compare the proposed
method against state-of-the-art algorithms for point cloud
registration that are typically used to compute a frame-to-
frame odometry using LiDAR clouds. In particular, we select
the three standard point cloud registration algorithms namely
ICP [3], point-to-plane ICP [4] (ICP-P2P) and G-ICP [24].
Since the latter method is well known to be highly demanding
in terms of runtime, we implement an additional baseline,
denoted as G-ICP-D, where the input point cloud is down-
sampled with a voxel size of 0.2m.

All the approaches mentioned above rely on nearest neigh-
bor search to find correspondences. For outlier rejection, we

Fig. 4: Comparison between intensity images obtained from Newer
College (top), Mulran (middle) and KITTI scans (bottom).

filter out associations with a point-to-point distance above
2.0m and use a Geman-McClure robust cost [13] with the
scale parameter of 0.5.

We also implement a fifth baseline, reported as Suma-f2f,
based on the work of Behley et al. [2]. This baseline computes
the associations projectively using Eq. (1) and estimates the
relative pose using a point-to-plane ICP with a Huber robust
cost [14]. We keep the same outlier rejection strategy and
thresholds as the original algorithm [2].

B. Datasets and Metrics

We perform the comparisons using the MulRan [16] and
Newer College [21] datasets. Unfortunately, we could not
perform the comparisons on the popular KITTI Odometry
sequences [12], as the intensity values for the LiDAR used
in the recordings were too noisy due to the over ten years old
model of the LiDAR. Early multi-beam LiDAR sensors return
different values of the intensity even though the beams’ rays
were hitting the same surface [17]. Descriptors extracted on
such noisy images are not reliable enough to perform a high-
quality feature matching. To better showcase this effect, we
report in Fig. 4 the intensity images obtained by projecting a
sample scan from KITTI, MulRan and Newer College datasets.

To evaluate the pose accuracy of the different approaches,
we use the metric introduced by the KITTI Odometry bench-
mark [12], which considers relative translation and rotation
errors averaged over different trajectory lengths. Furthermore,
we report the average processing time for all the compared
algorithms. For all the experiments, we use a Dell XPS 15
laptop with an Intel Core i7-10750H, 16 GB of RAM, and
an NVIDIA GeForce GTX 1650 Ti GPU with 4 GB memory.
The machine is running Ubuntu 20.04.

C. Runtime

The first experiment has been conducted to back up our
claim that our approach runs fast enough to support online
processing at sensor frame rate. Furthermore, we want to com-
pare the performance of the different algorithms in terms of
runtime. We report in Fig. 3 the average processing frequency
of all the baselines for the selected datasets. As we can see,
only SLO, SLO++, G-ICP-D and Suma-f2f can effectively
compute the odometry at sensor frame rate. In particular, SLO
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Approach kaist01 kaist02 kaist03 short long

SLO 10.46/3.72 10.25/3.93 11.65/4.04 26.25/23.21 14.15/15.79
SLO++ 10.04/3.65 9.86/3.81 11.06/3.92 24.87/22.09 13.61/15.48
G-ICP-D 13.40/2.78 10.73/2.38 14.30/2.95 28.63/18.48 35.32/24.02
Suma-f2f 24.89/11.68 25.29/13.58 23.79/12.44 43.53/46.75 37.60/39.77

ICP 8.75/2.82 9.99/3.41 9.74/3.15 17.56/13.68 15.21/14.43
ICP-P2P 17.98/6.10 16.98/6.06 18.34/5.98 9.41/8.27 6.52/7.25
G-ICP 5.78/1.85 5.17/1.71 5.65/1.69 6.58/5.54 4.56/4.21

TABLE I: Relative errors averaged over trajectories of 100 to 800 meters length: relative translational error in % / relative rotational error
in degrees per 100 meters. In blue the best performance in terms of translational error among the real-time capable methods, in red among
all the compared approaches.

runs at more than 50 Hz, and it is the fastest method among
the compared algorithms.

As we can see from the result, our fine-tuning strategy does
not impact the real-time capability of the odometry system.
In fact, SLO++ runs at up to 30 Hz, more than two times the
average processing frequency of Suma-f2f, which is the closest
baseline. Furthermore, it processes scans 3 times faster than a
typical LiDAR data stream (10 Hz).

D. Odometry Performance

The experiments presented in this section are designed to
show the odometry performance of our approach. The results
support the claim that the proposed method can compute
accurate odometry using salient points extracted on intensity
images only.

We report quantitative results on the kaist sequences of
MulRan and short/long sequences of Newer College in Tab. I
and Fig. 5. In terms of the translation and rotation error,
both SLO and SLO++ perform on par with state-of-the-art
methods for frame-to-frame LiDAR odometry. In particular,
their performances in terms of odometry accuracy are similar
to point-to-point ICP on all the presented datasets. This result
shows that the keypoints extracted by SuperPoint on the
intensity images correspond to stable 3D points in the scene.
They are usually objects’ corners and edges, which have well-
defined geometric properties in 3D and are easily recognizable
in the 2D image.

On the kaist sequences, our approach performs even better
than point-to-plane ICP. This is related to the fact that there
are not many planar structures in those scenarios, and the
algorithm tends to be stuck in local minima.

The best performing method is G-ICP. This algorithm
exploits the local geometric structure around each point to
bootstrap convergence and accuracy. It does that by computing
the local covariance of the points in a small neighborhood.
As such, it is the most demanding method in terms of
computational resources and runtime. Conversely, G-ICP-D
can effectively run at the sensor frame rate. However, the
resulting estimated odometry is much less accurate due to the
reduced number of points used to estimate the local geometric
properties around each point.

The Suma-f2f algorithm has the worst performance in terms
of odometry accuracy on all the selected datasets. This is due
to the projective data associations, which turns out to be less

kaist0 kaist1 kaist2 nc-short nc-long

δt 4.01% 3.8% 5.1% 5.2% 3.8%

TABLE II: Ratio of improvement δt between SLO and SLO++ for
all the selected datasets. The value is reported in percentage

reliable than nearest neighbor search, especially if used on a
frame-to-frame basis.

E. Online Fine-Tuning

The last experiment evaluates the performance gain of the
online fine-tuning. The results support the claim that the
proposed self-supervised strategy for fine-tuning the salient
point detector improves the accuracy of the pose estimate. To
quantify this improvement, we define a straightforward metric
that aims to measure the ratio of reduction in translation error
as:

δt =
eSLO − eSLO++

eSLO
, (5)

where eSLO, eSLO++ represent the relative translation error for
SLO and SLO++ according to the KITTI metric. A positive
value of Eq. (5) represents a translation error reduction in
percentage. We report the value of δt for all the selected
datasets in Tab. II. As we can see from the results, SLO++
provides a reduction in translation error between 4 and 5% in
all cases. This confirms that the system improves over time and
learns how to extract better keypoints as it processes incoming
scans.

In summary, our evaluation suggests that both SLO and
SLO++ provide competitive performances in terms of odom-
etry and can process incoming scans at sensor frame rate.
Furthermore, the two algorithms are not mutually exclusive,
as we can switch on the self-supervision at any time without
impacting the real-time capability of the odometry system. As
such, one can compromise between a fast odometry system
or sacrifice some processing speed to get a better ego-motion
estimation.

VI. CONCLUSION

In this paper, we presented a novel approach to LiDAR
odometry that outperforms key state-of-the-art methods in
terms of runtime while being as accurate as standard ICP-
based methods, such as point-to-point and point-to-plane ICP.
Our approach exploits the intensity channel of LiDAR scans
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Fig. 5: Relative translational and rotational error reported in relation with the runtime of the approaches. The dashed line represent the sensor
frame rate.

to extract salient points in the point cloud and then uses
them to compute the odometry. The system can estimate
the ego-motion of the sensor accurately by relying solely
on these features extracted on a 2D image. Furthermore, we
propose a self-supervised strategy to fine-tune the salient point
detector online. In this way, the system adapts on-the-fly to the
current sensor data stream. We implemented and evaluated our
approach on different datasets, provided comparisons to other
existing methods, and supported all claims made in this paper.
The experiments suggest that the proposed algorithm can
improve its performance online while computing the odometry
at a much higher frequency than the sensor frame rate.
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