
Non-linear Constraint Network Optimization
for Efficient Map Learning

Giorgio Grisetti∗ Cyrill Stachniss Wolfram Burgard

University of Freiburg, Department of Computer Science, 79110 Freiburg, Germany
{grisetti | stachnis| burgard}@informatik.uni-freiburg.de,∗corresponding author

Abstract— Learning models of the environment is one of the
fundamental tasks of mobile robots since maps are needed for
a wide range of robotic applications, such as navigation and
transportation tasks, service robotic applications, and several
others. In the past, numerous efficient approaches to map
learning have been proposed. Most of them, however, assume
that the robot lives on a plane. In this paper, we present a highly
efficient maximum likelihood approach that is able to solve 3D
as well as 2D problems. Our approach addresses the so-called
graph-based formulation of the simultaneous localization and
mapping (SLAM) and can be seen as an extension of Olson’s
algorithm [27] towards non-flat environments. It applies a novel
parameterization of the nodes of the graph that significantly
improves the performance of the algorithm and can cope with
arbitrary network topologies. The latter allows us to bound the
complexity of the algorithm to the size of the mapped area and
not to the length of the trajectory. Furthermore, our approach is
able to appropriately distribute the roll, pitch and yaw error over
a sequence of poses in 3D mapping problems. We implemented
our technique and compared it to multiple other graph-based
SLAM solutions. As we demonstrate in simulated and in real
world experiments, our method converges faster than the other
approaches and yields accurate maps of the environment.

I. I NTRODUCTION

To efficiently solve the majority of robotic applications such
as transportation tasks, search and rescue, or automated vac-
uum cleaning a map of the environment is required. Acquiring
such models has therefore been a major research focus in
the robotics community over the last decades. Learning maps
under pose uncertainty is often referred to as the simultaneous
localization and mapping (SLAM) problem. In the literature,
a large variety of solutions to this problem can be found.
The approaches mainly differ in the underlying estimation
technique such as extended Kalman filters, information filters,
particle filters, smoothing, or least-square error minimization
techniques.

In this paper, we consider the popular and so-called “graph-
based” or “network-based” formulation of the SLAM problem
in which the poses of the robot are modeled by nodes in
a graph [5, 8, 11, 14, 16, 22, 27, 13, 36, 26]. Spatial
constraints between poses that result from observations and
from odometry are encoded in the edges between the nodes.

In the context of graph-based SLAM, one typically con-
siders two different problems. The first one is to identify the
constraints based on sensor data. This so-called data associ-
ation problem is typically hard due to potential ambiguities
or symmetries in the environment. A solution to this problem
is often referred to as the SLAM front-end and it directly
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Fig. 1. Constraint network corresponding to a dataset recorded with an
instrumented car at the EPFL campus in Lausanne before (left) and after
(right) optimization. The corrected network is overlayed with an aerial image.

deals with the sensor data. The second problem is to correct
the poses of the robot to obtain a consistent map of the
environmentgiventhe constraints. This part of the approach is
often referred to as the optimizer or the SLAM back-end. To
solve this problem, one seeks for a configuration of the nodes
that maximizes the likelihood of the observations encoded in
the constraints. Often, one refers to the negative observation
likelihood as the error or the energy in the network. An
alternative view to the problem is given by the spring-mass
model in physics. In this view, the nodes are regarded as
masses and the constraints as springs connected to the masses.
The minimal energy configuration of the springs and masses
describes a solution to the mapping problem. As a motivating
example, Figure 1 depicts an uncorrected constraint network
and the corresponding corrected one.

Popular solutions to compute a network configuration that
minimizes the error introduced by the constraints are iterative
approaches. They can be used to either correct all poses
simultaneously [14, 20, 22, 36] or to locally update parts of
the network [5, 11, 13, 16, 26, 27]. Depending on the used
technique, different parts of the network are updated in each
iteration. The strategy for defining and performing these local
updates has a significant impact on the convergence speed.

In this paper, we restrict ourselves to the problem of
finding the most likely configuration of the nodesgiven the
constraints. To find the constraints from laser range data one
can, for example, apply the front-end of the ATLAS framework
introduced by Bosseet al. [2], hierarchical SLAM [6], or the
work of Nüchteret al. [26]. In the context of visual SLAM,
a potential approach to obtain such constraints has recently



been proposed by Stederet al. [33].
Our approach uses a tree structure to define and efficiently

update local regions in each iteration by applying a variantof
stochastic gradient descent. It extends Olson’s algorithm[27]
and converges significantly faster to highly accurate network
configurations. Compared to other approaches to 3D mapping,
our technique utilizes a more accurate way to distribute
the rotational error over a sequence of poses. Furthermore,
the complexity of our approach scales with the size of the
environment and not with the length of the trajectory as it is
the case for most alternative methods.

The remainder of this paper is organized as follows. In
Section II, we formally introduce the graph-based formulation
of the mapping problem and explain the usage of stochastic
gradient descent to reduce the error of the network configura-
tion. Whereas Section III introduces our tree parameterization,
Section IV describes our approach to distribute the rotational
errors over a sequence of nodes. In Section V we then provide
an upper bound for this error distribution. Section VI, explains
how to obtain a reduced graph representation to limit the
complexity. After describing the experimental results with our
approach in Section VII, we provide a detailed discussion of
related work in Section VIII.

II. M AXIMUM L IKELIHOOD MAPPING

USING A CONSTRAINT NETWORK

Most approaches to network-based or graph-based SLAM
focus on estimating the most-likely configuration of the nodes
and are therefore referred to as maximum-likelihood (ML)
techniques [5, 11, 13, 14, 22, 27, 36]. Such techniques do
not compute the full posterior about the map and the poses of
the robot. The approach presented in this paper also belongs
to this class of methods.

A. Problem Formulation

The goal of graph-based ML mapping algorithms is to find
the configuration of the nodes that maximizes the likelihood
of the observations. For a more precise formulation consider
the following definitions:

• Let x = (x1 · · · xn)T be a vector of parameters which
describes a configuration of the nodes. Note that the
parametersxi do not need to be the absolute poses of the
nodes. They are arbitrary variables which can be mapped
to the poses of the nodes in real world coordinates.

• Let us furthermore assume thatδji describes a constraint
between the nodesj and i. It refers to an observation of
nodej seen from nodei. These constraints are the edges
in the graph structure.

• The uncertainty inδji is represented by the information
matrix Ωji.

• Finally, fji(x) is a function that computes a zero noise
observation according to the current configuration of the
nodesj and i. It returns an observation of nodej seen
from nodei.

Figure 2 illustrates an observation between two nodes.
Given a constraint between nodej and nodei, we can define

the error eji introduced by the constraint as

eji(x) = fji(x) − δji (1)

Fig. 2. Example of an observation of the nodej seen fromi.

as well as theresidualrji

rji(x) = −eji(x). (2)

Note that at the equilibrium point,eji is equal to 0 since
fji(x) = δji. In this case, an observation perfectly matches
the current configuration of the nodes. Assuming a Gaussian
observation error, the corresponding negative log likelihood
results in

Fji(x) ∝ (fji(x) − δji)
T

Ωji (fji(x) − δji) (3)

= eji(x)T Ωjieji(x) (4)

= rji(x)T Ωjirji(x). (5)

Under the assumption that the observations are independent,
the overall negative log likelihood of a configurationx is

F (x) =
∑

〈j,i〉∈C

Fji(x) (6)

∝
∑

〈j,i〉∈C

rji(x)T Ωjirji(x). (7)

HereC = {〈j1, i1〉 , . . . , 〈jM , iM 〉} is a set of pairs of indices
for which a constraintδjmim

exists.
The goal of an ML approach is to find the configurationx∗

of the nodes that maximizes the likelihood of the observations.
This can be written as

x∗ = argmin
x

F (x). (8)

There are multiple ways of solving Eq. (8). They range
from approaches applying gradient descent, conjugate gradi-
ents, Gauss Seidel relaxation, multi-level relaxation, orLU-
decomposition. In the following section, we briefly introduce
stochastic gradient descent, which is the technique our ap-
proach is based on.

B. Stochastic Gradient Descent for Maximum Likelihood
Mapping

Olson et al. [27] propose to use a variant of the precondi-
tioned stochastic gradient descent (SGD) to address the SLAM
problem. The approach minimizes Eq. (8) by sequentially
selecting a constraint〈j, i〉 (without replacement) and by
moving the nodes of the network in order to decrease the
error introduced by the selected constraint. Compared to the
standard formulation of gradient descent, the constraintsare
not optimized as a whole but individually. The nodes are
updated according to the following equation:

xt+1 = xt + λ · KJT
jiΩjirji

︸ ︷︷ ︸

∆xji

(9)



Herex is the set of variables describing the locations of the
poses in the network andK is a pre-conditioning matrix.Jji

is the Jacobian offji, Ωji is the information matrix capturing
the uncertainty of the observation, andrji is the residual.

Reading the term∆xji of Eq. (9) from right to left gives
an intuition about the iterative procedure:

• The term rji is the residual which corresponds to the
negative error vector. Changing the network configuration
in the direction of the residualrji will decrease the error
eji.

• The term Ωji represents the information matrix of a
constraint. Multiplying it with rji scales the residual
components according to the information encoded in the
constraint.

• The JacobianJT
ji maps the residual term into a set of

variations in the parameter space.
• The termK is a pre-conditioning matrix. It is used to

scale the variations resulting from the Jacobian depending
on the curvature of the error surface. Approaches such as
Olson’s algorithm [27] or our previous work [13] apply
a diagonal pre-conditioning matrix computed from the
HessianH as

K = [diag(H)]−1. (10)

• Finally, the quantityλ is a learning rate that decreases with
each iteration of SGD and that ensures the convergence
of the system.

In practice, the algorithm decomposes the overall problem
into many smaller problems by optimizing each constraint
individually. Thus, a portion of the network, namely the nodes
involved in a constraint, is updated in each step. Obviously,
updating the different constraints one after each other can
have antagonistic effects on a subset of variables. To merge
the contribution of the individual constraints, one uses the
learning rate to reduce the fraction of the residual which is
used for updating the variables. This makes the solutions ofthe
different sub-problems to asymptotically converge towards an
equilibrium point that is the solution reported by the algorithm.

Whereas this framework allows us to iteratively reduce
the error given the network of constraints, it leaves open
how the nodes are represented or parameterized. However,
the choice of the parameterization has a strong influence on
the performance of the algorithm. The next section addresses
the problem of how to parameterize a graph so that the
optimization can be carried out efficiently.

III. T REE PARAMETERIZATION FOR SGD

The posesp = {p1, . . . , pn} of the nodes define the
configuration of the network. They can be described by a
vector of parametersx such that a bijective mappingg between
p andx exists.

x = g(p) p = g−1(x) (11)

As explained above, in each iteration SGD decomposes the
problem into a set of subproblems and solves them sequen-
tially, where a subproblem is the optimization of a single
constraint.

The parameterizationg defines not only how the variables
of the nodes are described but also the subset of variables
that are modified by a single constraint update. A good
parameterization defines the subproblems in a way that the
combination step leads only to small changes of the individual
solutions.

Olsonet al. [27] proposed to use the so-called incremental
pose parameterization for 2D problems. For each nodei in
the graph, they store a the parameterxi which is the vector
difference between the poses of the nodei and the nodei− 1

xi = pi − pi−1. (12)

This parameterization has the advantage of allowing fast
constraint updates. As discussed in [13], updating a constraint
between two nodesi and j requires to update all nodes
k = i + 1, . . . , j. This leads to a low convergence speed if
i ≪ j. Furthermore this parameterization requires that the
nodes are arranged in a sequence given by the trajectory.

As mentioned above, a major contribution of this paper is
an algorithm that preserves the advantages of the incremental
approach but overcomes its drawbacks. The first goal is to
be able to deal with arbitrary network topologies since this
enables us to compress the graph whenever robot revisits a
place. As a result, the size of the network is proportional tothe
visited area and not to the length of the trajectory. The second
goal is to make the number of nodes in the graph which are
updated by each constraint mainly dependent on the topology
of the environment and not the trajectory taken by the vehicle.
For example, in the case of a loop-closure a large number of
nodes need to be updated but in all other situations the update
is limited to a small number of nodes to keep the interactions
between constraints small.

Our idea is to define a parameterization based on a tree
structure. To obtain a tree from a given graph, we compute a
spanning tree. Given such a tree, we define the parameteriza-
tion for a node as

xi = pi ⊖ pparent(i), (13)

wherepparent(i) refers to the parent of nodei in the spanning
tree. The operators⊕ and⊖ are the standard pose compound-
ing operators [22]. As defined in Eq. (13), the tree stores the
relative transformations between poses.

Given a root node that represents the origin, such a spanning
tree can be obtained by using Dijkstra’s algorithm. In this
work, we use the uncertainty encoded in the information
matrices of the constraints as costs. In this way, Dijkstra’s
algorithm provides the “lowest uncertainty tree” (shortest path
tree) of the graph.

Note that this tree does not replace the graph as an internal
representation. The tree only defines the parameterizationof
the nodes. For illustration, Figure 3 depicts a graph together
with one potential parameterization tree.

According to Eq. (13), one needs to process the tree up
to the root to compute the actual pose of a node in the
global reference frame. However, to obtain only the relative
transformation between two arbitrary nodes, one needs to
traverse the tree from the first node upwards to the first
common ancestor of both nodes and then downwards to the



Fig. 3. Left: Example for a constraint network. Right: A possible tree
parameterization for this graph. For illustration reasons,the off-tree constraints
are also plotted (dashed gray).

second node. The same holds for computing the error of a
constraint. Let thepathPji of a constraint between the nodesi
and j be the sequence of nodes in the tree that need to be
traversed in order to reach the nodej staring from nodei.
Such a path can be divided into an ascending partP

[−]
ji of the

path starting from nodei and a descending partP [+]
ji to nodej.

We refer to the length of path of a constraint on the tree as
|Pji|. We can then compute the residual of the constraint by

rji = (pi ⊕ δji) ⊖ pj (14)

For simplicity of notation, we will refer to the pose vector
of a node as the 6D vectorpi = (x y z φ θ ψ)T and
to its associated homogeneous transformation matrix asPi.
The same holds for the parameters used for describing the
graph. We denote the parameter vector of the posei as xi

and its transformation matrixXi. The transformation matrix
corresponding to a constraintδji is referred to as∆ji.

A transformation matrixXk consists of a rotational matrix
Rk and a translational componentt and it has the following
form

Xi =

(
Rk tk
0 1

)

(15)

with

X−1
i =

(
RT

k −RT
k tk

0 1

)

. (16)

Accordingly, we can compute the residual in the reference
frame of the nodej as

rji = P−1
j (Pi∆ji) (17)

=






∏

k[+]∈P
[+]
ji

Xk[+]






−1

∏

k[−]∈P
[−]
ji

Xk[−]∆ji. (18)

At this point one can directly compute the Jacobian from
the residual and apply Eq. (9) to update the constraint. Note
that with this parameterization the Jacobian has exactly|Pji|
non zero blocks, since only the parameters in the path of the
constraint appear in the residual.

IV. U PDATING THE TREE PARAMETERIZATION

So far, we described the prerequisites for applying the
preconditioned stochastic gradient descent to correct theposes
of a network. The goal of the update rule in SGD is to
iteratively update the configuration of a set of nodes in order
to reduce the error introduced by a constraint. In Eq. (9), the
termJT

jiΩji maps the variation of the error to a variation in the
parameter space. This mapping, however, is a linear function.
As illustrated by Frese and Hirzinger [10], the error might
increase when applying such a linear function in case of non-
linear error surfaces. In the three-dimensional space, thethree
rotational components often lead to highly non-linear error
surfaces. Therefore, it is problematic to apply SGD as well
as similar minimization techniques directly tolarge mapping
problems in combination especially when there ishigh noise
in the observations.

In our approach, we therefore choose a modified update
rule. To overcome the problem explained above, we apply a
non-linear functionto describe the variation. As in the linear
case, the goal of this function is to compute a transformation
of the nodes along the pathPji of the tree so that the error
introduced by the corresponding constraint is reduced. The
design of this function is presented in the remainder of this
section. In our experiments, we observed that such an update
typically leads to a smooth deformation of the nodes along
the path when reducing the error. This deformation is done in
two steps. We first update the rotational componentsRk of the
variablesxk before we update the translational componentstk.

A. Update of the Rotational Component

Without loss of generality, we consider the originpi of
the pathPji to be in the origin of our reference system.
The orientation ofpj (in the reference frame ofpi) can be
computed by multiplying the rotational matrices along the path
Pji. To increase the readability of the document, we refer
to the individual rotational matrices along this path asRk

neglecting the indices (compare Eq. (18)). The orientationof
pj is described by

R1:n := R1R2 . . . Rn, (19)

wheren is the length of the pathPji.
Distributing a given error over a sequence of 3D rotations,

can be described in the following way: we need to determine
a set of increments in the intermediate rotations of the chain
so that the orientation of the last node (here nodej) is R1:nB
whereB the matrix that rotatesxj to the desired orientation
based on the error/residual. Formulated in a mathematical way,
we need to compute a set of new rotational matricesR′

k to
update the nodes so that

R1:nB =

n∏

k=1

R′
k. (20)

To obtain theseR′
k we compute a rotationQ in the global

reference frame such that

AnB = QAn, (21)



whereAn denotes the rotation of thenth node in the global
reference frame. By multiplying both sides of Eq. (21) with
AT

n from the right hand side we obtain

Q = AnBAT
n . (22)

We now decompose the rotationQ into a set of incremental
rotations

Q1:n := Q = Q1Q2 · · ·Qn (23)

and compute the individual matricesQk by using the spherical
linear interpolation (slerp) [1].

For this decomposition ofQ we use the parameteru ∈ [0, 1]
with slerp(Q, 0) = I andslerp(Q, 1) = Q. Accordingly, the
rotationQk is

Qk = [slerp(Q,uk−1)]
T

slerp(Q,uk). (24)

Furthermore, the rotation matrixA′
k of the posesP ′

k along the
path is

A′
k = Q1:kAk. (25)

We furthermore compute the new rotational componentsR′
k

of each nodek as

R′
k = [A′

parent(k)]
T A′

k. (26)

In Eq. (27), the learning rateλ is directly incorporated in the
computation of the valuesuk. In this way, the slerp function
takes care of the appropriate scaling of the rotations.

In addition to that, we consider the pre-conditioning matrix
and the length of the path when computinguk. Similar to
Olsonet al. [27], we clamp the productλ|Pji| to lie between
[0, 1] for not overshooting. In our implementation, we compute
these values as:

uk = min (1, λ|Pji|)




∑

m∈Pji∧m≤k

d−1
m








∑

m∈Pji

d−1
m





−1

(27)
Here, dm is defined as the sum of the smallest eigenvalues
of the information matrices of all constraints connecting the
nodem:

dm =
∑

〈i,m〉

min [eigen(Ωim)] (28)

This is an approximation which works well in case of roughly
spherical covariances. Note that the eigenvalues need to be
computed only once in the beginning and are then stored in
the tree.

For simplicity of presentation, we demonstrated how to
distribute the rotational error while keeping the nodei fixed.
In our implementation, however, we fix the position of the so-
called “top node” in the path which is the node that is closestto
the root of the tree (smallest level in the tree). As a result,the
update of a constraint has less side-effects on other constraints
in the network. Fixing the top node instead of nodei can be
obtained by simply saving the pose of the top node before
updating the path. After the update, one transforms all nodes
along path in way that the top node maintains its previous
pose. Furthermore, we used the matrix notation in this paper
to formulate the error distribution since it provides an easier

notation. However, in our implementation we use quaternions
for representing the rotations because they are numerically
more stable. Both formulations are theoretically equivalent.
Note that an open source implementation of our optimizer is
available online [32].

B. Update of the Translational Component

Compared to the update of the rotational component de-
scribed above, the update of the translational component can
be done in a straightforward manner. In our current system,
we distribute the translational error over the nodes along
the path without changing the previously computed rotational
component.

All nodes along the path are translated by a fraction of the
residuals in thex, y, andz components. This fraction depends
on the uncertainty of the individual constraints encoded in
the corresponding covariance matrices and is scaled with the
learning rate, similarly to the case of updating the rotational
component.

V. A NALYSIS OF THE ROTATIONAL RESIDUAL

When distributing an rotational error over a sequence of
nodesi, . . . , j, one may increase the absolute value of the
residualrk,k−1 between consecutive constraints along the path
(and thus the errorek,k−1). For the convergence of SGD,
however, it is important that this error is bounded. Therefore,
in this section we analyze evolution of the rotational residual
after distributing an error according to Section IV-A.

A generic 3D rotation can be described in terms of an
axis and an angle. Given an rotational matrixR we will
refer respectively to its axis of rotation asaxisOf(R) and as
angleOf(R). According to [1], the slerp interpolation returns
a set of rotation along the same axis as follows

R′ = slerp(R, u) (29)

axisOf(R′) = axisOf(R) (30)

angleOf(R′) = u · angleOf(R). (31)

When distributing the rotationQ over a sequence of poses
according to Eq. (23), we decompose it into a sequence of
incremental rotationsQ = Q1Q2 · · ·Qn. From Eq. (24) we
know that

αk = angleOf(Qk) = (uk − uk−1) · angleOf(Q). (32)

In the following, we show that when distributing the rotational
error along a loop theangleof the residualangleOf(rk,k−1)
between the consecutive posesk−1 andk along the path does
not increase more thanαk.

According to Eq. (18), the residual of a constraint between
the nodesk − 1 andk is

rk,k−1 = X−1
k ∆k,k−1. (33)

Since we are focusing only on the rotational component of the
residual, we ignore the translational part:

rk,k−1 = RT
k ∆k,k−1 (34)

RT
k = rk,k−1∆

T
k,k−1. (35)



After updating the rotationsA1, . . . , An along the chain
using Eq. (25), we obtain a new set of rotationsA′

1, . . . , A
′
n in

the global reference frame. From these rotations, we recover
the updated rotational parametersR′

k, by using Eq. (26):

R′
k

(26)
= A′T

k−1A
′
k (36)

(25)
= [Q1:k−1R1:k−1]

T · [Q1:kR1:k] (37)

= [R1:k−1]
T QkR1:k (38)

= [R1:k−1]
T QkR1:k−1Rk. (39)

We then compute the residualr′k,k−1 after the update as

r′k,k−1

(34)
= R′T

k ∆k,k−1 (40)
(39)
= RT

k [R1:k−1]
T QT

k R1:k−1∆k,k−1 (41)
(35)
= rk,k−1 ∆T

k,k−1[R1:k−1]
T

︸ ︷︷ ︸

=:Y T

QT
k R1:k−1∆k,k−1

︸ ︷︷ ︸

=:Y

= rk,k−1Y
T QT

k Y (42)

In Eq. (42), the termY T QT
k Y quantifies the increase in the

residual of a constraint between two consecutive nodes after
the update. SinceY andQ are rotation matrices, we obtain

|angleOf(Y T QT
k Y )| = |angleOf(Qk)| = |αk|. (43)

Thus, the change of the new residual is at mostαk and
therefore bounded. This is a relevant advantage compared to
the error distribution presented by Grisettiet al. [12] which
was not bounded in such a way.

VI. COMPLEXITY AND GRAPH REDUCTION

Due to the nature of stochastic gradient descent, the com-
plexity of our approach per iteration depends linearly on the
number of constraints since each constraint is selected once
per iteration (in a random order). For each constraint〈j, i〉,
our approach modifies exactly those nodes which belong to
the pathPji in the tree.

The path of constraint is defined by the tree parameter-
ization. As a result, different paths have different lengths.
Thus, we consider the average path lengthl to specify the
complexity. It corresponds to average the number of operations
needed to update a single constraint during one iteration. This
results in a complexity ofO(M · l), whereM is the number
of constraints. In our experiments we found thatl typically is
in the order oflog N , whereN is the number of nodes.

Note that there is further space for optimizations. The
complexity of the approach presented so far depends on the
length of the trajectory and not on the size of the environment.
These two quantities are different if the robot revisits already
known areas. This becomes important whenever the robot is
deployed in a bounded environment for a long time and has
to update its map over time. This is also known as lifelong
map learning. Since our parameterization is not restrictedto
a trajectory of sequential poses, we have the possibility of
a further optimization. Whenever the robot revisits a known
place, we do not need to add new nodes to the graph. We
can assign the current pose of the robot to an already existing

node in the graph and update the constraints with respect to
that node.

To avoid adding new constraints to the network, we can
refine an existing constraint between two nodes in case of a
new observation. Letδ(1)

ji be a constraint already stored in the

graph and letδ(2)
ji be the new constraint that would result from

the current observation. Both constraints can be combined to
a single constraint which has the following information matrix
and mean:

Ωji = Ω
(1)
ji + Ω

(2)
ji (44)

δji = Ω−1
ji (Ω

(1)
ji · δ

(1)
ji + Ω

(2)
ji · δ

(2)
ji ) (45)

This can be seen as an approximation similar to adding a
rigid constraint between nodes. However, if local maps (e.g.,
grid maps) are used as nodes in the network, it makes sense
to use such an approximation since one can localize a robot
in an existing map quite accurately.

As a result, the size of the problem does not increase when
revisiting known locations. The complexity specified above
stays the same butM as well asN refer to as the reduced
quantities. As our experiments illustrate, this node reduction
technique leads to an increased convergence speed since less
nodes and constraints need to be considered.

VII. E XPERIMENTS

This section is designed to evaluate the properties of our ap-
proach described above. We first demonstrate that our method
is well suited to cope with the motion and sensor noise from an
instrumented car equipped with laser range scanners. Second,
we present the results of simulated experiments based on
large 2D and 3D datasets. Finally, we compare our approach
to different other methods including Olson’s algorithm [27],
multi-level relaxation [11], and SAM [4, 19].

A. Mapping with a Car-like Robot

In the first experiment, we applied our method to a real
world three-dimensional dataset recorded with an instrumented
car. Using such cars as robots became popular in the robotics
community [3, 29, 34, 38]. We used a Smart car equipped
with 5 SICK laser range finders and various pose estimation
sensors for data acquisition. Our robot constructs local three-
dimensional maps, so-called multi-level surface maps [36], and
builds a network of constrains where each node represents such
a local map. The localization system of the car is based on
D-GPS (here using only standard GPS) and IMU data. This
information is used to compute the incremental constraintsbe-
tween subsequent poses. Constraints resulting from revisiting
an already known area are obtained by matching the individual
local maps using ICP. More details on this matching can be
found in our previous work [29].

We recorded a large-scale dataset at the EPFL campus where
the robot moved on a 10 km long trajectory. The dataset in-
cludes multiple levels such as an underground parking garage
and a bridge with an underpass. The motivating example of
this paper (see Figure 1) depicts the input trajectory and an
overlay of the corrected trajectory on an aerial image. As can
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Fig. 4. The evolution of the average error per constraint (computed according
to Eq. (7) divided by the number of constraints) of the approach of Triebelet
al. [36] and our approach for the dataset recorded with the autonomous car.
The right image shows a magnified view to the first 400 ms.

be seen, the trajectory actually matches to the streets in the
aerial image (image resolution: 0.5 m per pixel).

We used this dataset to compare our new algorithm to the
approach of Triebelet al. [36] that iteratively applies LU
decomposition. In this experiment, both approaches converge
to more or less the same solution. The time needed to achieve
this correction, however, is by orders of magnitudes smaller
when applying our new technique. Figure 4 plots the average
error per constraint versus the execution time.

B. Quantitative Results and Comparison with SAM in 3D

The second set of experiments is designed to measure the
performance of our approach for correcting 3D constraint
networks and in comparison with the smoothing and mapping
(SAM) approach of Dellaert [4]. In these simulation experi-
ments we moved a virtual robot on the surface of a sphere. An
observation was generated each time the current position ofthe
robot was close to a previously visited location. We corrupted
the observations with a variable amount of Gaussian noise to
investigate the robustness of the algorithms.

Figure 5 depicts a series of graphs obtained by our algorithm
using three datasets generated with different noise levels. The
observation and motion noise was set toσ = 0.05/0.1/0.2 in
each translational component (in m) and rotational component
(in radians).

As can be seen, our approach converges to a configuration
with a low error. Especially for the last dataset, the rotational
noise with a standard deviation of 0.2 (radians) for each
movement and observation is high. After around 250 iterations,
the system converged. Each iteration took 200 ms for this
dataset with around 85,000 constraints.

We furthermore compared our approach to the smoothing
and mapping approach of Dellaert [4]. The SAM algorithm can
operate in two modes: as a batch process which optimizes the
entire network at once or in an incremental mode. The latter
one only performs an optimization after a fixed number of
nodes has been added. This way of incrementally optimizing
the network is more robust since the initial guess for the
network configurations is computed based on the result of the
previous optimization. As a result, the risk of getting stuck in
a local minima is typically reduced. However, this procedure
leads to a significant computational overhead. Table I sum-
marizes the results obtained with the SAM algorithm. As can
be seen, the batch variant of the SAM algorithm got stuck in

TABLE I

COMPARISON TOSAM

noise level SAM
(batch)

SAM
(incremental)

Our method
(batch)

σ = 0.05 119 s not tested
(see batch)

20 s
(100 iterations)

σ = 0.1 diverged 270 s (optimized
each 100 nodes)

40 s
(200 iterations)

σ = 0.2 diverged 510 s (optimized
each 50 nodes)

50 s
(250 iterations)

Fig. 7. The result of MLR strongly depends on the initial configuration of
the network. Left: small initial pose error, right: large initial pose error.

local minima for the sphere datasets with medium and large
noise. The incremental version, in contrast,always converged
but still required substantially more computation time than our
current implementation of our approach.

C. Comparison to MLR and Olson’s Algorithm in 2D

In this third experiment, we compare our technique to two
current state-of-the-art SLAM approaches that aim to correct
constraint networks, namely multi-level relaxation proposed
by Freseet al. [11] and Olson’s algorithm [27]. Since both
techniques are designed for 2D scenarios, we also used the 2D
version of our system, which is identical to the 3D version
except that the three additional dimensions (z, roll, pitch) are
not considered.

We furthermore tested two variants of our method: one that
uses the node reduction technique described in Section VI and
one that maintains all the nodes in the graph.

In these simulation experiments we moved a virtual robot
on a grid world. Again, we corrupted the observations with
a variable amount of noise for testing the robustness of the
algorithms. We simulated different datasets resulting in graphs
which consisted of 4,000 and 2,000,000 constraints.

Figure 6 depicts the actual graphs obtained by Olson’s
algorithm and our approach for different time steps. As
can be seen, our approach converges faster. Asymptotically,
both approaches converge to a similar solution. In all our
experiments, the results of MLR strongly depend on the initial
positions of the nodes. We found that in case of a good starting
configuration of the network, MLR converges to a highly
accurate solution similar to our approach (see left image of
Figure 7). Otherwise, it is likely to diverge (right). Olson’s
approach as well as our technique are more or less independent
of the initial poses of the nodes.

To quantitatively evaluate our technique we measured the
error in the network after each iteration. The left image of
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Fig. 5. Results obtained by our approach using a virtual robot moving on a sphere with three different noise realizations in motion and observations (row 1:
σ = 0.05, row 2: σ = 0.1, row 3: σ = 0.2). Each network consists of around 85k constraints. The error is computed according to Eq. (7) divided by the
number of constraints.

Fig. 6. Results obtained with Olson’s algorithm (first row) and our approach (second row) after 1, 10, 50, 100, and 300 iterations for a network with 64,000
constraints. The black areas in the images result from constraints between nodes which are not perfectly corrected afterthe corresponding iteration (for timings
see Figure 8).
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Figure 8 depicts a statistical experiments over 10 networks
with the same topology but different noise realizations. As
can be seen, our approach converges significantly faster than
the approach of Olsonet al. For medium size networks, both
approaches converge asymptotically to approximatively the
same error value (see middle image). For large networks,
the high number of iterations needed for Olson’s approach
prevented us from experimentally analyzing the convergence.
For the sake of brevity, we omitted comparisons to EKF and
Gauss Seidel relaxation because Olsonet al. already showed
that their approach outperforms those techniques.

Additionally, we evaluated the average computation time
per iteration of the different approaches (see right image of
Figure 8) and analyzed a variant of Olson’s approach which
is restricted to spherical covariances. The latter approach
yields execution timesper iteration similar to our algorithm.
However, this variant has still the same convergence speed
with respect to the number of iterations as Olson’s original
technique. As can be seen from the right image of Figure 8,
our node reduction technique speeds up the computations up
to a factor of 20.

We also applied our 3D optimizer to such 2D problems and
compared its performance to our 2D version. Both techniques
lead to more or less the same results. The 2D version, however,
is around three times faster that the 3D version. This results
from removing the irrelevant components from the state space
and thus avoids the corresponding trigonometric operations.

D. Error Distribution in 3D

We furthermore compared our technique to distribute a ro-
tational error in 3D with our previously proposed method [12].
Compared to this method, our new distribution limits the
fraction of the error that is added to the intermediate nodes
– a bound that is not available in [12]. Without this bound,
it can happen that the error of the overall network drastically
increases because a high error is introduced in the intermediate
nodes. Note that even if this effect occurs rarely in real
datasets, it can lead to divergence. Figure 9 illustrates such
an example recorded with a car in a parking lot with three
floors.

While the previous method diverges after a few iterations,
our new algorithm leads to a limited and balanced distribution
of the error. This results in a more stable algorithm, which
successfully solved all tested datasets.

E. Constraint Sampling

Stochastic gradient descent selects in each iteration a ran-
dom order in which the constraints are updated. In our previous
work [13], we neglected this randomization and selected a
fixed order based on the level of a constraint in the tree. This
was needed to perform efficient updates given our previously
presented parameterization of the nodes.

With the parameterization presented in this paper, we are
free to choose an arbitrary order. We therefore compared
two different sampling techniques: random sampling and a
variant in which we sample a constraint without replacement
with a probability inversely proportional to the path-length.

Fig. 9. Network obtained from a car driving multiple times through a
parking lot with three floors. Different error distributiontechniques result in
different networks. The inconsistencies are marked by the arrows. First row:
previous method [12], Second row: our approach, both after 3 iterations of
the optimizer. Third row: a multi-level surface map created from the corrected
constraint network. Fourth row: Aerial image of the parking lot.

We figured out that in situations with nested loops, it is
advantageous to process first the constraints which have a
shorter path length (and thus correspond to the smaller loops).
This is due to angular “wraparounds” that are more likely to
occur when first correcting a large loop starting with a poor
initial guess. A wraparound is an error in the initial guess
of a relative configuration between two nodes that is bigger
than 180 degrees. Such wraparounds cause the algorithm to
converge to a local minimum.

This effect can be observed in Figure 10. It illustrates a
statistical experiment carried out using the sphere dataset (ten
runs per strategy). As can be seen, sampling the constraints
in each iteration inversely proportional to the length of their
path in the tree gives the best results. In contrast to this, getting
stuck in local minima is more likely when performing random
sampling. Note that this effect occurs only for large networks
or high noise in the rotational components. Otherwise, both
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Fig. 10. The evolution of the error per constraint in a statistical experiment
using different strategies to sample the constraint that is be updated next. The
error is computed according to Eq. (7) divided by the number of constraints.

strategies provide comparable results. As a result, we sample
without replacement the constraints in each iteration inverse-
proportional to the length of the their path in the parameteri-
zation tree.

VIII. R ELATED WORK

Mapping techniques for mobile robots can be classified
according to the underlying estimation technique. The most
popular approaches are extended Kalman filters (EKFs) [21,
31], sparse extended information filters [7, 35], particle fil-
ters [23], and least square error minimization approaches [22,
11, 14]. For some applications, it might be even be sufficient
to learn local maps only [15, 34, 39].

The effectiveness of the EKF approaches comes from the
fact that they estimate a fully correlated posterior about
landmark maps and robot poses [21, 31]. Their weakness lies
in the strong assumptions that have to be made on both, the
robot motion model and the sensor noise. If these assumptions
are violated the filter is likely to diverge [18, 37].

Thrun et al. [35] proposed a method to correct the poses
of a robot based on the inverse of the covariance matrix.
The advantage of sparse extended information filters (SEIFs)
is that they make use of the approximative sparsity of the
information matrix. Eusticeet al. [7] presented a technique
that more accurately computes the error-bounds within the
SEIF framework and therefore reduces the risk of becoming
overly confident.

Recently, Dellaert and colleagues proposed a smoothing
method called square root smoothing and mapping (SAM) [4,
19, 30]. It has several advantages compared to EKF-based
solutions since it better covers the non-linearities and isfaster
to compute. In contrast to SEIFs, it furthermore provides
an exactly sparse factorization of the information matrix.
In addition to that, SAM can be applied in an incremental
way [19] and is able to learn maps in 2D and 3D. Paskin [28]
presented a solution to the SLAM problem using thin junction
trees. In this way, he is able to reduce the complexity compared
to the EKF approaches since thin junction trees provide a
linear time filtering operation.

Frese’s TreeMap algorithm [9] can be applied to compute
nonlinear map estimates. It relies on a strong topological
assumption on the map to perform sparsification of the in-
formation matrix. This approximation ignores small entries in

the information matrix. In this way, Frese is able to perform
an update inO(log n) wheren is the number of features.

An alternative approach to find maximum likelihood maps
is the application of least square error minimization. The idea
is to compute a network of relations given the sequence of
sensor readings. These relations represent the spatial con-
straints between the poses of the robot. In this paper, we also
follow this way of formulating the SLAM problem. Lu and
Milios [22] first applied this approach in robotics to address
the SLAM problem using a kind of brute force method.
Their approach seeks to optimize the whole network at once.
Gutmann and Konolige [14] proposed an effective way for
constructing such a network and for detecting loop closures
while running an incremental estimation algorithm. Howard
et al. [16] apply relaxation to localize the robot and build
a map. Duckettet al. [5] propose the usage of Gauss-Seidel
relaxation to minimize the error in the network of constraints.
To make the problem linear, they assume knowledge about the
orientation of the robot. Freseet al. [11] propose a variant of
Gauss-Seidel relaxation called multi-level relaxation (MLR).
It applies relaxation at different resolutions. MLR is reported
to provide very good results in flat environments especiallyif
the error in the initial guess is limited.

Note that techniques such as Olson’s algorithm, MLR, or
our method focus on computing the best map and assume
that the constraints are given. The ATLAS framework [2],
hierarchical SLAM [6], or the work of N̈uchter et al. [26],
for example, can be used to obtain the data associations (con-
straints). They also apply a global optimization procedureto
compute a consistent map. One can replace their optimization
procedures by our algorithm and in this way make them more
efficient.

A technique that combines 2D pose estimates with 3D data
has been proposed by Howardet al. [17] to build maps of
urban environments. They avoid the problem of distributingthe
error in all three dimensions by correcting only the orientation
in thex, y-plane of the vehicle. The roll and pitch is assumed
to be measured accurately enough by an IMU.

In the context of three-dimensional maximum likelihood
mapping, only a few approaches have been presented so
far [24, 25, 26, 36]. The approach of Nüchter et al. [26]
describes a mobile robot that builds accurate three-dimensional
models. In their approach, loop closing is achieved by uni-
formly distributing the error resulting from odometry overthe
poses in a loop. This technique provides good estimates but
can not deal with multiple/nested loops.

Montemerlo and Thrun [24] proposed to utilize the con-
jugate gradients to efficiently invert the sparse information
matrix of the system. Their approach was used to learn large
campus maps using a Segway robot. Recently, Triebelet
al. [36] described an approach that aims to globally correct the
poses given the network of constraints in all six dimensions.
At each iteration the problem is linearized and solved using
LU decomposition. This yields accurate results for small and
medium size networks especially when the error in the rota-
tional component is small. As illustrated in our experimental
section, this approach is orders of magnitudes slower than our
method and is thus not suited to learn maps of large scenes.



The approach closest to the work presented here is the work
of Olsonet al. [27]. They apply stochastic gradient descent to
reduce the error in the network. In contrast to their technique,
our approach uses a different parameterization of the nodes
in the network that better takes into account the topology
of the environment. This results in a faster convergence.
Furthermore, our approach allows us to avoid adding new
nodes and constraints to the graph when revisiting already
mapped areas. As a result, the complexity of our algorithm
depends only on the size of the environment and not on
the length of the trajectory traveled by the robot. This is an
advantage compared to approaches such as MLR or Olson’s
algorithm since it allows for life-long map learning.

The work presented in this paper furthermore extends two
previous conference publications [13, 12]. The first one [13]
is only applicable to 2D scenarios and uses a different pa-
rameterization of the nodes. The second one is an extension
to 3D [12]. It allows a robot to distribute a rotational error
over a sequence of poses. This distribution, however, was not
bounded as the one presented in this work. As demonstrated
in the experimental section, the previous error distribution
approach more often leads to divergence.

IX. CONCLUSION

In this paper, we presented a highly efficient solution to
the problem of learning 2D and 3D maximum likelihood
maps for mobile robots. Our technique is based on the graph-
formulation of the simultaneous localization and mapping
problem and applies a variant of stochastic gradient descent.
Our approach extends an existing algorithm by introducing a
tree-based parameterization for the nodes in the graph. This
has a significant influence on the convergence speed and
execution time of the method. Furthermore, it enables us to
correct arbitrary graphs and not only a list of sequential poses.
In this way, the complexity of our method depends on the
size of the environment and not directly on the length of the
input trajectory. This is an important precondition for lifelong
map learning. Additionally, we presented a way to accurately
distribute a 3D rotational error over a sequence of poses which
increases the robustness over previous approaches.

Our method has been implemented and exhaustively tested
in simulation experiments as well as on real robot data. We
furthermore compared our method to three existing, state-
of-the-art algorithms. The experiments demonstrates thatour
method converges faster and yields more accurate maps than
the other approaches.
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