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Abstract— Learning models of the environment is one of the
fundamental tasks of mobile robots since maps are needed for
a wide range of robotic applications, such as navigation and
transportation tasks, service robotic applications, and several
others. In the past, numerous efficient approaches to map
learning have been proposed. Most of them, however, assume
that the robot lives on a plane. In this paper, we present a highly
efficient maximum likelihood approach that is able to solve 3D
as well as 2D problems. Our approach addresses the so-called
graph-based formulation of the simultaneous localization and pefore optimization \\)

mapping (SLAM) and can be seen as an extension of Olson’s

algorithm [27] towards non-flat environments. It applies a novel after optimization

parameterization of the nodes of the graph that significantly

improves the performance of the algorithm and can cope with Fig. 1. Constraint network corresponding to a dataset dstbwith an
arbitrary network topologies. The latter allows us to bound the instrumented car at the EPFL campus in Lausanne before (left)adter
complexity of the algorithm to the size of the mapped area and (right) optimization. The corrected network is overlayedhaan aerial image.

not to the length of the trajectory. Furthermore, our approach is

able to appropriately distribute the roll, pitch and yaw error over

a sequence of poses in 3D mapping problems. We implemented

our technique and compared it to multiple other graph-based deals with the sensor data. The second problem is to correct

SLAM solutions. As we demonstrate in simulated and in real the poses of the robot to obtain a consistent map of the
world experiments_, our method converges faster _than the other environmengiventhe constraints. This part of the approach is
approaches and yields accurate maps of the environment. often referred to as the optimizer or the SLAM back-end. To
solve this problem, one seeks for a configuration of the nodes
|. INTRODUCTION that maximizes the likelihood of the observations encoded i
To efficiently solve the majority of robotic applicationscsu the constraints. Often, one refers to the negative observat
as transportation tasks, search and rescue, or automated likelihood as the error or the energy in the network. An
uum cleaning a map of the environment is required. Acquirir@jternative view to the problem is given by the spring-mass
such models has therefore been a major research focugm@del in physics. In this view, the nodes are regarded as
the robotics community over the last decades. Learning mapgsses and the constraints as springs connected to thesmasse
under pose uncertainty is often referred to as the simusiame The minimal energy configuration of the springs and masses
localization and mapping (SLAM) problem. In the literaturedescribes a solution to the mapping problem. As a motivating
a large variety of solutions to this problem can be foungxample, Figure 1 depicts an uncorrected constraint n&twor
The approaches mainly differ in the underlying estimatiodnd the corresponding corrected one.
technique such as extended Kalman filters, informatiorrsilte  Popular solutions to compute a network configuration that
particle filters, smoothing, or least-square error minaticn minimizes the error introduced by the constraints are titera
techniques. approaches. They can be used to either correct all poses
In this paper, we consider the popular and so-called “grapsimultaneously [14, 20, 22, 36] or to locally update parts of
based” or “network-based” formulation of the SLAM problenthe network [5, 11, 13, 16, 26, 27]. Depending on the used
in which the poses of the robot are modeled by nodes t@chnique, different parts of the network are updated irheac
a graph [5, 8, 11, 14, 16, 22, 27, 13, 36, 26]. Spatideration. The strategy for defining and performing thesmlo
constraints between poses that result from observatiods apdates has a significant impact on the convergence speed.
from odometry are encoded in the edges between the nodesin this paper, we restrict ourselves to the problem of
In the context of graph-based SLAM, one typically confinding the most likely configuration of the nodgsven the
siders two different problems. The first one is to identifg thconstraints. To find the constraints from laser range daéa on
constraints based on sensor data. This so-called datai-asstan, for example, apply the front-end of the ATLAS framework
ation problem is typically hard due to potential ambiguitieintroduced by Bosset al. [2], hierarchical SLAM [6], or the
or symmetries in the environment. A solution to this problemwork of Nichteret al. [26]. In the context of visual SLAM,
is often referred to as the SLAM front-end and it directha potential approach to obtain such constraints has rgcentl



been proposed by Stedet al. [33].

Our approach uses a tree structure to define and efficiently observation d;

update local regions in each iteration by applying a vargdnt efz"@ _
stochastic gradient descent. It extends Olson’s algor{@ifh @) Pj
and converges significantly faster to highly accurate nekwo b;

configurations. Compared to other approaches to 3D mappi
our technique utilizes a more accurate way to distribu
the rotational error over a sequence of poses. Furthermore,
the complexity of our approach scales with the size of the )
environment and not with the length of the trajectory as it &S Well as theesidualr;;
the case for.most alternative met.hods. . rii(x) = —eji(x). )

The remainder of this paper is organized as follows. In
Section II, we formally introduce the graph-based formiglat ~ Note that at the equilibrium point,;; is equal to O since
of the mapping problem and explain the usage of stochasfic(x) = d;:- In this case, an observation perfectly matches
gradient descent to reduce the error of the network configute current configuration of the nodes. Assuming a Gaussian
tion. Whereas Section Il introduces our tree parametéoizat observation error, the corresponding negative log likedth
Section IV describes our approach to distribute the ratatio results in
errors over a sequence of nodes. In Section V we then provide

ng, )
ﬁl?g 2. Example of an observation of the noflseen fron.

(f5i(%) = 850)" Qi (fia(x) —d50)  (3)

an upper bound for this error distribution. Section VI, eips Fjs(x) o a
how to obtain a reduced graph representation to limit the = e5i(x) Qjieji(x) (4)
complexity. After describing the experimental resultshnour = r(x)TQir;i(x). (5)

approach in Section VII, we provide a detailed discussion of

related work in Section VIII. Under the assumption that the observations are indepgndent

the overall negative log likelihood of a configuratianis
Il. MAXIMUM LIKELIHOOD MAPPING

USING A CONSTRAINT NETWORK F(x) = > Fulx) (6)
Most approaches to network-based or graph-based SLAM (Gyec
focus on estimating the most-likely configuration of the esd o Z 75 (x) T Qjim54(x). (7
and are therefore referred to as maximum-likelihood (ML) (jayec

techniques [5, 11, 13, 14, 22, 27, 36]. Such techniques

0 o L . . .
not compute the full posterior about the map and the posesgé)?rec.: {ULa1) .- (usi)} is @ set of pairs of indices
. for which a constraing;, ;,, exists.
the robot. The approach presented in this paper also belong:|<_he goal of an ML approach is to find the configuration

to this class of methods. of the nodes that maximizes the likelihood of the observstio

A. Problem Formulation This can be written as
The goal of graph-based ML mapping algorithms is to find x* = argmin F(x). (8)
the configuration of the nodes that maximizes the likelihood x
of the observations. For a more precise formulation comside There are multiple ways of solving Eq. (8). They range
the following definitions: from approaches applying gradient descent, conjugatei-grad
o Letx = (z; --- z,)T be a vector of parameters whichents, Gauss Seidel relaxation, multi-level relaxation) o

describes a configuration of the nodes. Note that tldecomposition. In the following section, we briefly intragu
parameters; do not need to be the absolute poses of ttetochastic gradient descent, which is the technique our ap-
nodes. They are arbitrary variables which can be mappptbach is based on.
to the poses of the nodes in real world coordinates.

« Let us furthermore assume thgf describes a constraintg ~ siochastic Gradient Descent for Maximum Likelihood
between the nodeg and:. It refers to an observation OfMapping

node; seen from nodeé. These constraints are the edges Olsonet al. [27] propose to use a variant of the precondi-

?hglir?ézftgiiru?rg{r‘ei.s represented by the informationtioned stochastic gradient descent (SGD) to address thé/SLA
‘ matrix Q.. Y g P y problem. The approach minimizes Eq. (8) by sequentially
Finally, ]JCZ.(X) is a function that computes a zero noisgelecting a constrainty, i) (without replacement) and by
. y J gt . .
observation according to the current configuration of theoving the nodes of the network in orgler to decrease the
nodesj andi. It returns an observation of nogeseen error introduced by the selected constraint. Compared do th

) standard formulation of gradient descent, the constraings
from node:. o e
Figure 2 illustrat 1 observation between two nod not optimized as a whole but individually. The nodes are
gure ustrates an observation between two nodes. updated according to the following equation:
Given a constraint between nogand node, we can define
the error e;; introduced by the constraint as X = X+ N KT 9
~—

eji(x) = fj(x)—dji (1) Ao



Herex is the set of variables describing the locations of the The parameterizatiop defines not only how the variables
poses in the network anfl is a pre-conditioning matrixJ/;; of the nodes are described but also the subset of variables
is the Jacobian of;;, 2;; is the information matrix capturing that are modified by a single constraint update. A good

the uncertainty of the observation, ang is the residual. parameterization defines the subproblems in a way that the
Reading the term\x;; of Eq. (9) from right to left gives combination step leads only to small changes of the indalidu
an intuition about the iterative procedure: solutions.

« The termr;; is the residual which corresponds to the Olsonet al. [2?] proposed to use the so-called incremental
negative error vector. Changing the network configuratidiPSe parameterization for 2D problems. For each node

in the direction of the residuat;; will decrease the error the graph, they store a the parametgrwhich is the vector
eji. difference between the poses of the nedmd the nodé — 1
The term €2;; represents the information matrix of a
constraint. Multiplying it with r;; scales the residual

components according to the information encoded in tHdis parameterization has the advantage of allowing fast

T; = Di — Pi—1. (12)

constraint. constraint updates. As discussed in [13], updating a cainstr
« The Jacobian/7; maps the residual term into a set oPetween two nodes and j requires to update all nodes
variations in the parameter space. k=144 1,...,j. This leads to a low convergence speed if

The term K is a pre-conditioning matrix. It is used to? < J. Furthermore this parameterization requires that the
scale the variations resulting from the Jacobian dependifgdes are arranged in a sequence given by the trajectory.

on the curvature of the error surface. Approaches such a#\S mentioned above, a major contribution of this paper is
Olson’s algorithm [27] or our previous work [13] apply@n algorithm that preserves the advantages of the increnent

a diagonal pre-conditioning matrix computed from th@Pproach but overcomes its drawbacks. The first goal is to
HessianH as be able to deal with arbitrary network topologies since this

enables us to compress the graph whenever robot revisits a
K = [diag(H)]™" (10) place. As a result, the size of the network is proportionaheo

. oo . . visited area and not to the length of the trajectory. The s&co
Finally, the quantity\ is a learning rate that decreases with al is to make the number of nodes in the graph which are

4 . 0
g?fﬁelf;;t;? of SGD and that ensures the convergerﬁ:pedated by each constraint mainly dependent on the topology

of the environment and not the trajectory taken by the vehicl

~ In practice, the algorithm decomposes the overall problegy, example, in the case of a loop-closure a large number of
into many smaller problems by optimizing each constraifyges need to be updated but in all other situations the epdat
individually. Thus, a portion of the network, namely the B8d s |imited to a small number of nodes to keep the interactions
involved in a constraint, is updated in each step. ObviQuslatween constraints small.

updating the different constraints one after each other cangyr jdea is to define a parameterization based on a tree
have antagonistic effects on a subset of variables. To meiggcture. To obtain a tree from a given graph, we compute a

the contribution of the individual constraints, one uses thypanning tree. Given such a tree, we define the parameteriza-
learning rate to reduce the fraction of the residual which g for a node as

used for updating the variables. This makes the solutiotiseof
different sub-problems to asymptotically converge towead Ti = Pi O Pparent(i)s (13)

equilibrium point that is the solution reported by the altfon. Wherep,arent (i) refers to the parent of nodein the spanning

Whereas_this framework allows us tp iter_atively reducgee. The operators ando are the standard pose compound-
the error given the network of constraints, it leaves 0pgfy operators [22]. As defined in Eqg. (13), the tree stores the
how the nodes are represented or parameterized. Howeygfative transformations between poses.
the choice of the parameterization has a strong influence ongjyen a root node that represents the origin, such a spanning
the performance of the algorithm. T_he next section addses$gee can be obtained by using Dijkstra’s algorithm. In this
the problem of how to parameterize a graph so that thg,k we use the uncertainty encoded in the information
optimization can be carried out efficiently. matrices of the constraints as costs. In this way, Dijkstra’
algorithm provides the “lowest uncertainty tree” (shorigsth
i tree) of the graph.

The posesp = {pi,...,pn} Of the nodes define the Ngte that this tree does not replace the graph as an internal
configuration of the network. They can be described by @, resentation. The tree only defines the parameterizafion
vector of parameters such that a bijective mappingbetween he nodes. For illustration, Figure 3 depicts a graph tageth
p andx exists. with one potential parameterization tree.

(11) According to Eq. (13), one needs to process the tree up
to the root to compute the actual pose of a node in the
As explained above, in each iteration SGD decomposes tjiebal reference frame. However, to obtain only the retativ
problem into a set of subproblems and solves them sequémansformation between two arbitrary nodes, one needs to
tially, where a subproblem is the optimization of a singleaverse the tree from the first node upwards to the first
constraint. common ancestor of both nodes and then downwards to the

Ill. TREEPARAMETERIZATION FORSGD

x = g(p) p=g '(x)



@ IV. UPDATING THE TREE PARAMETERIZATION

So far, we described the prerequisites for applying the
@) preconditioned stochastic gradient descent to correghdlses
of a network. The goal of the update rule in SGD is to
® .9 iteratively update the configuration of a set of nodes in orde
® to reduce the error introduced by a constraint. In Eq. (9, th
@ ® term JjTini maps the variation of the error to a variation in the
6 parameter space. This mapping, however, is a linear fumctio
As illustrated by Frese and Hirzinger [10], the error might
Fig. 3. Left: Example for a constraint network. Right: A pddsitree increase when applying such a linear function in case of non-
gféa;?seée,i;éﬁgﬂnéo;stﬁ'ezggrfgg Forillustration reasdms off-tree constraints |inear error surfaces. In the three-dimensional spacethitee
' rotational components often lead to highly non-linear erro
surfaces. Therefore, it is problematic to apply SGD as well

) as similar minimization techniques directly karge mapping
second node. The same holds for computing the error Ofp?oblems in combination especially when theréhigh noise

constraint. Let th@athP;; of a constraint between the nodes i, the observations.
and j be the sequence of nodes in the tree that need 10 b§, our approach, we therefore choose a modified update
traversed in order to reach the nogestaring from node. je To gvercome the problem explained above, we apply a
Such a path can be divided into an ascending F“égrf of the non-linear functionto describe the variation. As in the linear
path starting from nodéand a descending pamj[f] tonodej. case, the goal of this function is to compute a transformatio
We refer to the length of path of a constraint on the tree a$ the nodes along the path;; of the tree so that the error
|Pji|. We can then compute the residual of the constraint biptroduced by the corresponding constraint is reduced. The
design of this function is presented in the remainder of this
rjii = (pi® ;i) Op; (14)  section. In our experiments, we observed that such an update
L . . typically leads to a smooth deformation of the nodes along
For simplicity of notation, we will refer to the posjg VeCtorthe path when reducing the error. This deformation is done in
of a node as the 6D vectas, = (v y 2 ¢ 0 ¢)" and . steps. We first update the rotational componét®f the

to its associated homogeneous transformation matn.)P.ias \hariablesmC before we update the translational componepts
The same holds for the parameters used for describing the

graph. We denote the parameter vector of the poss x;
and its transformation matriX;. The transformation matrix A. Update of the Rotational Component

corresponding to a constraity; is referred to as\ ;. Without loss of generality, we consider the origin of
A transformation matrixX, consists of a rotational matrix e path?;; to be in the origin of our reference system.

Ry, and a translational componeiand it has the following The orientation ofp; (in the reference frame of;) can be

form computed by multiplying the rotational matrices along théhp
P;;i. To increase the readability of the document, we refer
Ryt to the individual rotational matrices along this path &s
Xi = ( 0 1 > (15) neglecting the indices (compare Eq. (18)). The orientatibn
p; is described by
with
Rl:n = R1R2 e Rn, (19)
. RT  —RIt, wheren is the length of the pati®;;.
X; = 0 1 : (16) Distributing a given error over a sequence of 3D rotations,

_ _ _ can be described in the following way: we need to determine
Accordingly, we can compute the residual in the referengeset of increments in the intermediate rotations of therchai
frame of the nodg as so that the orientation of the last node (here ngyis R;.,, B

B where B the matrix that rotateg; to the desired orientation
rii = PTYPA) 7) ; " - :

Ji J Vil based on the error/residual. Formulated in a mathematiagl w
we need to compute a set of new rotational matrifsto

1
H pan H XA (18) update the nodes so that
K+ eplt kl-lepl]

J

Ri.,B = []R: (20)
At this point one can directly compute the Jacobian from k=1
the residual and apply Eq. (9) to update the constraint. Nofg gptain thesel, we compute a rotatior) in the global
that with this parameterization the Jacobian has exd®yl eference frame such that
non zero blocks, since only the parameters in the path of the
constraint appear in the residual. A, B = QA,, (21)



where A,, denotes the rotation of thet nodein the global notation. However, in our implementation we use quateision
reference frameBy multiplying both sides of Eq. (21) with for representing the rotations because they are numsricall
AT from the right hand side we obtain more stable. Both formulations are theoretically equivale
Note that an open source implementation of our optimizer is
_ T
Q = A.BA,. (22) available online [32].
We now decompose the rotatidp into a set of incremental

rotations B. Update of the Translational Component

Qin = @ = Qi1Q2---Qy (23)  Compared to the update of the rotational component de-
scribed above, the update of the translational component ca
be done in a straightforward manner. In our current system,
we distribute the translational error over the nodes along
the path without changing the previously computed rotation

and compute the individual matricéx, by using the spherical
linear interpolation (slerp) [1].

For this decomposition af we use the parametere [0, 1]
with slerp(Q, 0) = I andslerp(Q, 1) = Q. Accordingly, the

; ; component.
rotation Qy, is
@ All nodes along the path are translated by a fraction of the
Qr = [slerp(Q,us_1)]" slerp(Q,uz). (24) residuals in ther, i, andz components. This fraction depends

on the uncertainty of the individual constraints encoded in

Furthermore, the rotation matrit, of th / along th . . i ) .
urthermore, the rotation matri;, of the poses, along the the corresponding covariance matrices and is scaled with th

path is learning rate, similarly to the case of updating the rotalo
= QueAg. (25) component.
We furthermore compute the new rotational componégiis V. ANALYSIS OF THE ROTATIONAL RESIDUAL
of each nodek as When distributing an rotational error over a sequence of
R, = [A;arent(k)}TA;e' (26) nodesi,...,j, one may increase the absolute value of the

_ o ) ) residualry ;1 between consecutive constraints along the path
In Eq. (_27),the learning rateis d_wectlymcorporated the (and thus the erroe, ;_1). For the convergence of SGD,
computation of the valuesy.. In this way, the slerp function qever, it is important that this error is bounded. Themfo

takes care of the appropriate scaling of the rotations. in this section we analyze evolution of the rotational reaid
In addition to that, we consider the pre-conditioning matrigfiea, distributing an error according to Section IV-A.

and the length of the path when computing. Similar ©0 A generic 3D rotation can be described in terms of an
Olsonet al. [27], we clamp the produck|P;;| to lie between ayis and an angle. Given an rotational matfk we will

[0, 1] for not overshooting. In our implementation, we computgyfar respectively to its axis of rotation asisOf(R) and as
these values as: angleOf(R). According to [1], the slerp interpolation returns

-t a set of rotation along the same axis as follows

we=min(LAP) | D, dill ] D dy R = slerp(R,u) (29)
mePj;Am<k meP;;
(27) axisOf(R') = axisOf(R) (30)
Here, d,, is defined as the sum of the smallest eigenvalues angleOf(R') = u-angleOf(R). (31)
of the information matrices of all constraints connectihg t
nodem: When distributing the rotatio® over a sequence of poses
dp = Z min [eigen(Qip, )] (28) according to Eqg. (23), we decompose it into a sequence of
(i;m) incremental rotationg) = Q1Q----Q,. From Eqg. (24) we
know that

This is an approximation which works well in case of roughly

spherical covariances. Note that the eigenvalues need to bg, = angleOf(Qy) = (uy — ux_1) - angleOf(Q). (32)

computed only once in the beginning and are then stored in

the tree. In the following, we show that when distributing the rotaiddb
For simplicity of presentation, we demonstrated how t@rror along a loop thangleof the residuabngleOf (ry ;1)

distribute the rotational error while keeping the nadiixed. between the consecutive poses 1 andk along the path does

In our implementation, however, we fix the position of the sd10t increase more that.

called “top node” in the path which is the node that is clogest According to Eq. (18), the residual of a constraint between

the root of the tree (smallest level in the tree). As a resbt, the nodest —1 andk is

update of a constraint has less side-effects on other comistr , - XA 33)

in the network. Fixing the top node instead of nadean be kok—1 ko Shk=L

obtained by simply saving the pose of the top node befogince we are focusing only on the rotational component of the

updating the path. After the update, one transforms all sode@sidual, we ignore the translational part:

along path in way that the top node maintains its previous -

pose. Furthermore, we used the matrix notation in this paper Thk-1 = RipApr—1 (34)

to formulate the error distribution since it provides anieas RF = TkykflAz,kfl' (35)



After updating the rotationsAy, ..., A, along the chain node in the graph and update the constraints with respect to
using Eq. (25), we obtain a new set of rotatiofls ..., A}, in that node.
the global reference frame. From these rotations, we récoveTo avoid adding new constraints to the network, we can

the updated rotational parametd®§, by using Eq. (26): refine an existing constraint between two nodes in case of a
new observation. Lef!!) be a constraint already stored in the
R, % 4l A 36 @ pe the !
ko= k=14 (36) graph and let;;” be the new constraint that would result from
(25) R T R 37) the current observation. Both constraints can be combioed t
Qur—1R1k-1]" - [QurRik] (37) . . : 2 o
T a single constraint which has the following information mat
[Rl:k—l] Qk‘Rlzk (38) and mean:
= [Rin—1]" QrRik—1Ry. (39) ) @)
h he resid fter the upd SR )
We then compute the resi after the update as
’ i i G = o@Dl 6 @)
(34) /T
Thk—1 = R Agg—a (40)  This can be seen as an approximation similar to adding a

(39)

2 RTR1g )T QT Rugo1 A1 (41) rigid constraint between nodes. However, if local maps.{(e.g

grid maps) are used as nodes in the network, it makes sense
Thk—1 A{,k_l[Rqu]T QY Rik—1Ak k-1 to use such an approximation since one can localize a robot
— in an existing map quite accurately.
=YT =Y . .
_ YTQTY (42) As a result, the size of the problem does not increase when
= Thk-l k revisiting known locations. The complexity specified above
In Eq. (42), the termy7QTY quantifies the increase in theStays the same bul/ as well asN refer to as the reduced

residual of a constraint between two consecutive nodes affglantities. As our experiments illustrate, this node rédac
the update. Sinc& andQ are rotation matrices, we obtain t€chnique leads to an increased convergence speed sisce les
nodes and constraints need to be considered.

langleOf (Y7 QTY)| = |angleOf(Qy)| = |ax|.  (43)
VIl. EXPERIMENTS

Thus, the change of the new residual is at megtand  Thjs section is designed to evaluate the properties of our ap
therefore bounded. This is a relevant advantage compareds{gach described above. We first demonstrate that our method
the error distribution presented by Grisegti al. [12] which 5 well suited to cope with the motion and sensor noise from an
was not bounded in such a way. instrumented car equipped with laser range scanners. 8econ
we present the results of simulated experiments based on
large 2D and 3D datasets. Finally, we compare our approach
Due to the nature of stochastic gradient descent, the cog-gifferent other methods including Olson’s algorithm J[27

plexity of our approach per iteration depends linearly oa thyylti-level relaxation [11], and SAM [4, 19].
number of constraints since each constraint is selected onc

per iteration (in a random order). For each constrajnt), ) ) )
our approach modifies exactly those nodes which belong/Ae Mapping with a Car-like Robot
the pathP;; in the tree. In the first experiment, we applied our method to a real
The path of constraint is defined by the tree parametevorld three-dimensional dataset recorded with an instniate
ization. As a result, different paths have different lelsgthcar. Using such cars as robots became popular in the robotics
Thus, we consider the average path lengtto specify the community [3, 29, 34, 38]. We used a Smart car equipped
complexity. It corresponds to average the number of opmrati with 5 SICK laser range finders and various pose estimation
needed to update a single constraint during one iteratibis. Tsensors for data acquisition. Our robot constructs loaaeth
results in a complexity o©(M - 1), where M is the number dimensional maps, so-called multi-level surface maps, [@6d
of constraints. In our experiments we found thagpically is builds a network of constrains where each node represecits su
in the order oflog V, where N is the number of nodes. a local map. The localization system of the car is based on
Note that there is further space for optimizations. The-GPS (here using only standard GPS) and IMU data. This
complexity of the approach presented so far depends on thformation is used to compute the incremental constrédiats
length of the trajectory and not on the size of the envirorimetween subsequent poses. Constraints resulting from tiegisi
These two quantities are different if the robot revisitealty an already known area are obtained by matching the indiVidua
known areas. This becomes important whenever the robotiasal maps using ICP. More details on this matching can be
deployed in a bounded environment for a long time and h&sund in our previous work [29].
to update its map over time. This is also known as lifelong We recorded a large-scale dataset at the EPFL campus where
map learning. Since our parameterization is not restritbed the robot moved on a 10km long trajectory. The dataset in-
a trajectory of sequential poses, we have the possibility oiudes multiple levels such as an underground parking garag
a further optimization. Whenever the robot revisits a knowand a bridge with an underpass. The motivating example of
place, we do not need to add new nodes to the graph. W& paper (see Figure 1) depicts the input trajectory and an
can assign the current pose of the robot to an already existoverlay of the corrected trajectory on an aerial image. As ca

VI. COMPLEXITY AND GRAPH REDUCTION



TABLE |

Triebel et al. ~ Triebel et al.
£ 2 Our approachy-- £ 2 Our approachy-—=- COMPARISON TOSAM
g 15 g e noise level || SAM SAM Our method
S 2 1t 4 (batch) (incremental) (batch)
(=} %
% 05 5 o5l o =0.05 119s not tested 20s
’ . (see batch) (100 iterations)
0 N oc=0.1 diverged 270s (optimized| 40s
0 1000 2000 3000 4000 0 01 02 03 04 each 100 nodes)| (200 iterations)
timefs] timefs] c=0.2 diverged | 510s (optimized| 50s
each 50 nodes) | (250 iterations)

Fig. 4. The evolution of the average error per constrainifzated according
to Eqg. (7) divided by the number of constraints) of the apphnaafcTriebelet
al. [36] and our approach for the dataset recorded with the autons car.
The right image shows a magnified view to the first 400 ms.

be seen, the trajectory actually matches to the streetsein th|
aerial image (image resolution: 0.5m per pixel).

We used this dataset to compare our new algorithm to the
approach of Triebekt al. [36] that iteratively applies LU
decomposition. In this experiment, both approaches cgever
to_more or I.ess the same ,SOIUtlon' The time ”e‘?ded to aCh'%‘? 7. The result of MLR strongly depends on the initial cgofation of
this correction, however, is by orders of magnitudes small@e network. Left: small initial pose error, right: largetial pose error.
when applying our new technique. Figure 4 plots the average
error per constraint versus the execution time.

local minima for the sphere datasets with medium and large

B. Quantitative Results and Comparison with SAM in 3D noise. The incremental version, in contrast,always camaer

. : . but still required substantially more computation timentioar
The second set of experiments is designed to measure éﬂ?rent implementation of our approach

performance of our approach for correcting 3D constraint

networks and in comparison with the smoothing and mapping

(SAM) approach of Dellaert [4]. In these simulation experiC. Comparison to MLR and Olson’s Algorithm in 2D

ments we moved a virtual robot on the surface of a sphere. Anin this third experiment, we compare our technigue to two

observation was generated each time the current posititireof current state-of-the-art SLAM approaches that aim to corre

robot was close to a previously visited location. We coredpt constraint networks, namely multi-level relaxation prepo

the observations with a variable amount of Gaussian noisedyp Freseet al. [11] and Olson’s algorithm [27]. Since both

investigate the robustness of the algorithms. techniques are designed for 2D scenarios, we also used the 2D
Figure 5 depicts a series of graphs obtained by our algorithvarsion of our system, which is identical to the 3D version

using three datasets generated with different noise leVéls except that the three additional dimensionsr6ll, pitch) are

observation and motion noise was sewte- 0.05/0.1/0.2 in  not considered.

each translational component (in m) and rotational compbne We furthermore tested two variants of our method: one that

(in radians). uses the node reduction technique described in Sectiond/ an
As can be seen, our approach converges to a configuratmre that maintains all the nodes in the graph.
with a low error. Especially for the last dataset, the rotzsi In these simulation experiments we moved a virtual robot

noise with a standard deviation of 0.2 (radians) for ea@n a grid world. Again, we corrupted the observations with
movement and observation is high. After around 250 itenatio a variable amount of noise for testing the robustness of the
the system converged. Each iteration took 200ms for thaggorithms. We simulated different datasets resultingrapbs
dataset with around 85,000 constraints. which consisted of 4,000 and 2,000,000 constraints.

We furthermore compared our approach to the smoothingFigure 6 depicts the actual graphs obtained by Olson’s
and mapping approach of Dellaert [4]. The SAM algorithm caalgorithm and our approach for different time steps. As
operate in two modes: as a batch process which optimizes ta be seen, our approach converges faster. Asymptotically
entire network at once or in an incremental mode. The latteoth approaches converge to a similar solution. In all our
one only performs an optimization after a fixed number @xperiments, the results of MLR strongly depend on theahiti
nodes has been added. This way of incrementally optimizipgsitions of the nodes. We found that in case of a good sgartin
the network is more robust since the initial guess for theonfiguration of the network, MLR converges to a highly
network configurations is computed based on the result of thecurate solution similar to our approach (see left image of
previous optimization. As a result, the risk of getting &ut Figure 7). Otherwise, it is likely to diverge (right). Olssn
a local minima is typically reduced. However, this procedurapproach as well as our technique are more or less independen
leads to a significant computational overhead. Table | sumf the initial poses of the nodes.
marizes the results obtained with the SAM algorithm. As can To quantitatively evaluate our technique we measured the
be seen, the batch variant of the SAM algorithm got stuck arror in the network after each iteration. The left image of
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Fig. 5. Results obtained by our approach using a virtual rafmving on a sphere with three different noise realizationsmotion and observations (row 1:
o = 0.05, row 2: 0 = 0.1, row 3: 0 = 0.2). Each network consists of around 85k constraints. Ther ércomputed according to Eq. (7) divided by the
number of constraints.

Fig. 6. Results obtained with Olson’s algorithm (first romdeaour approach (second row) after 1, 10, 50, 100, and 30&tibes for a network with 64,000
constraints. The black areas in the images result from ainstrbetween nodes which are not perfectly corrected tifeecorresponding iteration (for timings
see Figure 8).
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Fig. 8. The left image shows the error of our and Olson’s apgrda a statistical experiment(= 0.05 confidence). The image in the middle shows
that both techniques converge asymptotically to the same. e right image shows the average execution tpaeiteration for different networks. For
the network consisting of 1,900,000 constraints, the eteguof MLR required too much resources. The result is thesefamitted. The error is computed
according to Eq. (7) divided by the number of constraints.



Figure 8 depicts a statistical experiments over 10 networks
with the same topology but different noise realizations. As
can be seen, our approach converges significantly fastar tha
the approach of Olsoat al. For medium size networks, both
approaches converge asymptotically to approximatively th
same error value (see middle image). For large networks,
the high number of iterations needed for Olson’s approach
prevented us from experimentally analyzing the convergenc
For the sake of brevity, we omitted comparisons to EKF and
Gauss Seidel relaxation because Olsbral. already showed
that their approach outperforms those techniques.
Additionally, we evaluated the average computation time
per iteration of the different approaches (see right imafye o
Figure 8) and analyzed a variant of Olson’s approach which
is restricted to spherical covariances. The latter approac
yields execution timeger iteration similar to our algorithm.
However, this variant has still the same convergence speed
with respect to the number of iterations as Olson’s original g&#%%
technique. As can be seen from the right image of Figure 8,
our node reduction technique speeds up the computations up ..
to a factor of 20. b
We also applied our 3D optimizer to such 2D problems and
compared its performance to our 2D version. Both techniques
lead to more or less the same results. The 2D version, however
is around three times faster that the 3D version. This result
from removing the irrelevant components from the state espac
and thus avoids the corresponding trigonometric operstion

D. Error Distribution in 3D

We furthermore compared our technique to distribute a ro-
tational error in 3D with our previously proposed method][12
Compared to this method, our new distribution limits the ¥ .38
fraction of the error that is added to the intermediate nodes = *

— a bound that is not available in [12]. Without this boundsig. 9.  Network obtained from a car driving multiple times thgh a
it can happen that the error of the overall network dradyicalparking lot with three floors. Different error distributiagachniques result in

increases because a high error is introduced in the inte-mddifferent networks. The inconsistencies are marked by thenar First row:
evious method [12], Second row: our approach, both afteerations of

nodes. Note that even if this effect occurs rarely in reg{e optimizer. Third row: a multi-level surface map createdrftihe corrected
datasets, it can lead to divergence. Figure 9 illustrated sieonstraint network. Fourth row: Aerial image of the parking |

an example recorded with a car in a parking lot with three
floors.

While the previous method diverges after a few iterationgye figred out that in situations with nested loops, it is

our new algorlth.m leads tq a limited and balanced_ d|strdmut_| dvantageous to process first the constraints which have a
of the error. This results in a more stable algorithm, Wh'cghorter path length (and thus correspond to the smalles)oop
successfully solved all tested datasets. This is due to angular “wraparounds” that are more likely to
occur when first correcting a large loop starting with a poor
E. Constraint Sampling initial guess. A wraparound is an error in the initial guess
Stochastic gradient descent selects in each iteration-a r@ha relative configuration between two nodes that is bigger
dom order in which the constraints are updated. In our pteviothan 180 degrees. Such wraparounds cause the algorithm to
work [13], we neglected this randomization and selectedcgnverge to a local minimum.
fixed order based on the level of a constraint in the tree. ThisThis effect can be observed in Figure 10. It illustrates a
was needed to perform efficient updates given our previoudtatistical experiment carried out using the sphere datse
presented parameterization of the nodes. runs per strategy). As can be seen, sampling the constraints
With the parameterization presented in this paper, we d@reeach iteration inversely proportional to the length ofith
free to choose an arbitrary order. We therefore comparpdth in the tree gives the best results. In contrast to teising
two different sampling techniques: random sampling andsauck in local minima is more likely when performing random
variant in which we sample a constraint without replacemesampling. Note that this effect occurs only for large netgor
with a probability inversely proportional to the path-léimg or high noise in the rotational components. Otherwise, both




1000

randomized sampling——— the information matrix. In this way, Frese is able to perform
E sample according to length-- an update iM®(logn) wheren is the number of features.
= 100 ffH 3 An alternative approach to find maximum likelihood maps
S " HHHHHHHHHHHHHHHHHH is the application of least square error minimization. Tdhesi
% 0l | is to compute a network of relations given the sequence of
s X 7 sensor readings. These relations represent the spatial con
straints between the poses of the robot. In this paper, vee als
1 : : : follow this way of formulating the SLAM problem. Lu and
0 200 400 600 800 Milios [22] first applied this approach in robotics to addres
interation the SLAM problem using a kind of brute force method.

. . . . . Their approach seeks to optimize the whole network at once.
Fig. 10. The evolution of the error per constraint in a stati$ experiment d i 14 d ffecti f
using different strategies to sample the constraint tha¢isglated next. The GUtmann_ and Konolige [14] proposed an € ective way for
error is computed according to Eq. (7) divided by the numberooktraints. constructing such a network and for detecting loop closures

while running an incremental estimation algorithm. Howard
et al. [16] apply relaxation to localize the robot and build

strategies provide comparable results. As a result, we lsam@ map. Ducketet al. [5] propose the usage of Gauss-Seidel
without replacement the constraints in each iterationrgme relaxation to minimize the error in the network of consttain

proportional to the length of the their path in the paranieterfo make the problem linear, they assume knowledge about the
zation tree. orientation of the robot. Fresat al. [11] propose a variant of

Gauss-Seidel relaxation called multi-level relaxationLg®).
VIIl. RELATED WORK It applies relaxation at different resolutions. MLR is rejea
Mapping techniques for mobile robots can be classifigd provide very good results in flat environments especidlly
according to the underlying estimation technique. The masie error in the initial guess is limited.
popular approaches are extended Kalman filters (EKFs) [21Note that techniques such as Olson’s algorithm, MLR, or
31], sparse extended information filters [7, 35], particle fiour method focus on computing the best map and assume
ters [23], and least square error minimization approacB2s [that the constraints are given. The ATLAS framework [2],
11, 14]. For some applications, it might be even be sufficiehierarchical SLAM [6], or the work of Mchteret al. [26],
to learn local maps only [15, 34, 39]. for example, can be used to obtain the data associations (con
The effectiveness of the EKF approaches comes from thiaints). They also apply a global optimization procechare
fact that they estimate a fully correlated posterior abogbmpute a consistent map. One can replace their optimizatio
landmark maps and robot poses [21, 31]. Their weakness |@scedures by our algorithm and in this way make them more
in the strong assumptions that have to be made on both, #féicient.
robot motion model and the sensor noise. If these assunsptionA technique that combines 2D pose estimates with 3D data
are violated the filter is likely to diverge [18, 37]. has been proposed by Howaed al. [17] to build maps of
Thrun et al. [35] proposed a method to correct the posasrban environments. They avoid the problem of distributirey
of a robot based on the inverse of the covariance matricror in all three dimensions by correcting only the oriéinta
The advantage of sparse extended information filters (SEIfs the x, y-plane of the vehicle. The roll and pitch is assumed
is that they make use of the approximative sparsity of the be measured accurately enough by an IMU.
information matrix. Eusticeet al. [7] presented a technique In the context of three-dimensional maximum likelihood
that more accurately computes the error-bounds within theapping, only a few approaches have been presented so
SEIF framework and therefore reduces the risk of becomifay [24, 25, 26, 36]. The approach ofiishter et al. [26]
overly confident. describes a mobile robot that builds accurate three-diroeak
Recently, Dellaert and colleagues proposed a smoothimgpdels. In their approach, loop closing is achieved by uni-
method called square root smoothing and mapping (SAM) [farmly distributing the error resulting from odometry ouée
19, 30]. It has several advantages compared to EKF-bageses in a loop. This technique provides good estimates but
solutions since it better covers the non-linearities arfdster can not deal with multiple/nested loops.
to compute. In contrast to SEIFs, it furthermore provides Montemerlo and Thrun [24] proposed to utilize the con-
an exactly sparse factorization of the information matrijugate gradients to efficiently invert the sparse inforomati
In addition to that, SAM can be applied in an incrementahatrix of the system. Their approach was used to learn large
way [19] and is able to learn maps in 2D and 3D. Paskin [28ampus maps using a Segway robot. Recently, Triedtel
presented a solution to the SLAM problem using thin junctioal. [36] described an approach that aims to globally correct the
trees. In this way, he is able to reduce the complexity coegparmposes given the network of constraints in all six dimensions
to the EKF approaches since thin junction trees provide/d each iteration the problem is linearized and solved using
linear time filtering operation. LU decomposition. This yields accurate results for smadl an
Frese’s TreeMap algorithm [9] can be applied to computaedium size networks especially when the error in the rota-
nonlinear map estimates. It relies on a strong topologicébnal component is small. As illustrated in our experinaént
assumption on the map to perform sparsification of the isection, this approach is orders of magnitudes slower than o
formation matrix. This approximation ignores small ergrie  method and is thus not suited to learn maps of large scenes.
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