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cSwiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland

Abstract

Rao-Blackwellized particle filters have become a popular tool to solve the simultaneous
localization and mapping problem. This technique applies aparticle filter in which each
particle carries an individual map of the environment. Accordingly, a key issue is to re-
duce the number of particles and/or to make use of compact maprepresentations. This
paper presents an approximative but highly efficient approach to mapping with Rao-Black-
wellized particle filters. Moreover, it provides a compact map model. A key advantage is
that the individual particles can share large parts of the model of the environment. Further-
more, they are able to reuse an already computed proposal distribution. Both techniques
substantially speed-up the overall filtering process and reduce the memory requirements.
Experimental results obtained with mobile robots in large-scale indoor environments and
based on published standard datasets illustrate the advantages of our methods over previous
mapping approaches using Rao-Blackwellized particle filters.

Key words: SLAM, Rao-Blackwellized particle filter, grid map, informed proposal
PACS:

1 Introduction

Learning maps is a fundamental task of mobile robots and a lotof researchers
focused on this problem. In the literature, the mobile robotmapping problem is
often referred to as thesimultaneous localization and mapping (SLAM)problem [1,
2, 3, 4, 5, 6, 7, 8]. In general, SLAM is a complex problem because for learning
a map the robot requires a good pose estimate while at the sametime a consistent
map is needed to localize the robot. This dependency betweenthe pose and the map
estimate makes the SLAM problem hard and requires to search for a solution in a
high-dimensional space.
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Murphy, Doucet, and colleagues [7, 9] introduced Rao-Blackwellized particle fil-
ters (RBPFs) as an effective means to solve the SLAM problem.The main problem
of Rao-Blackwellized particle filters lies in their complexity, measured in terms of
the number of particles required to learn an accurate map. Reducing this quantity
is one of the major challenges for this family of algorithms.

The contribution of this paper is a technique that reduces the computational and the
memory requirements in the context of mapping with Rao-Blackwellized particle
filters. In this way, it becomes feasible to maintain a comparably large set of par-
ticles online. This is achieved by enabling a subset of samples to share large parts
of the map and to use the same proposal distribution. Our system allows a standard
laptop computer to perform all computations necessary to learn accurate maps with
more than one thousand samples online.

This paper is organized as follows. After the discussion of related work, we briefly
introduce mapping with RBPFs. We then describe our technique for efficiently
drawing particles from a proposal distribution. After this, we present our map rep-
resentation and the concept of particle clusters. Finally,we show experiments illus-
trating the improvements of our approach to map learning with RBPFs.

2 Related Work

The estimation techniques for the SLAM problem can be classified according to
their underlying basic principle. The most popular approaches are extended Kalman
filters (EKFs), maximum likelihood techniques, sparse extended information filters
(SEIFs), and Rao Blackwellized particle filters (RBPFs). The effectiveness of the
EKF approaches comes from the fact that they estimate a fullycorrelated posterior
over landmark maps and robot poses [10, 11]. Their weakness lies in the strong
assumptions that have to be made on the robot motion model andthe sensor noise.
Moreover, in the basic framework the landmarks are assumed to be uniquely iden-
tifiable. There exist techniques [12] to deal with unknown data association in the
SLAM context, however, if certain assumptions are violated, the filter is likely to
diverge [13].

Thrunet al. [8] proposed a SEIF method which is based on the inverse of theco-
variance matrix. In this way, measurements can be integrated efficiently. Eusticeet
al. [14] presented an improved technique to accurately computethe error-bounds
within the SEIF framework and thus reduces the risk of becoming overly confident.
Paskin [15] presented a solution to the SLAM problem using thin junction trees.
This reduces the complexity compared to EKF-based approaches since thinned
junction trees provide a linear-time filtering operation.

An alternative approach is to use a maximum likelihood algorithm that computes
a map by constructing a network of relations. The relations represent the spatial
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constraints between the poses of the robot [3, 16]. The main difference to RBPFs
is that the maximum likelihood approach can only track a single mode of the dis-
tribution about the trajectory of the robot. It computes thesolution by minimizing
the least square error introduced by the constraints.

Lisien et al. [17] realized an hierarchical map model in the context of SLAM and
reported that this improves loop-closing. Bosseet al.[18] describe a generic frame-
work for SLAM in large-scale environments. They use a graph structure of local
maps with relative coordinate frames similar to the work described in [19]. This
approach is able to reduce the complexity of the overall problem and it better deals
with the linearizations in the context of EKF-SLAM. Our approach is related to this
framework since we also use local maps attached to a graph structure to model the
environment. However, our motivation to use such a map representation is to allow
multiple particles to share local maps and to compute the proposal distributions in
an efficient way.

Murphy [7] introduced Rao-Blackwellized particle filters as an effective means to
solve the SLAM problem. Each particle in a RBPF represents a potential trajectory
of the robot and a map of the environment. The framework has been subsequently
extended by Montemerloet al. [5, 6] for approaching the SLAM problem with
landmarks. To learn accurate grid maps, Hähnelet al. [4] presented an improved
motion model that reduces the number of required particles.A combination of the
approach of Hähnelet al. and Montemerloet al. as been presented by Grisettiet
al. [2], which extends the ideas of FastSLAM-2 [5] to the grid mapcase. We present
in this paper an approximative solution to RBPF-based mapping which describes
how to draw particles and how to represent the maps of the particles so that the
system can be executed significantly faster and needs less memory resources.

There exist other approaches to mapping with RBPFs like DP-SLAM [1] that pro-
vide a compact map representation. This approach stores an ancestry tree of parti-
cles. Furthermore, each cell of their grid map maintains a tree of poses from which
that cell has been observed. This allows the system to store the map hypotheses
in an compact manner. Additionally, the resampling can be carried out more ef-
ficiently. In contrast to that, our map representation enables us to reuse already
computed proposal distributions for multiple samples. This is done by carrying out
a coordinate transformation between the reference frames stored in our graph struc-
ture.

The contribution of this paper is a computational and memoryefficient Rao-Black-
wellized particle filter for SLAM. Our approach allows the robot to efficiently de-
termine the proposal distributions to sample the next generation of particles in an
approximative manner. Additionally, we present a compact map model in which
multiple particles share local maps. This enables us to maintain substantially more
samples with less memory and computational requirements compared to state-of-
the-art mapping approach using Rao-Blackwellized particle filters.
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3 Learning Maps with Rao-Blackwellized Particle Filters

The key idea of the Rao-Blackwellized particle filter for SLAM is to estimate the
joint posteriorp(x1:t, m | z1:t, u1:t−1) about the trajectoryx1:t = x1, . . . , xt of the
robot and the mapm of the environment given the observationsz1:t = z1, . . . , zt and
odometry measurementsu1:t−1 = u1, . . . , ut−1. It does so by using the following
factorization:

p(x1:t, m | z1:t, u1:t−1) = p(x1:t | z1:t, u1:t−1)p(m | x1:t, z1:t) (1)

In this equation, the posteriorp(x1:t | z1:t, u1:t−1) is similar to the localization prob-
lem, since only the trajectory of the vehicle needs to be estimated. This estimation
is performed using a particle filter which incrementally processes the observations
and the odometry readings as they are available. The second termp(m | x1:t, z1:t)
can be computed efficiently since the posesx1:t of the robot are known when esti-
mating the mapm. Therefore, a Rao-Blackwellized particle filter for SLAM main-
tains an individual map for each sample and updates this map based on the trajec-
tory estimate of the sample upon “mapping with known poses”.

A mapping system that applies a RBPF requires a proposal distribution in order to
draw the next generation of samples. The general framework leaves open which
proposal should be used and how it should be computed. A proposal distribu-
tion typically used in the context of Monte-Carlo localization is the motion model
p(xt | xt−1, ut−1). This proposal, however, is sub-optimal since it does not consider
the observations of the robot to predict its motion. As pointed out by several au-
thors [20, 5], problem-specific proposal distributions areneeded in order to build an
efficient mapping system. The approach presented in this paper, makes use of our
previously defined [2] proposal distribution. It transfersthe ideas of FastSLAM-
2 [5] to the grid map case. Under the Markov assumption, the optimal proposal
distribution [20] is

p(xt | m
(i)
t−1, x

(i)
t−1, zt, ut−1) =

p(zt | m
(i)
t−1, xt)p(xt | x

(i)
t−1, ut−1)

∫

p(zt | m
(i)
t−1, x

′)p(x′ | x
(i)
t−1, ut−1) dx′

. (2)

Whenever a laser range finder is used, one can observe that theobservation likeli-
hoodp(zt | mt−1, xt) is much more peaked than the motion modelp(xt | xt−1, ut−1).
The observation likelihood dominates the product in Eq. (2)in the meaningful area
of the distribution. Therefore, we approximatep(xt | xt−1, ut−1) by a constantk
within this meaningful areaL(i). Under this approximation, the proposal turns into

p(xt | m
(i)
t−1, x

(i)
t−1, zt, ut−1) ≃ p(zt | m

(i)
t−1, xt) ·

[∫

x′∈L(i)
p(zt | m

(i)
t−1, x

′) dx′

]
−1

.

(3)
Eq. (3) can be computed by evaluatingp(zt | m

(i)
t−1, xt) on a grid which is bounded

by the maximum odometry error. Alternatively, one can use a set of sampled points
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{xj} and then evaluate point-wise the observation likelihood. In order to efficiently
sample the next generation of particles, one can approximate this distribution by
a Gaussian. For each particlei, the parametersµ(i)

t andΣ
(i)
t of the Gaussian are

computed as

µ
(i)
t =

1

η(i)

K∑

j=1

xj · p(zt | m
(i)
t−1, xj) (4)

Σ
(i)
t =

1

η(i)

K∑

j=1

p(zt | m
(i)
t−1, xj) · (xj − µ

(i)
t )(xj − µ

(i)
t )T . (5)

Hereη =
∑K

j=1 p(zt | m
(i)
t−1, xj) is a normalizer. Note thatµ(i)

t andΣ
(i)
t are calcu-

lated for each particle individually which is computationally expensive but leads
to an informed proposal distribution. This allows us to drawparticles in an more
accurate manner which seriously reduces the number of required samples.

4 Speeding Up the Computation of the Proposal

The problem of the method presented above is the computational complexity of the
informed proposal distribution since it has to be done for each sample individually.
As a result, such a mapping system runs online only for small particle sets. Fur-
thermore, each particle maintains a full grid map which requires to store large grid
structures in the memory. To overcome this limitation, we present a way to utilize
intermediate results in order to efficiently determine the proposal for the individual
samples. Our implementation extends the open-source implementation [21] of the
mapping system of Grisettiet al. [2] which originally makes use of the proposal
distribution presented in the previous section.

The proposal distribution is needed to model the relative movement of the vehi-
cle under uncertainty. In most situations, this uncertainty is similar for all samples
within one movement. It therefore makes sense to use the sameuncertainty to prop-
agate the particles. We derive a way to sample multiple particles from the same
proposal. As a result, the time consuming computation of theproposal distribution
can be carried out for a few particles that are representatives for groups of similar
samples.

Furthermore, we observed that local maps which are represented in a particle-
centered coordinate frame look similar for many samples. Wetherefore present a
compact map model in which multiple particles can share their local maps. Instead
of storing a full grid map, each sample maintains only a set ofreference frames for
the different local maps. This substantially reduces the memory requirements of the
mapping algorithm.
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4.1 Different Situations During Mapping

Before we derive our new proposal distributions, we start with a brief analysis of the
behavior of a RBPF. One can distinguish three different types of situations during
mapping:

• The robot is moving throughunknownareas,
• is moving throughknownareas, or
• is closing a loop. Here, closing a loop means that the robot first moves through

unknown areas and then reenters known terrain. It can be seenas moving along a
so far non traversed shortcut from current pose of the robot to an already known
area (see also [22]).

In each of those situations, the filter behaves differently.Whenever the robot is
moving through unknown terrain, the uncertainty about the pose of the robot grows.
This is due to the fact that the errors are accumulated along the trajectory. The
resulting uncertainty can only be bounded by observations which cover a (partially)
known region.

In the second case, a map of the surroundings of the robot is known and in this
way the SLAM problem turns into a localization problem whichis typically easier
to handle. Whenever the robot is closing a loop, the particlecloud is often widely
spread. By reentering known areas, the filter can typically determine which parti-
cles are consistent with their own map and which are not. As a result, such a situ-
ation leads to an unbalanced distribution of particle weights. The next resampling
action then eliminates a series of unlikely hypotheses and the uncertainty decreases.

For each of these three situations, we will present a proposal distribution that needs
to be computed only for a small set of representatives ratherthan for all particles.
Throughout this paper, we make the following three assumptions.

Assumption 1 The current situation is known, which means that the robot can
determine whether it is moving through unknown terrain, within a known area,
or is closing a loop.

Assumption 2 The corresponding local maps of two samples are similar if con-
sidered in a particle-centered reference frame. In the following, we refer to this
property aslocal similarityof the maps.

Assumption 3 An accurate algorithm for pose tracking is used and the observa-
tions are affected by a limited sensor noise.

4.2 Computing the Proposal for Unknown Terrain

For proximity sensors like laser range finders, the observations of the robot cover
only a local area around the robot. As a result, we only need toconsider the sur-
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(d)(a) (b) (c)

Figure 1. Image (a) depicts the pose of a particle, its local map, and the computed proposal
which represented by the blue/dashed ellipse. Image (b) illustrates the proposal distribution
represented in the ego-centric reference frame of that sample. Image (c) shows a second
particle and its map. By carrying out a coordinate transform, the proposal of the first particle
can be used by the second particle as long as their maps are (locally) similar (d).

roundings of the robot when computing the proposal distribution. Letm̃(i)
t−1 refer to

the local map of particlei around its previous posex(i)
t−1. In the surroundings of the

robot, we can approximate

p(xt | m
(i)
t−1, x

(i)
t−1, zt, ut−1) ≃ p(xt | m̃

(i)
t−1, x

(i)
t−1, zt, ut−1). (6)

Let ⊕ and⊖ be the standard pose compounding operators (see [16]):a ⊖ b is an
operator that translates all the points in the domain of the functiona so that the
new origin of the domain ofa is b and⊕ is its inverse. The local similarity between
maps (Assumption 2) allows us to writẽm(i)

t−1 ⊖ x
(i)
t−1 ≃ m̃

(j)
t−1 ⊖ x

(j)
t−1. In this case,

the proposal distribution for different particles are similar if transformed to an ego-
centric reference frame

p(xt ⊖ x
(j)
t−1 | m̃

(j)
t−1, x

(j)
t−1, zt, ut−1)≃ p(xt ⊖ x

(i)
t−1 | m̃

(i)
t−1, x

(i)
t−1, zt, ut−1). (7)

As a result, we can determine the proposal for a particlej by computing the pro-
posal in the reference frame of particlei and then translating it to the reference
frame of particlej

p(xt | m̃
(j)
t−1, x

(j)
t−1, zt, ut−1)≃ p(x

(j)
t−1 ⊕ (xt ⊖ x

(i)
t−1) | m̃

(i)
t−1, x

(i)
t−1, zt, ut−1). (8)

This computation is illustrated in Figure 1. It shows how to transform a proposal
between particles. The complex proposal computation needsto be performed only
once and can then be translated to the reference frame of the other particles.

4.3 Computing the Proposal for Already Visited Areas

Whenever the robot moves through known areas, each particlestays localized in
its own map according to Assumption 3. To update the new pose of each particle
while the robot moves, we choose the posext that maximizes the likelihood of the
observation around the pose predicted by odometry

x
(i)
t = argmax

xt

p(xt | m̃
(i)
t−1, x

(i)
t−1, zt, ut−1). (9)
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Analog to Eq. (6)-(8), we can express the proposal of particle j using the one of
particlei. The only difference is that we do not apply the⊕ and⊖ operators based
on the poses of the samples. Instead, the operators are applied based on the particle
dependent reference framesl(i) andl(j) of the local maps. These reference frames
were established whenever the robot visits the corresponding area for the first time.
This results in

p(xt | m̃
(j)
t−1, x

(j)
t−1, zt, ut−1)≃ p(l(j) ⊕ (xt ⊖ l(i)) | m̃

(i)
t−1, x

(i)
t−1, zt, ut−1). (10)

Combining Eq. (9) and Eq. (10) leads to

x
(j)
t = argmax

xt

p(xt | m̃
(j)
t−1, x

(j)
t−1, zt, ut−1) (11)

≃ argmax
xt

p(l(j) ⊕ (xt ⊖ l(i)) | m̃
(i)
t−1, x

(i)
t−1, zt, ut−1) = l(j) ⊕ (x

(i)
t ⊖ l(i)).(12)

Under the Assumptions 2 and 3, we can estimate the poses of allsamples according
to Eq. (12) (while moving through known areas). In this way, the complex compu-
tation of an informed proposal needs to be done only once.

4.4 Computing the Proposal When Closing a Loop

In contrast to the two situations described before, the computation of the proposal
is more complex in case of a loop-closure. This is due to the fact that Assump-
tion 2 (local similarity) is typically violated even for subsets of particles. Let us
assume that the particle cloud is widely spread when the loopis closed. Typically,
the individual samples reenter the previously mapped terrain at different locations.
This results in different hypotheses about the topology of the environment and
definitively violates Assumption 2. Dealing with such a situation, requires addi-
tional effort in the estimation process.

Whenever a particlei closes a loop, we consider that the mapm̃
(i)
t−1 of its surround-

ings consists of two components. Letm
(i)
loop refer to the map of the area, the robot

seeks to reenter. Then,m
(i)
local is the map constructed from the most recent measure-

ments without the part of the map that overlaps withm
(i)
loop. Since those two maps

are disjoint and under the assumption that the individual grid cells are independent,
we can use a factorized form for our likelihood function

p(zt | xt, m
(i)
local, m

(i)
loop)∝ p(zt | xt, m

(i)
local) · p(zt | xt, m

(i)
loop). (13)

For efficiency reasons, we use only the local mapm
(i)
local to compute the proposal

and do not considerm(i)
loop. This procedure is valid but requires to adapt the weight

computation. According to the importance sampling principle, this leads to
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w
(i)
t = w

(i)
t−1 ·

p(x
(i)
t | zt, x

(i)
t−1, m

(i)
local, m

(i)
loop, ut−1)

p(x
(i)
t | zt, x

(i)
t−1, m

(i)
local, ut−1)

(14)

= w
(i)
t−1 ·

η
(i)
1 p(zt | x

(i)
t , m

(i)
local)p(zt | x

(i)
t , m

(i)
loop)

η
(i)
2 p(zt | x

(i)
t , m

(i)
local)

(15)

= w
(i)
t−1 · p(zt | x

(i)
t , m

(i)
loop)

η
(i)
1

η
(i)
2

, (16)

whereη1 andη2 are normalization factors resulting from Bayes’ rule.

Note that the computation of the proposal in case of a loop-closure is more ex-
pensive than in the two other situations. Fortunately, loop-closing situations occur
rarely. The robot has to travel through unknown and eventually known terrain for a
comparably long period of time before a loop-closure can occur.

4.5 Approximative Importance Weight Computation

We observed in practical experiments that the normalizing factorsη1 and η2 in
Eq. (16) have only a minor influence on the overall weight. In order to speed up the
computation of the importance weights, we approximate Eq. (16) by

w
(i)
t ≃ w

(i)
t−1 · p(zt|x

(i), m
(i)
loop) (17)

in which the normalizing factors are neglected. This is significantly faster to com-
pute and as we will demonstrate in the experiments leads to almost identical impor-
tance weights.

5 Achieving Situation Estimation, Local Similarity, and Pose Tracking

All of the derivations made in the previous section require that the robot knows
whether it is moving through unknown terrain, through a previously mapped area,
or is currently closing a loop (Assumption 1). Here, we describe how to distinguish
the different cases. Detecting the first two situations can be done in a straight-
forward way by comparing the area covered by the current observation given the
particle pose and the map constructed so far.

In general, it is more difficult to decide whether or not the robot is closing a loop. To
detect loop closures, we apply the approach proposed by Stachnisset al. [22]. We
use a dual representation consisting of a topologic map thatmodels the trajectory
of the vehicle and a grid map. By comparing both representations, one is able to
accurately determine whether or not a robot is closing a loop.

Assumption 2 (local similarity) typically holds only up to the first loop closure but
is then violated. By explicitly modeling the different topological hypotheses, it is

9



robot

newly created particle clustersoriginal cluster

uncertainty

Figure 2. The left image depicts a cluster while the robot is approaching a loop-closure.
The shown particle cluster splits up into three different clusters (topology hypotheses) as
depicted in the right image.

still possible to represent the posterior in an appropriateway. To achieve local sim-
ilarity, we introduce the notion of aparticle clusterwhich describes a subset of
particles for which the assumption of local similarity between maps holds. Ambi-
guities in the posterior can then be modeled using multiple particle clusters.

In the beginning of the mapping process, we start with a single cluster, but af-
ter closing a loop, multiple topology hypotheses typicallyoccur. In this situation,
the cluster needs to be split up. Therefore, we determine which particle belongs
to which topological hypothesis in order to form new clusters. In our current im-
plementation, we group the samples according to their Euclidian distance to the
different nodes in their own graph structure of reference frames. For each particle,
we first determine the list of nodes in the field of view of that sample. We order this
list according to the Euclidian distance from the pose represented by the sample
to the corresponding node. Then, a cluster is given by the samples which have the
same list of nodes. An example which illustrates how new clusters arise in case of
a loop-closure is depicted in Figure 2. Note that we currently do not merge clus-
ters. Throughout our experiments, we observed that multiple particle clusters are
created when closing a loop. The actual number ranges up to 50. However, after a
few iterations only a small number of clusters (typically upto five) survive.

In our current implementation, we represent a map as a set of local maps also
called patches. A global map for a given particle can be obtained by specifying the
location of each patch within a global reference frame. Eachsample therefore has
to store only a list of reference framesl(i)n for the patches. In this way, the individual
patchesP1, . . . ,PN need to be stored only once per cluster. The map of particlei

can be computed bym(i) =
⋃

n l(i)n ⊕ Pn.

Within one particle cluster, the local maps of each particlefulfills the assumption
of local similarity. Therefore, they can share their patches. This results in a more
compact representation compared to storing individual grid maps. In our current
mapping system, we used a graph structure where each node is areference to the
corresponding patch. Furthermore, the state vectors

(i)
t and the clustersCk are rep-
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Figure 3. Learned map of the MIT Killian Court, the Intel Research lab, and the ACES
dataset using our approach.

resented as

s
(i)
t =

〈

x
(i)
t

︸︷︷︸

robot pose

, k
︸︷︷︸

cluster ID

, l
(i)
1 , . . . , l

(i)
Nk

︸ ︷︷ ︸

patch locations

〉

Ck =

〈

P1, . . . ,PNk
︸ ︷︷ ︸

pointers to patches

, {el,m}
︸ ︷︷ ︸

graph edges

〉

.

(18)
Note that the numberNk of patches does not grow with the length of the trajectory
traveled by the robot. It grows with the number of relevant patches which is related
to the size of the environment.

To fulfill Assumption 3, we apply an incremental scan alignment technique based
on laser range finder data. The experiments presented in thispaper indicate that
this setup/implementation is sufficient to satisfy the three assumptions. As a result,
we obtain a mapping system which provides highly accurate maps in a fast and
memory efficient manner.

6 Experiments

In this section, we present experiments performed on real robot datasets which are
commonly used within the robotics community. In the first experiment, we cor-
rected several log files using our approach. The left image ofFigure 3 depicts the
resulting map of the MIT Killian Court. This is a challengingdataset, since the en-
vironment is large (it took 2.5h to record this log file) and contains several nested
loops which can rise the problem of particle depletion. As shown in the figure, the
map does not contain any inconsistencies like for example double walls. Compara-
ble results have been obtained using the Intel Research, theAustin ACES dataset,
shown in the same figure.
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Table 1
Comparison of memory and computational resources for the MIT dataset using a PC with
a 1.3 GHz CPU.

#particles execution time max. memory

our approach 2,000 51 min 210 MB

our approach 1,000 41 min 180 MB

our approach 500 30 min 165 MB

RBPF of [21] 150 (memory swapping) 2.9 GB

RBPF of [21] 80 300 min 1.5 GB

RBPF of [21] 50 190 min 1 GB

The second experiment is designed to show the advantages of our approach com-
pared to a RBPF-based mapper without our optimizations. Forthis comparison,
we used the open-source mapper provided in [21]. We comparedthe overall time,
needed to correct the MIT Killian Court dataset and the memory used to store the
maps. This was done using a (comparably slow) PC with a 1.3 GHzCPU and 1.5
GB RAM. The results of both mapping approaches are summarized in Table 1. In
our current implementation, the filter update foreach clustertakes in average 20 ms
when moving through known terrain and 200 ms when moving through unknown
terrain. When actually closing a loop,each particlerequires approximatively 2 ms
of execution time while the check for the closure takes around 0.3 ms per sample.

Since the approximated proposal is not as accurate as the original one, we need
more particles to achieve the same robustness in filter convergence and quality of
the resulting maps. However, we can maintain more than one order of magnitude
more particles while requiring less runtime and memory. In all our experiments,
this sufficiently accounted for the less accurately drawn samples.

The savings on runtime are mainly caused by transforming an already computed
proposal distribution so that it can be used for several particles instead of computing
it from scratch each time. The memory savings are due to the fact that all particles
within a cluster can share a their local grid maps. Furthermore, the memory usage
and runtime of our approach grows comparably slow when increasing the number
of particles. The reason is that the complexity of our filter grows mainly with the
number of topological hypotheses (particle clusters) which need to be maintained
and only indirectly with the number of samples. Note that themaximummemory
required by our approach is considerably higher than the amount of memory typi-
cally used. There exist a few peaks in the memory usage which arise from a loop
closure where several clusters are temporarily created butdeleted after a few steps
(compare Figure 4). The typical memory usage is around 20% ofthe maximum
usage.
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Figure 4. This plot depicts the number of patches in the memory and the number of clusters
over time for the MIT dataset using 1.500 particles.
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Figure 5. Difference in the particle weights caused the approximative computation for three
different samples during a loop-closure. The left and middle image show typical results, the
right one depicts the one of the worst results during our experiments.

Figure 4 depicts the number of patches that need to be stored and the number of
clusters during the estimation process of the MIT dataset with 1,500 particles. As
can be seen, the number of clusters is typically small until aloop closure occurs. At
this point, the number of clusters increases. However, after a short period of time
most of the clusters vanish.

The last experiment evaluates the error introduced by our approximative impor-
tance weight computation when closing a loop. As presented in Eq. (17), we ig-
nore the normalization factors to achieve a faster estimation. We analyzed the loop-
closing actions and in most situations the approximation error was small. Figure 5
depicts the differences between the sound computation and our approximation for
three different particles during a loop closure. For a more quantitative evaluation
between both methods, we computed the KL-divergence (KLD) between the distri-
bution of the importance weights in both cases. It turned out, that the average KLD
was only0.02 (a KLD of 0 means that the distributions are equal and the higher the
value the more different are the distributions). Substantiated by the good approxi-
mation quality, we ignore the evaluation ofη1 andη2 when computing the particle
importance weight.

7 Conclusion

In this paper, we presented efficient optimizations for Rao-Blackwellized particle
filters applied to solve the SLAM problem on grid maps. We are able to update
the complex posterior requiring substantially less computational and memory re-
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sources. This is achieved by performing the computations only for a set of repre-
sentatives instead of for all particles. We extended a state-of-the-art mapping sys-
tem in a way that the computation of the proposal distribution is significantly faster
and needs only a fraction of the memory resources. The key idea is that clusters of
particles can share large parts of their map model as well as an informed proposal
distribution used to draw the next generation of particles.

With our optimizations, we are able to maintain more than oneorder of magni-
tude more samples and at the same time require less memory andcomputational
resources compared to other state-of-the-art mapping techniques using Rao-Black-
wellized particle filters. With this comparably high numberof particles that we
are able to maintain, we can compensate for the errors introduced by our approxi-
mations. Our approach has been implemented, tested, and evaluated based on real
robots and standard log files used within the SLAM community to demonstrate the
accuracy and benefits of our system.
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