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Abstract

Rao-Blackwellized particle filters have become a populal to solve the simultaneous
localization and mapping problem. This technique appligaicle filter in which each
particle carries an individual map of the environment. Adaagly, a key issue is to re-
duce the number of particles and/or to make use of compactre@psentations. This
paper presents an approximative but highly efficient apgrda mapping with Rao-Black-
wellized particle filters. Moreover, it provides a compacpmimodel. A key advantage is
that the individual particles can share large parts of thdehof the environment. Further-
more, they are able to reuse an already computed proposabuli®n. Both techniques
substantially speed-up the overall filtering process addae the memory requirements.
Experimental results obtained with mobile robots in lasgale indoor environments and
based on published standard datasets illustrate the adeendf our methods over previous
mapping approaches using Rao-Blackwellized particlersilte
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1 Introduction

Learning maps is a fundamental task of mobile robots and afloesearchers
focused on this problem. In the literature, the mobile ramaipping problem is
often referred to as tr@multaneous localization and mapping (SLANM)blem [1,
2,3,4,5,6,7, 8]. In general, SLAM is a complex problem beeaior learning
a map the robot requires a good pose estimate while at the th@mea consistent
map is needed to localize the robot. This dependency betthiegrose and the map
estimate makes the SLAM problem hard and requires to searandolution in a
high-dimensional space.
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Murphy, Doucet, and colleagues [7, 9] introduced Rao-Bhadkzed particle fil-
ters (RBPFs) as an effective means to solve the SLAM probléra.main problem
of Rao-Blackwellized particle filters lies in their compigx measured in terms of
the number of particles required to learn an accurate magudRag this quantity
is one of the major challenges for this family of algorithms.

The contribution of this paper is a technique that reducestimputational and the
memory requirements in the context of mapping with Rao-Biatlized particle
filters. In this way, it becomes feasible to maintain a corapbrlarge set of par-
ticles online. This is achieved by enabling a subset of saswa share large parts
of the map and to use the same proposal distribution. Ouesyatiows a standard
laptop computer to perform all computations necessaryaimlaccurate maps with
more than one thousand samples online.

This paper is organized as follows. After the discussioret#ted work, we briefly
introduce mapping with RBPFs. We then describe our teclenigu efficiently
drawing particles from a proposal distribution. After thige present our map rep-
resentation and the concept of particle clusters. Finalyshow experiments illus-
trating the improvements of our approach to map learning RBPFs.

2 Reated Work

The estimation techniques for the SLAM problem can be diassaccording to
their underlying basic principle. The most popular apphescare extended Kalman
filters (EKFs), maximum likelihood techniques, sparse eaézl information filters
(SEIFs), and Rao Blackwellized particle filters (RBPFs)e Bffectiveness of the
EKF approaches comes from the fact that they estimate adathelated posterior
over landmark maps and robot poses [10, 11]. Their weakimessnl the strong
assumptions that have to be made on the robot motion modé¢hars®nsor noise.
Moreover, in the basic framework the landmarks are assumbd tiniquely iden-
tifiable. There exist techniques [12] to deal with unknowtadassociation in the
SLAM context, however, if certain assumptions are violatee filter is likely to
diverge [13].

Thrunet al.[8] proposed a SEIF method which is based on the inverse atdhe
variance matrix. In this way, measurements can be integjedfeiently. Eusticest
al. [14] presented an improved technique to accurately cometerror-bounds
within the SEIF framework and thus reduces the risk of beogroverly confident.
Paskin [15] presented a solution to the SLAM problem using jilnction trees.
This reduces the complexity compared to EKF-based appesasimce thinned
junction trees provide a linear-time filtering operation.

An alternative approach is to use a maximum likelihood atgor that computes
a map by constructing a network of relations. The relati@measent the spatial



constraints between the poses of the robot [3, 16]. The m#erehce to RBPFs
is that the maximum likelihood approach can only track algimgode of the dis-
tribution about the trajectory of the robot. It computes sb&ition by minimizing
the least square error introduced by the constraints.

Lisienet al.[17] realized an hierarchical map model in the context of $1L.And
reported that this improves loop-closing. Bossal.[18] describe a generic frame-
work for SLAM in large-scale environments. They use a graphcsure of local
maps with relative coordinate frames similar to the workcdégd in [19]. This
approach is able to reduce the complexity of the overallleratand it better deals
with the linearizations in the context of EKF-SLAM. Our appch is related to this
framework since we also use local maps attached to a grapdtwte to model the
environment. However, our motivation to use such a map sgmtation is to allow
multiple particles to share local maps and to compute thpgwal distributions in
an efficient way.

Murphy [7] introduced Rao-Blackwellized patrticle filters an effective means to
solve the SLAM problem. Each patrticle in a RBPF representst@npial trajectory
of the robot and a map of the environment. The framework has babsequently
extended by Montemerlet al. [5, 6] for approaching the SLAM problem with
landmarks. To learn accurate grid maps, Haletell. [4] presented an improved
motion model that reduces the number of required partiélesombination of the
approach of Hahnedt al. and Montemerleet al. as been presented by Griseti
al. [2], which extends the ideas of FastSLAM-2 [5] to the grid ncape. We present
in this paper an approximative solution to RBPF-based nmagppihich describes
how to draw particles and how to represent the maps of théclesrtso that the
system can be executed significantly faster and needs leesmeesources.

There exist other approaches to mapping with RBPFs like DRMB[1] that pro-
vide a compact map representation. This approach storescastay tree of parti-
cles. Furthermore, each cell of their grid map maintainga &f poses from which
that cell has been observed. This allows the system to dterenap hypotheses
in an compact manner. Additionally, the resampling can reexh out more ef-
ficiently. In contrast to that, our map representation essmlis to reuse already
computed proposal distributions for multiple samplessiisidone by carrying out
a coordinate transformation between the reference frataesdsin our graph struc-
ture.

The contribution of this paper is a computational and meneffigient Rao-Black-
wellized particle filter for SLAM. Our approach allows théoa to efficiently de-
termine the proposal distributions to sample the next geiwer of particles in an
approximative manner. Additionally, we present a compaap model in which
multiple particles share local maps. This enables us to taiaisubstantially more
samples with less memory and computational requirememigparced to state-of-
the-art mapping approach using Rao-Blackwellized parfitiers.



3 Learning Mapswith Rao-Blackwellized Particle Filters

The key idea of the Rao-Blackwellized particle filter for SUAs to estimate the
joint posteriorp(z1.4, m | 214, u1..—1) about the trajectory,., = xq, ...,z of the
robot and the map: of the environment given the observatiahs = =4, ..., z; and
odometry measurements.;_; = uq,...,u;_1. It does so by using the following
factorization:

p($1:t>m | 21;t7u1;t—1) = p($1:t ‘ Z1;t7U1;t—1)p(m | L1, Zl:t) (1)

In this equation, the posteriptz.; | z1., u1.4—1) IS Similar to the localization prob-
lem, since only the trajectory of the vehicle needs to beregtd. This estimation
is performed using a patrticle filter which incrementally ggeses the observations
and the odometry readings as they are available. The seeamghtrm | 1.4, 21.4)
can be computed efficiently since the poses of the robot are known when esti-
mating the mapn. Therefore, a Rao-Blackwellized patrticle filter for SLAM ma
tains an individual map for each sample and updates this ras@doon the trajec-
tory estimate of the sample upon “mapping with known poses”.

A mapping system that applies a RBPF requires a proposaibdigon in order to
draw the next generation of samples. The general framevearkes open which
proposal should be used and how it should be computed. A pabmbstribu-
tion typically used in the context of Monte-Carlo localipat is the motion model
p(zy | x4—1,ui—1). This proposal, however, is sub-optimal since it does nosicter
the observations of the robot to predict its motion. As painbut by several au-
thors [20, 5], problem-specific proposal distributionsraeéeded in order to build an
efficient mapping system. The approach presented in thisrpagakes use of our
previously defined [2] proposal distribution. It transféng ideas of FastSLAM-
2 [5] to the grid map case. Under the Markov assumption, thengp proposal
distribution [20] is
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Whenever a laser range finder is used, one can observe thattgbevation likeli-
hoodp(z; | m;_1, z;) is much more peaked than the motion mqde}, | z;_1, u;—1).
The observation likelihood dominates the product in Eqirf{2Zhe meaningful area
of the distribution. Therefore, we approximater; | x;_1,u;—1) by a constank
within this meaningful ared®). Under this approximation, the proposal turns into
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Eg. (3) can be computed by evaluating; | mg’_)l, x;) on a grid which is bounded
by the maximum odometry error. Alternatively, one can uset@tsampled points



{z;} and then evaluate point-wise the observation likelihonarter to efficiently
sample the next generation of particles, one can approithé distribution by
a Gaussian. For each partialethe parameterﬁgi) and Egi) of the Gaussian are
computed as

Mt )= (i) ij 'p(zt | mi—)lv‘rj) (4)
i =
i_ 1 5 (i) (i) ()T
Y= o) Zp(zt | myZy, ) - (g — g ) (25— )" (5)
j=
Heren = XX p(z | m{”}, ;) is a normalizer. Note that{” and={” are calcu-

lated for each particle individually which is computatiipaxpensive but leads
to an informed proposal distribution. This allows us to digavticles in an more
accurate manner which seriously reduces the number ofreztjsamples.

4 Speeding Up the Computation of the Proposal

The problem of the method presented above is the compushttomplexity of the
informed proposal distribution since it has to be done fahesample individually.
As a result, such a mapping system runs online only for snzatigle sets. Fur-
thermore, each particle maintains a full grid map which nexguto store large grid
structures in the memory. To overcome this limitation, wesgnt a way to utilize
intermediate results in order to efficiently determine thegppsal for the individual
samples. Our implementation extends the open-source ingplation [21] of the
mapping system of Grisetét al. [2] which originally makes use of the proposal
distribution presented in the previous section.

The proposal distribution is needed to model the relativeeneent of the vehi-
cle under uncertainty. In most situations, this unceryamsimilar for all samples
within one movement. It therefore makes sense to use the saoeetainty to prop-
agate the particles. We derive a way to sample multiple gastifrom the same
proposal. As a result, the time consuming computation opt@osal distribution
can be carried out for a few particles that are represee&finr groups of similar
samples.

Furthermore, we observed that local maps which are repiexen a particle-
centered coordinate frame look similar for many samplestiWesfore present a
compact map model in which multiple particles can share theal maps. Instead
of storing a full grid map, each sample maintains only a se¢fdrence frames for
the different local maps. This substantially reduces theorg requirements of the
mapping algorithm.



4.1 Different Situations During Mapping

Before we derive our new proposal distributions, we statth aibrief analysis of the
behavior of a RBPF. One can distinguish three differentsygfesituations during

mapping:

e The robot is moving throughnknownareas,

e is moving througtknownareas, or

e isclosing a loop Here, closing a loop means that the robot first moves through
unknown areas and then reenters known terrain. It can beasaanving along a
so far non traversed shortcut from current pose of the rabahtalready known
area (see also [22]).

In each of those situations, the filter behaves differemMfaenever the robot is
moving through unknown terrain, the uncertainty about theepof the robot grows.
This is due to the fact that the errors are accumulated albedrajectory. The
resulting uncertainty can only be bounded by observatidnswcover a (partially)
known region.

In the second case, a map of the surroundings of the robotowrkiand in this
way the SLAM problem turns into a localization problem whishiypically easier
to handle. Whenever the robot is closing a loop, the partidad is often widely
spread. By reentering known areas, the filter can typicadlgignine which parti-
cles are consistent with their own map and which are not. Assalt, such a situ-
ation leads to an unbalanced distribution of particle wisigihe next resampling
action then eliminates a series of unlikely hypotheseslamdhcertainty decreases.

For each of these three situations, we will present a proplstabution that needs
to be computed only for a small set of representatives rdttzar for all particles.
Throughout this paper, we make the following three asswmpti

Assumption 1 The current situation is known, which means that the robat ca
determine whether it is moving through unknown terrainhwita known area,
or is closing a loop.

Assumption 2 The corresponding local maps of two samples are similarrif co
sidered in a particle-centered reference frame. In theviafig, we refer to this
property adocal similarity of the maps.

Assumption 3 An accurate algorithm for pose tracking is used and the ohser
tions are affected by a limited sensor noise.

4.2 Computing the Proposal for Unknown Terrain

For proximity sensors like laser range finders, the obsemsitof the robot cover
only a local area around the robot. As a result, we only neexbtsider the sur-
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Figure 1. Image (a) depicts the pose of a particle, its loag,and the computed proposal
which represented by the blue/dashed ellipse. Image (s}itites the proposal distribution
represented in the ego-centric reference frame of that Isarmage (c) shows a second
particle and its map. By carrying out a coordinate transfdahm proposal of the first particle
can be used by the second particle as long as their maps eadly(Jsimilar (d).

roundings of the robot when computing the proposal distidiou Letﬁzﬁ?l refer to

the local map of particlé around its previous po&éi_)l. In the surroundings of the
robot, we can approximate

p('rt | mg?lv xgi—)b 2t ut—l) = p('rt ‘ mg?b 'Tg?lv “3 ut—1>' (6)
Let & ando be the standard pose compounding operators (see [16]} is an
operator that translates all the points in the domain of timetiona so that the
new origin of the domain af is b and® is its inverse. The local similarity between
maps (Assumption 2) allows us to Wriﬁeﬁl S mg?l ~ mﬁf_’l S xﬁj_)l. In this case,
the proposal distribution for different particles are s$anif transformed to an ego-
centric reference frame

p(l't o ngj—)l | ng,j—)lv :'Eg];)la 2ty ut—l) 2p(xt © ng,z—)l | mgi—)la ng,i—)lv 2ty ut—l)' (7)

As a result, we can determine the proposal for a pariiddg computing the pro-
posal in the reference frame of particlend then translating it to the reference
frame of particlej

p(*rt ‘ mgi)lv xij—)b 2t ut—1> gp(gjgi)l D (‘rt S xyll) | my—)lv xy—)lv %t ut—l)' (8)
This computation is illustrated in Figure 1. It shows howransform a proposal

between patrticles. The complex proposal computation nieels performed only
once and can then be translated to the reference frame ofttbeparticles.

4.3 Computing the Proposal for Already Visited Areas

Whenever the robot moves through known areas, each pasteys localized in
its own map according to Assumption 3. To update the new pbsaah particle
while the robot moves, we choose the pas¢hat maximizes the likelihood of the
observation around the pose predicted by odometry

of? = argmaxp(z | My, 2y, 2, ue). ®)
Tt



Analog to Eq. (6)-(8), we can express the proposal of parfiaising the one of
particlei. The only difference is that we do not apply theand© operators based
on the poses of the samples. Instead, the operators are@gppked on the particle
dependent reference frami8 and(") of the local maps. These reference frames
were established whenever the robot visits the correspgradiea for the first time.
This results in

plxy | P 29 2w )) 2 p(19D & (2, 019 |, 2 2 usr). (10)

Combining Eq. (9) and Eq. (10) leads to

xij) = argmaxp(xt | ﬁ’bgj_)u x@la 2ty ut—l) 1)
Tt

~ argmax p(I{Y) @ (z, ©19) | i, 20, Z ) =19 @ (:cgl) o 19)(12)

Tt

Under the Assumptions 2 and 3, we can estimate the posessafafiles according
to Eq. (12) (while moving through known areas). In this wag tomplex compu-
tation of an informed proposal needs to be done only once.

4.4 Computing the Proposal When Closing a Loop

In contrast to the two situations described before, the agatipn of the proposal
is more complex in case of a loop-closure. This is due to tkhetfaat Assump-

tion 2 (local similarity) is typically violated even for sabts of particles. Let us
assume that the particle cloud is widely spread when thei®olmsed. Typically,

the individual samples reenter the previously mappediteatadifferent locations.
This results in different hypotheses about the topologyhef énvironment and
definitively violates Assumption 2. Dealing with such a ation, requires addi-
tional effort in the estimation process.

Whenever a particlécloses a loop, we consider that the mhﬁ)_l of its surround-
ings consists of two components. Lef’  refer to the map of the area, the robot

) 00p

seeks to reenter. The;rm,ff,)Cal is the map constructed from the most recent measure-
ments without the part of the map that overlaps wﬂsz)p Since those two maps
are disjoint and under the assumption that the individudlgglls are independent,

we can use a factorized form for our likelihood function

p(ze | @ mi, i) o< p(ze | ey miony) - p(ze | 2, mi)). (13)

For efficiency reasons, we use only the local mq@cal to compute the proposal

and do not considenl(glp. This procedure is valid but requires to adapt the weight
computation. According to the importance sampling pritgighis leads to
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wheren; andr, are normalization factors resulting from Bayes’ rule.

Note that the computation of the proposal in case of a looptek is more ex-
pensive than in the two other situations. Fortunately, {olmsing situations occur
rarely. The robot has to travel through unknown and evelytbabwn terrain for a

comparably long period of time before a loop-closure camuncc

4.5 Approximative Importance Weight Computation

We observed in practical experiments that the normalizaaoirsn,; andn, in
Eq. (16) have only a minor influence on the overall weight.rahen to speed up the
computation of the importance weights, we approximate Eg) oy

(4) (4)

w = w - p(z|2@ mi) ) (17)

in which the normalizing factors are neglected. This is sigantly faster to com-
pute and as we will demonstrate in the experiments leadsitosdlidentical impor-
tance weights.

5 Achieving Situation Estimation, Local Similarity, and Pose Tracking

All of the derivations made in the previous section requirat the robot knows
whether it is moving through unknown terrain, through a presly mapped area,
or is currently closing a loop (Assumption 1). Here, we diggchow to distinguish
the different cases. Detecting the first two situations cardbne in a straight-
forward way by comparing the area covered by the currentrggen given the
particle pose and the map constructed so far.

In general, it is more difficult to decide whether or not thieabis closing a loop. To
detect loop closures, we apply the approach proposed bhi8sset al. [22]. We
use a dual representation consisting of a topologic mapntiogels the trajectory
of the vehicle and a grid map. By comparing both represemtafione is able to
accurately determine whether or not a robot is closing a.loop

Assumption 2 (local similarity) typically holds only up tbd first loop closure but
is then violated. By explicitly modeling the different tdpgical hypotheses, it is
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Figure 2. The left image depicts a cluster while the robotpigraaching a loop-closure.
The shown patrticle cluster splits up into three differenistérs (topology hypotheses) as
depicted in the right image.

still possible to represent the posterior in an appropreatg To achieve local sim-
ilarity, we introduce the notion of particle clusterwhich describes a subset of
particles for which the assumption of local similarity beem maps holds. Ambi-
guities in the posterior can then be modeled using multipiéige clusters.

In the beginning of the mapping process, we start with a simdjister, but af-

ter closing a loop, multiple topology hypotheses typicalbeur. In this situation,

the cluster needs to be split up. Therefore, we determinetwparticle belongs
to which topological hypothesis in order to form new clustén our current im-

plementation, we group the samples according to their Biaclidistance to the
different nodes in their own graph structure of refereneentes. For each patrticle,
we first determine the list of nodes in the field of view of theatgple. We order this
list according to the Euclidian distance from the pose regmeed by the sample
to the corresponding node. Then, a cluster is given by thesmvhich have the
same list of nodes. An example which illustrates how newtehssarise in case of
a loop-closure is depicted in Figure 2. Note that we curyetitl not merge clus-
ters. Throughout our experiments, we observed that melpplticle clusters are
created when closing a loop. The actual number ranges up. tdd@ever, after a

few iterations only a small number of clusters (typicallytagive) survive.

In our current implementation, we represent a map as a seicaf maps also
called patches. A global map for a given particle can be abthby specifying the
location of each patch within a global reference frame. Eahple therefore has
to store only a list of reference framks for the patches. In this way, the individual
patchesP;, ..., Py need to be stored only once per cluster. The map of patticle
can be computed by.®) = (J,, 1) @ P,,.

Within one particle cluster, the local maps of each partiglglls the assumption
of local similarity. Therefore, they can share their patchEhis results in a more
compact representation compared to storing individual graps. In our current
mapping system, we used a graph structure where each nodefer@nce to the

corresponding patch. Furthermore, the state vesﬁband the clusters,, are rep-
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Figure 3. Learned map of the MIT Killian Court, the Intel Rasg lab, and the ACES
dataset using our approach.
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(18)
Note that the numbeW, of patches does not grow with the length of the trajectory
traveled by the robot. It grows with the number of relevaritpas which is related
to the size of the environment.

To fulfill Assumption 3, we apply an incremental scan aligminiechnique based
on laser range finder data. The experiments presented ipapisr indicate that
this setup/implementation is sufficient to satisfy the éhmesumptions. As a result,
we obtain a mapping system which provides highly accuratpsnira a fast and

memory efficient manner.

6 Experiments

In this section, we present experiments performed on réaltrdatasets which are
commonly used within the robotics community. In the first esiment, we cor-
rected several log files using our approach. The left imageégire 3 depicts the
resulting map of the MIT Killian Court. This is a challengidgtaset, since the en-
vironment is large (it took 2.5h to record this log file) anadtzons several nested
loops which can rise the problem of particle depletion. Asvahin the figure, the
map does not contain any inconsistencies like for examplélgovalls. Compara-
ble results have been obtained using the Intel ResearcAustin ACES dataset,
shown in the same figure.
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Table 1
Comparison of memory and computational resources for the détaset using a PC with
al.3 GHz CPU.

#particles execution time max. memory

our approach| 2,000 51 min 210 MB
our approach| 1,000 41 min 180 MB
our approach 500 30 min 165 MB

RBPF of [21] 150 (memory swapping 29GB

RBPF of [21] 80 300 min 1.5GB

RBPF of [21] 50 190 min 1GB

The second experiment is designed to show the advantages approach com-
pared to a RBPF-based mapper without our optimizationsttisrcomparison,
we used the open-source mapper provided in [21]. We comhaecadverall time,
needed to correct the MIT Killian Court dataset and the mgmsed to store the
maps. This was done using a (comparably slow) PC with a 1.3 G2 and 1.5
GB RAM. The results of both mapping approaches are sumnthniz€able 1. In
our current implementation, the filter update éarch clustetakes in average 20 ms
when moving through known terrain and 200 ms when movinguincunknown
terrain. When actually closing a loopach particlerequires approximatively 2 ms
of execution time while the check for the closure takes aidu ms per sample.

Since the approximated proposal is not as accurate as thi@alrone, we need
more particles to achieve the same robustness in filter cgemee and quality of
the resulting maps. However, we can maintain more than other @f magnitude
more particles while requiring less runtime and memory.llroar experiments,
this sufficiently accounted for the less accurately drawndas.

The savings on runtime are mainly caused by transformingraady computed
proposal distribution so that it can be used for several@estinstead of computing
it from scratch each time. The memory savings are due to thalfat all particles
within a cluster can share a their local grid maps. Furtheemibhe memory usage
and runtime of our approach grows comparably slow when a&sing the number
of particles. The reason is that the complexity of our filtesvgs mainly with the
number of topological hypotheses (particle clusters) Wwimieed to be maintained
and only indirectly with the number of samples. Note thatreximummemory
required by our approach is considerably higher than theuatnaf memory typi-
cally used. There exist a few peaks in the memory usage whisé iom a loop
closure where several clusters are temporarily createdddated after a few steps
(compare Figure 4). The typical memory usage is around 20%efmaximum
usage.

12
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Figure 4. This plot depicts the number of patches in the mgrmod the number of clusters
over time for the MIT dataset using 1.500 particles.
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Figure 5. Difference in the particle weights caused the @paprative computation for three
different samples during a loop-closure. The left and nddaiage show typical results, the
right one depicts the one of the worst results during our expEnts.

Figure 4 depicts the number of patches that need to be stadetha number of
clusters during the estimation process of the MIT datastt 3600 particles. As
can be seen, the number of clusters is typically small umbibp closure occurs. At
this point, the number of clusters increases. However afsghort period of time
most of the clusters vanish.

The last experiment evaluates the error introduced by oproxpmative impor-
tance weight computation when closing a loop. As presemtdeqi (17), we ig-
nore the normalization factors to achieve a faster estonate analyzed the loop-
closing actions and in most situations the approximatiooravas small. Figure 5
depicts the differences between the sound computation andpproximation for
three different particles during a loop closure. For a marantitative evaluation
between both methods, we computed the KL-divergence (Kldbyben the distri-
bution of the importance weights in both cases. It turnedtbat the average KLD
was only0.02 (a KLD of 0 means that the distributions are equal and the higher the
value the more different are the distributions). Substaeti by the good approxi-
mation quality, we ignore the evaluationgfandrn, when computing the particle
importance weight.

7 Conclusion

In this paper, we presented efficient optimizations for Béackwellized particle
filters applied to solve the SLAM problem on grid maps. We aike @0 update
the complex posterior requiring substantially less corapomal and memory re-
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sources. This is achieved by performing the computatiohsfon a set of repre-
sentatives instead of for all particles. We extended a-statbe-art mapping sys-
tem in a way that the computation of the proposal distribuiscsignificantly faster
and needs only a fraction of the memory resources. The keyisdbat clusters of
particles can share large parts of their map model as weh asfarmed proposal
distribution used to draw the next generation of particles.

With our optimizations, we are able to maintain more than orter of magni-

tude more samples and at the same time require less memomgoargltational

resources compared to other state-of-the-art mappingitpees using Rao-Black-
wellized particle filters. With this comparably high numh#rparticles that we

are able to maintain, we can compensate for the errors intextiby our approxi-
mations. Our approach has been implemented, tested, ahddbased on real
robots and standard log files used within the SLAM communityemonstrate the
accuracy and benefits of our system.
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