
Speeding Up Rao-Blackwellized SLAM
Giorgio Grisetti∗† Gian Diego Tipaldi† Cyrill Stachniss∗ Wolfram Burgard∗ Daniele Nardi†

∗University of Freiburg, Department of Computer Science, D-79110 Freiburg, Germany
†Dipartimento Informatica e Sistemistica, Universitá “LaSapienza”, I-00198 Rome, Italy

Abstract— Recently, Rao-Blackwellized particle filters have
become a popular tool to solve the simultaneous localization
and mapping problem. This technique applies a particle filter in
which each particle carries an individual map of the environment.
Accordingly, a key issue is to reduce the number of particles
and/or to make use of compact map representations. This
paper presents an approximative but highly efficient approach
to mapping with Rao-Blackwellized particle filters. Moreover, it
provides a compact map model. A key advantage is that the
individual particles can share large parts of the model of the
environment. Furthermore, they are able to re-use an already
computed proposal distribution. Both techniques substantially
speed up the overall process and reduce the memory require-
ments. Experimental results obtained with mobile robots inlarge-
scale indoor environments and based on published, standard
datasets illustrate the advantages of our methods over previous
Rao-Blackwellized mapping approaches.

I. I

Learning maps is a fundamental task of mobile robots and
a lot of researchers focused on this problem. In the literature,
the mobile robot mapping problem is often referred to as the
simultaneous localization and mapping (SLAM)problem [3, 7,
8, 9, 13, 14, 15, 20]. In general, SLAM is a complex problem
because for learning a map the robot requires a good pose
estimate while at the same time a consistent map is needed to
localize a robot. This dependency between the pose and the
map estimate makes the SLAM problem hard and requires to
search for a solution in a high-dimensional space.

Murphy, Doucet, and colleagues [15, 2] introduced Rao-
Blackwellized particle filters (RBPFs) as an effective means
to solve the SLAM problem. The main problem of the Rao-
Blackwellized approaches is their complexity, measured in
terms of the number of particles required to learn an accurate
map. Reducing this quantity is one of the major challenges for
this family of algorithms.

The contribution of this paper is a technique that reduces the
computational and the memory requirements in the context of
Rao-Blackwellized mapping. In this way, it becomes feasible
to maintain a comparably large set of particles online. This
is achieved by enabling a subset of samples to share large
parts of the map and to use the same proposal distribution.
Our system allows a standard laptop computer to perform all
computations necessary to learn accurate maps with more than
one thousand samples online.

This paper is organized as follows. After the discussion of
related work, we briefly introduce Rao-Blackwellized map-
ping. We then describe our technique for efficiently drawing
particles from a proposal distribution. After this, we present

our map representation. Finally, we show experiments illustrat-
ing the improvements of our approach to Rao-Blackwellized
mapping.

II. RW

Solutions to the SLAM problem can be classified according
to their underlying estimation technique. The most popu-
lar approaches are Extended Kalman filters (EKFs), maxi-
mum likelihood techniques, sparse extended information filters
(SEIFs), and Rao Blackwellized particle filters (RBPFs). The
effectiveness of the EKF comes from the fact that it estimates
the fully correlated posterior over landmark positions androbot
poses [10, 17]. Its weakness lies in the strong assumptions
regarding the motion model and the sensor noise. Moreover,
the landmarks are assumed to be uniquely identifiable. There
exist techniques [16] to deal with unknown data association
in the SLAM context. However, if certain assumptions are
violated the filter is likely to diverge [6].

An alternative approach is to use a maximum likelihood
algorithm that computes a map by constructing a network
of relations. The relations represent the spatial constraints
between the poses of the robot [8, 12].

Thrun et al. [20] proposed a SEIF method which uses the
inverse of the covariance matrix. In this way, measurements
can be integrated efficiently. Eusticeet al. [5] presented an
improved technique to accurately compute the error-bounds
within the SEIF framework and thus reduces the risk of
becoming overly confident.

In [15, 2], Rao-Blackwellized particle filters have been
introduced as an effective means to solve the SLAM problem.
Each particle in a RBPF represents a potential trajectory of
the robot and a map of the environment. The framework has
been subsequently extended by Montemerloet al. [13, 14]
for approaching the SLAM problem with landmarks. To learn
accurate grid maps, RBPFs have been used by Eliazar and
Parr [3] and Hähnelet al. [9]. Whereas the first work describes
an efficient map representation, the second one presents an
improved motion model that reduces the number of required
particles. A combination of the approach of Hähnelet al. and
Montemerloet al. as been presented by Grisettiet al. [7],
which extends the ideas of FastSLAM-2 to the grid map case.
We present in this paper an approximative solution to Rao-
Blackwellized mapping which describes how to draw particles
and how to represent maps so that the system can be executed
significantly faster and needs less memory resources.

Lisien et al. [11] realized an hierarchical map model in
the context of SLAM and reported that this improves loop-
closing. Bosseet al. [1] describe a generic framework for

SLAM in large-scale environments. They use a graph structure
of local maps with relative coordinate frames similar to the
work described in [4]. This approach is able to reduce the
complexity and at the same time it can better deal with
linearization problems in the context of EKF-SLAM. Our
approach is related to this framework since we also use local
maps attached to a graph structure to model the environment.
However, our motivation to use such a map representation is
to allow multiple particles to share a map.

The contribution of the paper is a computational and mem-
ory efficient Rao-Blackwellized particle filter for SLAM. Our
approach allows the robot to efficiently determine the proposal
distributions to sample the next generation of particles inan
approximative manner. Additionally, we present a compact
map model in which multiple particles share a map. This
enables us to maintain substantially more samples with less
memory and computational requirements compared to state-
of-the-art Rao-Blackwellized mapping approaches.

III. R-B M

RBPFs for SLAM are used to estimate the posterior
p(x1:t,m | z1:t, u1:t−1) about the trajectoryx1:t of the robot
and the mapm of the environment given the observationsz1:t

and odometry measurementsu1:t−1. Its key idea is to separate
the estimation of the trajectory of the robot from the map
estimation process

p(x1:t,m | z1:t, u1:t−1) = p(m | x1:t, z1:t)p(x1:t | z1:t, u1:t−1). (1)

This can be done efficiently, since the posterior over maps
p(m | x1:t, z1:t) can be computed analytically given the knowl-
edge ofx1:t andz1:t. Computing the posteriorp(x1:t | z1:t, u1:t−1)
is similar to the localization problem, since only the trajectory
of the vehicle needs to be estimated. This is done using a par-
ticle filter which incrementally processes the observations and
the odometry readings. The overall process can be summarized
by the following four steps:

1) Sampling: The next generation of particles is obtained
from the current generation by sampling from a so-called
proposal distribution.

2) Importance Weighting: An individual importance weight
is assigned to each particle according to the most recent
observation, the pose estimate, and the map associated
with this particle.

3) Resampling: Particles with a low importance weight are
typically replaced by samples with a high weight. This
step is necessary since only a finite number of particles
is used to approximate a continuous distribution.

4) Map Estimation: The map of each particle is updated
based on pose represented by that particle.

Several authors proposed optimizations to Rao-Blackwellized
mapping. They either presented compact map representa-
tions [3] to deal with large particle sets or accurate proposal
distributions [7, 9, 13] in order to keep the number of samples
small.

IV. S U R-B M

In this section, we present our approach to Rao-
Blackwellized mapping which is able to handle large particle
sets while reducing the memory and computational require-
ments. Our implementation is based on the open-source im-
plementation [18] of the mapping system of Grisettiet al. [7].
The mayor drawback of this approach lies in its complexity.
It runs online only for small particle sets. This is due to an
informed but expensive to compute proposal distribution which
is determined for each particle individually. Furthermore, each
particle maintains a full grid map.

In the context of Rao-Blackwellized particle filters for
SLAM, the proposal is used to model the relative movement
of the vehicle under uncertainty. In most situations, this
uncertainty is similar for all samples within one movement.It
therefore makes sense to use the same uncertainty to propagate
the particles as long as they appear to represent similar
state hypotheses. In this section, we derive a way to sample
multiple particles from the same proposal. As a result, the
time consuming computation of the proposal distribution can
be carried out for a few particles that are representatives for
groups of similar samples.

Furthermore, local maps which are represented in a robot-
centered coordinate frame look similar for many particles.We
therefore present a compact map model in which multiple
particles can share a map. Instead of storing an individual map,
each sample maintains only a set of reference frames for the
different local maps. This substantially reduces the memory
requirements of the mapping algorithm.

A. Different Situations During Mapping

Before we derive our new proposal distributions, we start
with a brief analysis of the behavior of a RBPF. One can
distinguish three different types of situations during mapping:

• The robot is moving throughunknownareas,
• is moving throughwell-knownareas, or
• is closing a loop.

In each of those situations, the filter behaves differently.
Whenever the robot is moving through unknown terrain, the
trajectory uncertainty grows. This is due to the fact that the
errors are accumulated along the trajectory. The resulting
uncertainty can only be bounded by observations which cover
a (partially) known region.

In the second case, a map of the surroundings of the robot is
known and in this way the SLAM problem turns into a local-
ization problem which is typically easier to handle. Whenever
the robot is closing a loop, the particle cloud is often widely
spread. By reentering known areas, the filter can typically
determine which particles are consistent with their own map
and which are not. Such a situation leads to an unbalanced
distribution of particle weights. The next resampling action
then eliminates a series of unlikely hypotheses.

For each of these three situations, we will present a proposal
distribution that needs to be computed only for a small set of
representatives rather than for all particles. For the beginning,
let us assume that

(d)(a) (b) (c)

Fig. 1. Image (a) depicts the pose hypothesis of a particle, its local map, and
the computed proposal which represented by the blue/dashed ellipse. Image
(b) illustrates the proposal distribution represented in the ego-centric reference
frame of that sample. Image (c) shows a second particle and its map. By
carrying out a coordinate transform, the proposal of the first particle can be
used by the second particle as long as their maps are locally similar (d).

1) the current situation is known, which means that the
robot can determine whether it is moving through un-
known terrain, within a known area, or is closing a loop,

2) the corresponding local maps of two samples are similar
if considered in a particle-centered reference frame. In
the following, we refer to this property aslocal similarity
of the maps,

3) an accurate algorithm for pose tracking is used and the
observations are affected by a limited sensor noise.

B. Computing the Proposal for Unknown Terrain

When moving through unknown areas, most parts of the
map are irrelevant for computing the proposal distribution.
Only a local map around the current pose is therefore taken
into account. This map, called ˜m(i)

t−1, refers to the local map of
particle i with respect to the posex(i)

t−1 of that particle at time
stept−1. In the surroundings of the robot, we can approximate

p(xt | m
(i)
t−1, x

(i)
t−1, zt, ut−1) ≃ p(xt | m̃

(i)
t−1, x

(i)
t−1, zt, ut−1). (2)

Under Assumption 2, which requires that the maps of
particle i and j are locally similar, we can write

m̃(i)
t−1 ⊖ x(i)

t−1 ≃ m̃(j)
t−1 ⊖ x(j)

t−1. (3)

Here⊕ and⊖ are the standard pose compounding operators
(see [12]). E.g.,a⊖b is an operator that translates all the points
in the domain of the functiona so that the new origin of the
domain ofa is b and⊕ is its inverse.

We observed that the proposal distributions for different
particles are similar if transformed to an ego-centric reference
frame

p(xt | m̃
(j)
t−1, x

(j)
t−1, zt, ut−1) ⊖ x(j)

t−1

≃ p(xt | m̃
(i)
t−1, x

(i)
t−1, zt, ut−1) ⊖ x(i)

t−1. (4)

As a result, we can determine the proposal for a particlej
by computing the proposal in the reference frame of particlei
and translating it to the reference frame of particlej

p(xt | m̃
(j)
t−1, x

(j)
t−1, zt, ut−1)

≃ x(j)
t−1 ⊕ (p(xt | m̃

(i)
t−1, x

(i)
t−1, zt, ut−1) ⊖ x(i)

t−1). (5)

This computation is illustrated in Figure 1. Eq. (5) shows
how transform a proposal between particles while the robot
moves through unknown terrain. The complex proposal com-
putation needs to be performed only once and can then be
translated to the reference frame of the other particles.

C. Computing the Proposal for Already Visited Areas

Whenever the robot moves through known areas, each parti-
cle stays localized in its own map according to Assumption 3.
To update the new pose of each particle while the robot moves,
we maximize the likelihood of the observation around the pose
predicted by odometry

x(i)
t = argmax

xt

p(xt | m̃
(i)
t−1, x

(i)
t−1, zt, ut−1). (6)

Analog to Eq. (3)-(5), we can express the proposal of
particle j using the one of particlei. The only difference is
that we do not apply the⊕ and ⊖ operators based on the
poses of the samples. Instead, the operators are applied based
on the particle dependent reference framesl(i) and l(j) of the
local maps. These reference frames were established when
previously mapping the terrain. This results in

p(xt | m̃
(j)
t−1, x

(j)
t−1, zt, ut−1)

≃ l(j)
⊕ (p(xt | m̃

(i)
t−1, x

(i)
t−1, zt, ut−1) ⊖ l(i)). (7)

Combining Eq. (6) and Eq. (7) leads to

x(j)
t = argmax

xt

p(xt | m̃
(j)
t−1, x

(j)
t−1, zt, ut−1) (8)

≃ l(j) ⊕
(

argmax
xt

p(xt | m̃
(i)
t−1, x

(i)
t−1, zt, ut−1)

︸ ︷︷ ︸

x(i)
t

⊖l(i)
)

(9)

= l(j) ⊕ (x(i)
t ⊖ l(i)). (10)

Under the Assumptions 2 and 3, we can estimate the poses
of all samples according to Eq. (10). In this way, the complex
computation of an informed proposal needs to be done only
once. When the robot is in one of the two situations described
above, the computation of the importance weights is done as
proposed in [7] except that we have to evaluate the weights
only once.

D. Computing the Proposal When Closing a Loop

In contrast to the two situations described before, the
computation of the proposal is more complex in case of a
loop-closure. This is due to the fact that Assumption 2 (local
similarity) is typically violated even for subsets of particles.
This fact can be illustrated by supposing a widely spread cloud
of particles when closing a loop. The different samples re-
enter the previously mapped terrain at different locations. This
results in different hypotheses about the topology of the envi-
ronment and definitively violates Assumption 2. Dealing with
such a situation, requires additional effort in the estimation
process.

Let us start with the informed proposal considering all
sensor observationsz1:t and the most recent odometry read-
ing ut−1. The proposal can be factorized as

p(xt | z1:t, x
(i)
1:t−1, ut−1)

= ηp(zt | z1:t−1, x
(i)
1:t−1)p(xt | x

(i)
t−1, ut−1) (11)

= ηp(zt | xt,m
(i)
t−1)p(xt | x

(i)
t−1, ut−1), (12)

whereη is a normalizer resulting from Bayes’ rule.

Whenever a particlei closes a loop, we consider that its map
m(i)

t−1 consists of two components. The first one is a local map
m(i)

local, which has no overlap with the previously seen area and
does not affect the loop closure. Secondly, a loop mapm(i)

loop
which models a previously mapped part of the environment
re-visited after moving through unknown terrain for a long
period of time.

p(zt | xt,m
(i)
t−1) = p(zt | xt,m

(i)
local,m

(i)
loop) (13)

Under the assumption that these two maps are disjoint, it
is possible to choose a likelihood function that allows us to
apply the following factorization

p(zt | xt,m
(i)
local,m

(i)
loop) ∝ p(zt | xt,m

(i)
local)p(zt | xt,m

(i)
loop).(14)

Notice that the computation of the proposal in case of a
loop-closure is more expensive than in the two other situations.
Fortunately, loop-closing situations occur rarely. The robot has
to travel through unknown and eventually known terrain for
a comparably long period of time before a loop-closure can
occur.

According to the importance sampling principle, the particle
weights are given by

w(i)
t = w(i)

t−1

p(x(i)
t | zt, x

(i)
t−1,m

(i)
local,m

(i)
loop, ut−1)

p(x(i)
t | zt, x

(i)
t−1,m

(i)
local, ut−1)

(15)

= w(i)
t−1

η
(i)
1 p(zt | x

(i)
t ,m

(i)
local)p(zt | x

(i)
t ,m

(i)
loop)

η
(i)
2 p(zt | x

(i)
t ,m

(i)
local)

(16)

= w(i)
t−1p(zt | x

(i)
t ,m

(i)
loop)
η

(i)
1

η
(i)
2

, (17)

where η1 and η2 are normalization factors resulting from
Bayes’ rule.

E. Approximative Importance Weight Computation

Eq. (17) tells us how to update the particle weights in
case of a loop closure. Unfortunately, the computation of
the normalizing factorsη1 and η2 cannot be done efficiently.
Therefore, in our current implementation, the weights are
evaluated according to the raw observation model based on
the loop mapmloop

w(i)
t ≃ w(i)

t−1p(zt|x
(i)
,m(i)

loop) (18)

rather than according to Eq. (17). This means that we ignore
the ratio of the normalizing factorsη1 andη2 and approximate
the importance weights when closing a loop. This is signif-
icantly faster to compute and as we will demonstrate in the
experiments, the approximation error is small.

V. A S E, L S,
P T

All of the derivations made in the previous section require
the robot to know whether it is moving through unknown
terrain, through a previously mapped area, or is currently
closing a loop (Assumption 1). Here, we describe how to
distinguish the different cases. Detecting the first two situations

robot

newly created particle clustersoriginal cluster

uncertainty

Fig. 2. The left image depicts a cluster while the robot is approaching a
loop-closure. The shown particle cluster splits up into three different clusters
(topology hypotheses) as depicted in the right image.

can be done in a straightforward way by comparing the area
covered by the current observation given the particle pose and
the map constructed so far.

More difficult is to decide whether or not the robot is closing
a loop. To make this decision, we apply the approach proposed
by Stachnisset al. [19] in the context of exploration with
active loop-closing. This approach uses a dual representation
consisting of a grid map and a topologic map that models the
trajectory of the vehicle. By comparing both representations,
one is able to accurately determine whether or not a robot is
closing a loop.

Assumption 2 (local similarity) typically holds only up to
the first loop closure but is then violated. By explicitly mod-
eling the different topological hypotheses, it is still possible
to represent the posterior in an appropriate way. To achieve
local similarity, we introduce the notation of aparticle cluster
which describes a subset of particles for which the assumption
of local similarity between maps holds. Ambiguities in the
posterior can then be modeled using multiple particle clusters.
Such clusters are obtained by grouping similar samples so that
the maps within one cluster represent the same topology.

In the following, we explain how to represent such a set
of samples and how to split up a particle cluster in case the
assumption of local similarity is violated.

In our current system, we represent a map as a set of local
maps also called patches. A global map for a given particle can
be obtained by specifying the location of each patch within
a global reference frame. Each sample therefore has to store
only a list of reference framesl(i)n for the patches. In this way,
the individual patchesP1, . . . ,PN need to be stored only once
per cluster. The map of particlei can be computed by

m(i) =
⋃

n

l(i)n ⊕ Pn. (19)

Within one particle cluster, the local maps of each particle
fulfills the assumption of local similarity. Therefore, they
can share their patches. This results in a more compact
representation compared to storing individual grid maps. In our
current implementation, we used a graph structure where each
node is a reference to the corresponding patch. To actually
implement this representation, we store for each particle the
state vectors(i)

t

s(i)
t =
〈

x(i)
t

︸︷︷︸

robot pose

, k
︸︷︷︸

cluster ID

, l(i)1 , . . . , l
(i)
Nk

︸ ︷︷ ︸

patches locations

〉

. (20)

Each clusterCk is represented by

Ck =
〈

P1, . . . ,PNk
︸ ︷︷ ︸

pointer to patches

,
{

el,m
}

︸︷︷︸

graph edges

〉

. (21)

Note that the numberNk of patches does not grow with the
length of trajectory traveled by the robot. It grows with the

Fig. 3. Learned map of the MIT Killian Court using our approach.

number of relevant patches which is related to the size of the
environment.

In the beginning of the mapping process, we start with
a single cluster, but after closing a loop, multiple topology
hypotheses typically occur. Whenever a topological hypothesis
represented by a particle cluster needs to be split up, one
has to determine which particle belongs to which topological
hypothesis. In our current implementation, we cluster the
samples according to their Euclidian distance to the different
nodes in their own graph structure of reference frames. For
each particle, we determine the list of nodes in the field
of view of that sample. We order this list according to the
Euclidian distance from the pose represented by the sample
to the corresponding node. Then, a cluster is given by the
samples which have the same list of nodes. An example which
illustrates how new clusters are created in case of a loop-
closure is depicted in Figure 2.

Throughout our experiments, we observed that multiple
particle clusters are created when closing a loop. The actual
number ranges up to 50. However, after a few iterations only
a small number of cluster (up to 5) typically survive.

Note that it might be possible to represent each cluster by an
EKF and not by particles like we do. However, in this case one
would have to deal with linearization problems and Gaussian
uncertainty. Furthermore, our approach uses grid maps and
does not rely on predefined feature extractors like typical EKF
approaches do.

To fulfill Assumption 3, we apply an incremental scan
alignment technique based on laser range finder data.
The experiments presented in this paper indicate that this
setup/implementation is sufficient to satisfy the three assump-
tions. As a result, we obtain a mapping system which provides
highly accurate maps in a fast and memory efficient manner.

VI. E

In this section, we present experiments based on real robot
datasets which are commonly used within the SLAM com-
munity. In the first experiment, we corrected several log files
using our approach. Figure 3 depicts the resulting map of the
MIT Killian Court. This is a challenging dataset, since it is
a large (it took 2.5h to record this log file) and it contains

Fig. 4. The left image depict the Intel Research Lab and the right one the
Austin ACES building at the University of Texas.

TABLE I

C MIT

 PC 1.3 GH CPU.

#particles execution time max. memory
our approach 2,000 51 min 210 MB
our approach 1,000 41 min 180 MB
our approach 500 30 min 165 MB

RBPF of [18] 150 (memory swapping) 2.9 GB
RBPF of [18] 80 300 min 1.5 GB
RBPF of [18] 50 190 min 1 GB

several nested loops which can lead to particle depletion. As
shown in this figure, the map does not show inconsistencies
like for example double walls. Comparable results have been
obtained using the Intel Research Lab and the Austin ACES
dataset which are both depicted in Figure 4.

The second experiment is designed to show the advantages
of our approach compared to a Rao-Blackwellized mapper
without our optimizations. For this comparison, we used the
open-source mapper provided in [18]. We compared the overall
time, needed to correct the MIT Killian Court dataset and
the memory used to store the maps. This was done using a
(comparably slow) PC with a 1.3 GHz CPU and 1.5 GB RAM.
The results of both mapping approaches are summarized in
Table I. In our current implementation, the filter update for
each clustertakes in average 20 ms when moving through
known terrain and 200 ms when moving through unknown
terrain. When actually closing a loop,each particlerequires
approximatively 2 ms of execution time while the check for
the closure takes around 0.3 ms per sample.

Since the approximated proposal is not as accurate as the
original one, we need more particles to achieve the same
robustness in filter convergence and quality of the resulting
maps. However, we can maintain more than one order of
magnitude more particles while requiring less runtime and
memory. In all our experiments, this sufficiently accounted
for the less accurately drawn samples.

The savings on runtime are mainly caused by transforming
an already computed proposal distribution so that it can be
used for several particles instead of computing it from scratch
each time. The memory savings are due to the fact that
all particles within a cluster can share a single map model.
Furthermore, the memory usage and runtime of our approach
grows much slower when increasing the number of particles.
The reason is that the complexity of our filter grows mainly
with the number of topological hypotheses (particle clusters)
which need to be maintained and not directly with the number

 0

 100

 200

 300

 400

 500

 0

 10

 20

 30

 40

 50

nu
m

be
r

of
 p

at
ch

es

nu
m

be
r

of
 c

lu
st

er
s

time

patches
clusters

Fig. 5. This plot depicts the number of patches in the memory and the
number of clusters over time for the MIT dataset using 1500 particles.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

im
po

rt
an

ce
 w

ei
gh

t

time

approximated
exact

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

time

approximated
exact

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

time

approximated
exact

Fig. 6. Difference in the particle weights caused the approximative compu-
tation for three different samples during a loop closure. The left and middle
image show typical results, the right one depicts the one of the worst results
during our experiments.

of samples. Notice that themaximummemory usage shown
of our approach is much higher than the typical one. There
exist a few peaks in the memory usage which arise from a
loop closure where several clusters are temporarily created
but deleted after a few steps (compare Figure 5). The typical
memory usage is around 20% of the maximum usage.

Figure 5 depicts the number of patches that need to be stored
and the number of clusters during the estimation process of the
MIT dataset with 1,500 particles. As can be seen, the number
of clusters is typically small until a loop closure occurs. At
this point, the number of clusters increases. However, after a
short period of time most of the clusters vanish.

The last experiment evaluates the error introduced by our
approximative importance weight computation when closing
a loop. We ignore the normalization factors to achieve a
faster estimation. We analyzed the loop-closing actions and in
most situations the approximation error was small. Figure 6
depicts the differences between the sound computation and
our approximation for three different particles during a loop
closure. For a more quantitative evaluation between both
methods, we computed the KL-divergence (KLD) between the
distribution of the importance weights in both cases. It turned
out, that the average KLD was only 0.02 (a KLD of 0 means
that the distributions are equal and the higher the value the
more different are the distributions). Substantiated by the good
approximation quality, we ignore the evaluation ofη1 andη2

when computing the particle importance weight.

VII. C

In this paper, we presented efficient optimizations for Rao-
Blackwellized SLAM on grid maps. We are able to update
the complex posterior requiring substantially less resources by
performing the computations only for a set of representatives
instead of for all particles. We extended a state-of-the-art
mapping system in a way that the computation of the proposal
distribution is significantly faster and needs only a fraction of
the memory resources. The key idea is that clusters of particles
can share a compact map representation as well as an informed
proposal distribution to draw the next generation of particles.

With our optimizations, we are able to maintain more than
one order of magnitude more samples and at the same time
require less memory and computational resources compared to
other state-of-the-art Rao-Blackwellized mapping techniques.
This increase in number of particles we are able to maintain
compensates for the errors introduced by our approximations.

Our approach has been implemented, tested, and evaluated
based on real robots and standard log files used within the
SLAM community to demonstrate the accuracy as well as the
benefits of our system.

R

[1] M. Bosse, P.M. Newman, J.J. Leonard, and S. Teller. An altas framework
for scalable mapping. InProc. of the IEEE Int. Conf. on Robotics&
Automation (ICRA), Taipei, Taiwan, 2003.

[2] A. Doucet, J.F.G. de Freitas, K. Murphy, and S. Russel. Rao-Black-
wellized partcile filtering for dynamic bayesian networks.In Proc. of
the Conf. on Uncertainty in Artificial Intelligence (UAI), 2000.

[3] A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultainous localiza-
tion and mapping without predetermined landmarks. InProc. of the
Int. Conf. on Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003.

[4] C. Estrada, J. Neira, and J.D. Tardós. Hierachical slam: Real-time ac-
curate mapping of large environments.IEEE Transactions on Robotics,
21(4):588–596, 2005.

[5] R. Eustice, M. Walter, and J.J. Leonard. Sparse extendedinformation
filters: Insights into sparsification. InProc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), pages 641–648, 2005.

[6] U. Frese and G. Hirzinger. Simultaneous localization and mapping
- a discussion. InProc. of the IJCAI Workshop on Reasoning with
Uncertainty in Robotics, pages 17–26, Seattle, WA, USA, 2001.

[7] G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based
slam with Rao-Blackwellized particle filters by adaptive proposals and
selective resampling. InProc. of the IEEE Int. Conf. on Robotics&
Automation (ICRA), pages 2443–2448, Barcelona, Spain, 2005.

[8] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic
environments. InProc. of the IEEE Int. Symp. on Computational
Intelligence in Robotics& Automation (CIRA), pages 318–325, 1999.

[9] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM
algorithm for generating maps of large-scale cyclic environments from
raw laser range measurements. InProc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2003.

[10] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by
tracking geometric beacons. IEEE Transactions on Robotics and
Automation, 7(4):376–382, 1991.

[11] B. Lisien, D. Silver D. Morales, G. Kantor, I.M. Rekleitis, and H. Choset.
Hierarchical simultaneous localization and mapping. InProc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2003.

[12] F. Lu and E. Milios. Globally consistent range scan alignment for
environment mapping.Journal of Autonomous Robots, 4:333–349, 1997.

[13] M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges. InProc. of the Int. Conf. on
Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003.

[14] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
factored solution to simultaneous localization and mapping. In Proc. of
the National Conference on Artificial Intelligence (AAAI), 2002.

[15] K. Murphy. Bayesian map learning in dynamic environments. InProc. of
the Conf. on Neural Information Processing Systems (NIPS), 1999.

[16] J. Neira and J.D. Tardós. Data association in stochastic mapping
using the joint compatibility test.IEEE Transactions on Robotics and
Automation, 17(6), 2001.

[17] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial
realtionships in robotics. In I. Cox and G. Wilfong, editors, Autonomous
Robot Vehicles, pages 167–193. Springer Verlag, 1990.

[18] C. Stachniss and G. Grisetti. Mapping results obtainedwith
Rao-Blackwellized particle filters. http://www.informatik.uni-
freiburg.de/∼stachnis/research/rbpfmapper/, 2004.

[19] C. Stachniss, D. Hähnel, W. Burgard, and G. Grisetti. On actively closing
loops in grid-based fastslam.Advanced Robotics, 19:1059–1080, 2005.

[20] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte. Simultaneous localization and mapping with sparse extended
information filters. Int. Journal of Robotics Research, 23(7/8), 2004.

