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Abstract— We investigate the task of object goal navigation
in unknown environments where a target object is given as a
semantic label (e.g. find a couch). This task is challenging as it
requires the robot to consider the semantic context in diverse
settings (e.g. TVs are often nearby couches). Most of the prior
work tackles this problem under the assumption of a discrete
action policy whereas we present an approach with continuous
control which brings it closer to real world applications. In this
paper, we use information-theoretic model predictive control on
dense cost maps to bring object goal navigation closer to real
robots with kinodynamic constraints. We propose a deep neural
network framework to learn cost maps that encode semantic
context and guide the robot towards the target object. We also
present a novel way of fusing mid-level visual representations
in our architecture to provide additional semantic cues for cost
map prediction. The experiments show that our method leads to
more efficient and accurate goal navigation with higher quality
paths than the reported baselines. The results also indicate
the importance of mid-level representations for navigation by
improving the success rate by 8 percentage points.

I. INTRODUCTION

Equipping a robot with semantics-aware navigation skills
is essential for intelligent and efficient behavior in complex
human-made environments. For example in a house, a robot
tasked with finding a couch should be able to draw con-
clusion that if it is near a TV then the couch should be
nearby - since they generally tend to be in the same space
(living room). It is important to learn this kind of semantic
information to make better decisions about where to go and
how to get there. In this work, we investigate how to leverage
this contextual information to efficiently find target objects
while exploring unknown environments.

Reliable and accurate semantic robot navigation is still
an open research question [1]. Traditional approaches use
semantic knowledge for building graphs [2] or try to navigate
to rooms [3] using various planning approaches, however
those approaches tend to rely on hand-defined features and
representations. The latter being built on top of various
perception algorithms like object detection or semantic seg-
mentation.
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Fig. 1: Our exploration framework for object navigation task is
composed of three modules: semantic mapping module which con-
structs the map of the environment as the robot explores. The cost
map prediction module which predicts the cost map for navigation
based on the input semantic map, mid-level representation and
target object. Finally, the navigation module generates the optimal
control using a sampling-based MPC.

Recently with the surge of deep learning for computer
vision and reinforcement learning various new methods have
been proposed to tackle this problem. End-to-end control
learning [4], [5], hybrid approaches combining traditional
planning with RL [6], [7], among others have been proposed.
Many of these works use reinforcement learning and tend
to use only a limited discrete action space. They focus on
policies with simple actions like (left, right and straight), thus
resulting in non-smooth and possibly dynamically infeasible
robot behaviors.

To achieve efficient and dynamically feasible object goal
navigation, i.e. looking for and reaching a defined semantic
target, we propose a technique that combines model-based
continuous control approach with perception module that
exploits semantic information and mid-level feature repre-
sentations.

We summarize our main contributions as follows:

(i) We present a semantically informed Model Predictive
Control (MPC) approach for efficient context-aware robot
exploration. The approach combines a sampling-based model
predictive control technique with cost map predictions based
on deep neural network, that implicitly considers semantic
information about objects and places in the environment.

(ii) We propose a U-Net based architecture for dense
cost map prediction under partial observability. Further we
explore the use of egocentric mid-level visual representations
in the network architecture. We present a novel approach of
fusing these features to our network in an robot-orientation-
aware way.

(iii) The approach is shown to outperform a set of
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Fig. 2: Our detailed network architecture for cost map prediction. Dashed arrows denote skip connections. Kernel size K as 3, stride S as
1 and padding P as 1 are taken unless specified otherwise. The mid-level representations are fused according to orientation bin as shown
in Fig. 3. In the end, the occupancy mask and navigation cost are fused to get the final cost map prediction.

baselines in terms of efficiency and final path quality. Our
experimental evaluation shows that mid-level representations
significantly (by 8 percentage points in success rate) improve
the navigation performance.

II. RELATED WORK

Several prior works have tried to use semantics for nav-
igating in cluttered and changing environments. Two main
paradigms are map-based approaches and visual/perception-
based ones.

1) Map-Based Prediction: Cost map prediction for navi-
gation has been widely used in the literature. Fan et al. [§]
use a deep learning-based approach to predict traversability
costs for unknown and unstructured environments. Drews et
al. [9] predict cost maps from input videos using CNNs,
which are then used for online trajectory optimization with
MPC. Qi et al. [10] learn to predict a spatial affordance
map through active self-supervised experience. Chaplot et
al. [11] use transformers to predict distances by exploiting
their property of learning long-distance relationships instead
of local convolutional features. Zhu et al. [12] predict
navigation costs at the frontiers of robot map and using
those for semantic-aware navigation. Unlike our approach,
they do not predict the cost map for the whole map but
select a waypoint to follow from the frontier. Instead of
predicting only at the frontiers we provide dense predictions:
the latter is a more natural and common representation for
downstream tasks such as planning and control. Further, their
approach is constrained to a discrete action space whereas
our approach is based on continuous control. The work by
Ramakrishnan et al. [13] uses occupancy prediction as a
way to learn the priors and help the robot in its navigation.
Our work predicts an occupancy mask and navigation cost
from an incomplete map (i.e. more challenging because the
structure of the environment is not known a priori).

2) Visual Navigation: Ko et al. [14] use depth image to
determine free space and choose the direction to go using
a topological map (i.e. built for target navigation). Recent

works by Morad et al. [15] and Chen et al. [4] directly
learn policies for navigation to goal. Gupta et al. [7] present
a differentiable mapper and planner for generating discrete
actions to navigate to visual targets, which are trained end to
end to ensure the mapper learns the operation best suitable
for the planning module. Chaplot et al. [6] build top-down
semantic maps of the world which is fed to a reinforcement
learning algorithm for exploration. Contrary to our approach,
their approach uses only a set of discrete actions.

The works [16], [17] use mid-level representations for
navigating in unknown environments. We build on their
results and extend them to continuous control settings. Other
methods use optimal control for navigation but not in object
goal navigation setting. Information theoretic model pre-
dictive control (IT-MPC) by Williams et al. [18] is used
by Drews et al. [9] to learn cost maps for aggressively
driving a miniature car around a loop circuit. Our work is
similar to [9] in the sense that we generate cost maps for
navigation which are further used by IT-MPC for fulfilling
an object goal navigation task. Kusumoto et al. [19] learn
obstacle-aware sampling distributions for guiding the IT-
MPC exploration, thus improving the overall task efficiency
of the approach, but do not learn a cost-function for helping
the robot during the navigation. From point goal navigation
perspective, Bansal et al. [20] use model predictive control
to move towards a waypoint generated by a learning-based
module using only RGB and localization. Our approach
predicts a cost map that implicitly infers the global goal to
achieve.

III. OUR APPROACH

A fundamental subproblem of embodied intelligence is
the object goal navigation task [6], [21], a semantically
aware variant of robot exploration: given an initial position
for the robot A (i.e., hereinafter also called agent) and a
target object category 7 € T, the agent needs to reach
the defined target (e.g., a target category like bed). The
agent does not know a-priori the environment, it needs to



explore it and to understand potential semantic relationships
between objects and places, and thus use those for efficiently
fulfilling the given task. The agent has access to only sensor
observations (O, e.g., ego-centric RGB, depth and semantic
segmentation) and current state, x; € X, X being the space
of all possible robot states.

To solve the previously defined task we introduce our
semantically informed MPC approach detailed in Fig. 1.
The whole framework can be divided into three major
components. First component is semantic mapping, which
is discussed in Sec. III-A, builds the semantic map as the
robot observes the environment. The output from this module
is send to cost map prediction network, which is discussed
in the Sec. III-B. We use the predicted cost map in the
navigation module as detailed in the Sec. III-D.

A. Semantic Map Generation

We follow the approach of Chaplot et al. [6] to construct
the semantic map M of the environment. Overall, it contains
the information of obstacles, explored area and top-down
semantic information of each grid cell in the map. A given
semantically segmented point cloud (e.g. obtained using
Mask R-CNN [22] and a depth image) is converted to top-
down 2D semantic map where each cell has a semantic
label with different probabilities for each class. For the K
number of semantic classes we have the semantic map of
size (K, N, N) where N is the size of local spatial region
that we see in each view. We use 16 semantic classes which
is a superset of our target classes to represent our semantic
map. We further concatenate this map with obstacle mask
and explored mask to finally get map M, of size (C, N, N)
where C' = 2 + K for time ¢. The global semantic map,
M gioba is built by fusing these maps M, over time using
the pose information.

B. Cost Map Prediction

Given as input the semantic map and mid-level represen-
tations [17], we aim to predict navigation cost based on our
given target label 7. The cost implicitly encodes contextual
relationships between places and objects in the explored
environment. The network architecture is inspired by the U-
Net architecture [23]. The whole module architecture can be
seen in the Fig. 2. We discuss the various components in this
section.

Semantic Map. We take two kinds of input from our
semantic map built in III-A - namely local semantic map,
Miocar and global semantic map, M gopqei- The local se-
mantic map is of the size (C, H, W) where H and W define
the spatial size around the robot for which we do cost map
prediction. The global map is reduced to spatial size of local
map using average pooling. They are concatenated across the
channel before being given as an input to the network.

Mid-Level Representation. Mid-level representations are
features generated from encoders which have been trained
for different downstream tasks like semantic segmentation,
denoising, curvatures, keypoints, etc. They have shown to
be quite effective in RL setting for various downstream
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Fig. 3: Orientation of the robot decides the orientation bin in which
the mid-level feature falls. Each bin is of the size 45° so that we
have a total of 8 bins to cover all the orientation possibilities. For
example, the agent looking towards the north will have the bin 3.
Two examples illustrated above show the placement of mid-level
features corresponding to the agent facing north-west (red color and
bin 4) and south-east (green color and bin 0) directions.

tasks [16], [17]: they improve generalizability and also
performance of an RL agent. In our approach, we adopt mid-
level representations and show how they can be beneficial for
predicting context-aware dense cost maps.

The mid-level representations are extracted from the input
RGB image using a pre-trained network as used by Sax et
al. [17]. We combine encoded mid-level features from three
downstream tasks. We use semantic segmentation and object
classification to help learn about object goal and semantic
contexts of the world. Apart from this, we use depth pre-
diction since we are learning distance dependent cost map.
These representations are concatenated to the encoded map
features after first two encoder layers as shown in Fig. 1.
This concatenation is done according to the orientation of
the robot to form oriented mid-level representation as shown
in Fig. 3. The corresponding bin region is set to the mid-
level feature while the rest of layer is set to 0 to form the
oriented mid-level representation which is concatenated to
the encoded map features. Using this binning technique we
make these mid-level representations robot orientation aware
and associate with the corresponding semantic input map
region.

Target Embedding. We encode the target object cate-
gory that the agent has to reach. To do this, we create
an embedding using the index of the target category. The
embedding of size M, where M = 64, is transformed to the
spatial size of the encoded latent feature (Hepe, Wene)- It
is then concatenated to the latent feature along the channel
dimension.

Output. We observed that casting the cost map prediction
as a multi-task learning problem leads to better results.
Therefore, our network consists of two decoder branches.
One predicts the occupancy map C°c¢ and the other decoder
branch predicts navigation cost € We combine C°¢ and
€ o get the final cost map prediction C. This is done
by using an occupancy threshold 6,.. to create a binary
occupancy mask from Coc. The predicted navigation cost
Cnav is only used for free space from the binary mask while



the occupied space is set to high penalty.

C. Loss Function

In this section we describe our multi-term loss function
that we formulated to train the network for the cost map
prediction. In the following equations we denote the ground
truth occupancy mask by C°“ and the ground truth navi-
gation cost by C™*". The dataset generation technique for
ground truth has been discussed in the Sec. IV-A.

Occupancy Loss. We use a binary cross entropy loss over
the local map region of size (H, W) to learn the occupancy
probabilities 7 of a map cell (4, 7):

Loce = HW Z 7cocc 10g Aocc) (1 - Cocc) log ( Aoc]c)

(D
where ¢7%° is 1 in case of obstacle and 0 in case of free
space. This loss term is used only for the branch predicting
the occupancy map.

Cost Map Loss. To learn the cost map prediction, we
regress the navigation cost using the L1 norm, averaged over
all valid positions (i.e. navigable area):

Z (b5 - exg) (1

where ] i is the normalized ground truth navigation cost
and ¢'7" is the predicted navigation cost.

Gradlent Direction Loss. We introduced this term to
make the navigation cost smooth and consistent with the
local ground truth gradients. Similar to cost map loss, we
only calculate this loss over navigable area of the map:
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where g is the gradient for ground truth cost map and § is
the gradient for predicted cost map,
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In our experiments we observed that the addition of this
term leads to significantly smoother cost maps, which is
important for the downstream navigation task.

The total loss then becomes a combination of all these
losses,

Lair = 3)

occeC
Cij )

6Cnav 66771@7)
ox " 0y )y

5@7“11} 5CATLU/U )
1,5

dx by

“4)

Ltotal = aoccﬁocc + O400525‘600515 + adir£dir7

with the empirically selected weights apee = 1.0, Qost =
1.5 and ayg;, = 1.0.

D. MPC-based Navigation

The usage of Model Predictive Control has largely re-
placed the typical cascades of loosely coupled planning
and control layers in robot navigation. Here we adopt a
formulation of MPC which is particularly suited to tightly
integrate the dense cost functions.

As the learned cost functions are expected to be highly
nonlinear and classical numerical optimization methods may
fatigue with complex cost landscapes, we use a sampling-
based approach. Specifically, we use IT-MPC (Infomation
Theoretic Model Predictive Control [18]) for the robot to
find optimal control sequences. We start by having the initial
control sequence U = {up,uy,...uy_1} where H is the
horizon of the IT-MPC. Each control in the sequence is then
perturbed for K samples to generate noisy control, U, =
U + & where &, = {eg,€1,...€q—1}. Every noise ¢ is
sampled from a normal distribution N (u, o) using g = 0
and empirically selected o = 0.35.

For each sample Uy, we generate the semantically-
enriched cost Sy, using the predicted cost map and the control

effort.
H-1

Se =Y (Cilx) +uf Qu.)

t=0

®)

where x; = {z,y,0:} is the robot pose and @ > 0 is
the control effort matrix. The robot pose is sampled using a
constant velocity differential drive model using the perturbed
linear and angular velocity (u; = {v;, w;} where v; and wy).

The cost is then wused to generate weights
wy of the importance sampling step that obtains
the optimal control sequence to execute: [ =
ming § (£4) . = S oxp (4 (5 () - 9)) wn =
L exp( (S (5’“) [3)) Finally, the control sequence u;
1s updated using the weights and control noise.

K
Uy =ug + Zwkef. (6)
k=1

Hence, we get the updated control and we apply the first
control uy to the agent.

Goal Reacher. During the exploration, if the target object
category T is observed in the local top-down semantic map
Miocar,+ then the corresponding map cells define the goal
mask Mgoq¢. To avoid false positive cells in goal mask,
we remove small regions from the mask. Then using the
remaining goal mask M4, and local occupancy map
MPee . we generate cost map for navigation using Fast
Marchihg Method (FMM) [24] by setting goal mask region
as 0 value:

occ

= FMM ( local,t» Mgoal,t) . (7)

The agent then drives using this cost map. It declares done
when the cost map value is less than or equal to the cost
threshold 0., i.e. Cfoal < 0Ocos¢. In our experiments we
used 0.,s¢ = 0.2. If the goal turns out to be unreachable due
to previously unobserved obstacles then our approach leaves
the goal reaching mode and resorts to the predicted cost map
to continue the exploration.

goal
Ci



IV. EXPERIMENTAL SETUP

We perform experiments in the real-world indoor envi-
ronments provided by a large-scale RGB-D dataset Matter-
port3D (MP3D) [25]. We use a physics-enabled 3D simulator
Habitat [26] to navigate the agent in these environments. To
train our cost map prediction network we generate a dataset
as described in Sec. IV-A. We describe the evaluation setup
and the metrics for cost map prediction and navigation in
Sec. IV-B and Sec. IV-C respectively. Finally, Sec. IV-D
provides important implementation details.

A. Cost Map Prediction Dataset

Our interest is in house-like environments containing
objects, such as a couch, a bed, a table, a chair, a plant,
etc. Therefore, as a first step, we filter out environments
from MP3D dataset which do not contain relevant semantic
information e.g. large halls or churches. In addition, we omit
the houses containing multiple incorrect object labels, which
can impair the training process. The remaining 48 houses
form our dataset are divided into the train, validation and
test splits consisting of 36, 4 and 8 houses respectively.

For each house, we sample multiple starting points and
randomly select a goal from the set of goals we are consid-
ering. For each floor where the robot is spawned, we get the
ground truth top-down semantic map as defined in [27] which
is then used to generate the goal map based on the target
object. Combining this goal map with the occupancy map
from the Habitat simulator, we generate the global ground
truth cost map of distances.

We use an MPC-based agent with the ground truth cost
maps to reach the goal while we collect the dataset. We
record samples at every fourth timestep to reduce redun-
dancy. The number of trajectories taken in a house depend
on the size of the house to avoid repetition. This was selected
manually for each house upon inspection. The complete
generated dataset contains 171412, 16209 and 41949 samples
in the train, val, and test splits respectively.

Each training sample consist of i.) local semantic map
(Miocar) of size 140 x 140, ii.) global semantic map
(Miobar) of size 420 x 420 to help capture global context,
iii.) ground truth cost map (C) composed of distances to the
goal using FMM [24] and occupancy map, and, iv.) ego-
centric RGB for computing the mid-level visual representa-
tions [17]. We also save the orientation of the robot along
with the image.

B. Evaluation Setup for Cost Map Prediction

We evaluate both occupancy and cost map prediction for
our approach. The predictions are evaluated on the test
split of the generated dataset (Sec. IV-A). The occupancy
prediction uses classification metrics of mean F1 score (mF1)
and mean Intersection over Union (mIOU) averaged over
both free space and occupied space classes. We also report
mean pixel accuracy (MPA) for occupancy prediction. For
navigation cost prediction, we report average Action Predic-
tion (aAP) which determines the accuracy of picking the right
local policy normalised by navigable area. aAP5 determines

per-pixel accuracy of picking the correct action based on
the lowest cost from 4 basic directions and being stationary.
Similarly, aAPg measures the same but with 8 neighbours and
the robot position. aAPg gives us a more accurate resolution
as the agent can move in diagonal directions as well.

C. Evaluation Setup for Object Goal Navigation

For navigation performance we ran the agent on different
houses from the test split in the Habitat simulator. There
are a total of 8 test houses - for each house we sample 40
random starting positions for the robot along with a random
target object to reach. We gather various metrics related to
success of reaching the target object like success of reaching
the goal, SPL [28], - which weighs the success according to
the path length determining its efficiency and DTS [6] i.e.
Distance to Success, which measures how far is the agent
from the success distance, which in our experiments was set
to 1 m. We also measure the smoothness of the final robot
trajectory using average acceleration and jerk. We run each
experiment for 500 timesteps which is equivalent to 50 s. The
target object is selected from any of the target category list
that we consider: bed, chair, or couch.

D. Implementation Details

The cost map prediction network was implemented in
PyTorch. During training, we applied data augmentation by
randomly rotating (with a probability of 0.15) the input
semantic maps and the target cost maps by 90°, 180° or
270°. We used the SGD optimizer and a constant weight
decay factor of 0.01. In all experiments, the learning rate
followed the cosine decay schedule with a warmup phase
of 25 epochs with a peak and terminal learning rates being
15e-5 and le-5 respectively. All cost map prediction models
were trained for 200 epochs. For the MPC we used a horizon
H = 50.

V. EXPERIMENTAL RESULTS
A. Quantitative Results

In this section, we analyze the quantitative results of
our approach for context-aware robot exploration using
semantically-informed MPC.

Costmap Prediction. For occupancy mask prediction,
we get an MPA of 78.7%, mF1 of 75.8% and mIOU of
62.8%. We observe that the F1 score of occupied region is
80.7% and that of free region is 71%. This shows that our
occupancy mask prediction approach is inclined to predict
the occupancy class better than the free space class. Similar
trend was seen for IOU. For occupied region, it is 69.1%
and for free region is 56.7%. We get scores for aAP5; and
aAPy as 37.5% and 33.4% respectively. An example of our
prediction can be seen in Fig. 4. We further ablate costmap
prediction based on semantic input in Sec. V-C.

Navigation. We compare our approach for object goal
navigation with the following continuous action space agents:

1. GT Agent: This approach has access to ground truth
cost map which is then used for navigation by the MPC.



Approach | SR1+ SPL{ DTS(m)| Timesteps | Acc(ms™2, rads™2) ] Jerk(ms—3, rads™3) |
GT Agent | 1.000 0.922 0.219 145 [0.17,2.37] [2.37,35.00]
Privil. Random 0.282  0.206 7.136 394 [1.57,8.64] [28.00, 156.10]
FBE + MPC 0.437  0.277 5.137 336 [0.21,5.59] [3.36,101.82]
SemExp [6] + MPC | 0.349 0.273 6.174 292 [0.19, 1.57] [2.95, 28.12]

Our Approach 0.520  0.390 3.594 304 [0.66, 7.26] [11.79,128.16]

TABLE I: Navigation performance comparison. GT cost map provides an indication of the best possible metrics.
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Fig. 4: The left image shows the input semantic map where, white
is unexplored area, gray is free space and the rest is other semantic
regions. The predicted occupancy map on the top right matches
well with the ground-truth occupancy map in the black box regions.
Whereas for the red box, our method is extrapolating free space.
Here red is occupied and green is free space. For the cost maps on
the bottom right, the predicted cost is able to capture the relative
lower cost in the center of the map. For cost map, red to green
represent high to low cost.

GT Cost map

This agent is useful to understand the upper bound on the
performance.

2. Priviliged Random: It picks a random value from the
allowable set of linear and angular velocity to use as an
action, it is made privileged by providing the goal reacher,
which is semantically informed. This helps us to see the
improvement in exploration by our agent.

3. FBE + MPC: This agent performs frontier-based explo-
ration with our IT-MPC combined. The costmap is generated
by propagating the zero cost from the frontiers towards the
agent.

4. SemExp + MPC: This agent selects semantically in-
formed long term goals (waypoints) similar to the method
from [6]. They guide the robot towards the target object.
Instead of the deterministic local policy in discrete action
space used in [6], the agent relies on our IT-MPC to approach
the waypoints. This is done to enable continuous control of
this agent and make it comparable to our approach.

Tab. I shows that our agent outperforms all the baseline
methods in the main object goal navigation metrics. It
improves over the best baseline FBE + MPC by 8 and 11 per-
centage points respectively in success rate (SR) and success
weighted by the path length (SPL). The performance gap is
even larger when compared to the adopted method from [6].
In average our approach reaches the goals significantly closer
compared to the baselines as evident from DTS metric.
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Fig. 5: Progression of agent moving in the house over time. The
path over time is shown in blue in the GT global map with the red
arrow showing the orientation of the robot. The target goal in this
case is plant and we see that the agent is able to navigate to the
plant efficiently. We also see in the last timesteps the goal reacher
is activated. In the cost maps, the green regions show low cost and
red the high-cost regions. Samples from MPC are also shown in
the cost maps in blue.

The lower jerk for MPC augmented baselines is caused by
smoother costmaps generated using FMM from zero cost
regions or waypoints. This indicates a potential direction
of improvement for our predicted costmaps. The privileged
random and ground-truth agents provide the lower and upper
bounds for the navigation performance respectively.

B. Qualitative Results

In this section we present the qualitative results to show
how our agent successfully completes the task of object goal
navigation on one of the sequences. In this example the
target object is a plant showcasing that the approach can
work beyond the object categories used for the quantitative



Occupancy Prediction

Methods | MPA(%) 1

Navigation Cost Prediction Object Goal Navigation

mF1(%) t  mIOU(%) 1 | aAP5(%) © aAPg(%) 1 | SRT SPL1 DTS(m) |
Only Semantic Map 79.1 76.2 63.2 36.9 33.2 0.437  0.330 4.49
Only Mid-Level 79.1 76.3 63.4 37.2 33.5 0.492 0.371 3.79
Both (Our Approach) 78.7 75.8 62.8 38.2 34.4 0.520  0.390 3.59

TABLE II: Performance comparison for ablation on semantic input.

evaluation. Fig. 5 shows how the agent progresses towards
the goal as it builds the semantic map of the environment.
The predicted cost map efficiently guides the agent near the
goal area. At timestep 217 the goal reacher (see Sec. III-D)
gets activated as the target object (i.e. plant) becomes visible
in the local semantic map. Finally, the cost map generated
by the goal reacher drives the agent to the goal.

C. Ablation Study

In this ablation study, we compare how the different input
information affects the costmap prediction and navigation
results. We compare three variants: Only Semantic Map,
which has only semantic map as the input to the cost map
prediction module, Only Mid-Level, which has input map
without semantics along with the mid-level representations
and finally, Our Approach, with both semantic map and mid-
level input.

The MPA, mF1 and mIOU metrics reported in Tab. II
indicate that occupancy prediction is not influenced by the
input variations. The aAPs; and aAPy metrics show that
the introduction of mid-level representations improve the
navigation cost prediction. This observation is consistent
with the results of the downstream object goal navigation
task.

In terms of navigation, the Only Mid-Level already reaches
a success rate of 0.492 while Only Semantic Map has
a success rate of only 0.437. An addition of mid-level
representations greatly improves the success rate of the Only
Semantic Map by 8 percentage points. This clearly shows
that mid-level representations are beneficial for achieving
better object goal navigation efficiency. A combination of
both semantic representations leads to the best result in terms
of success rate, SPL and DTS.

D. Failure Cases

To determine potential directions for the improvement of
our approach, we also consider failure cases for which we
mainly identified the following reasons:

1) Noisy Semantic Map: Due to the noisy egocentric
semantic segmentation, some cells in the constructed
semantic map get incorrectly classified. In cases like
these e.g. Fig. 6a, it identifies the plant target incor-
rectly and therefore, declares the end of episode early.
This leads to failure in reaching the true goal.

2) Local Minima: Other sometimes observed failure case
is that the agent gets stuck in the local minima of the
predicted cost. Fig. 6b shows one such case where the
robot gets stuck after traversing a considerable distance
in search of target goal.

Correct Plant

False Plant in Map False Plant Goal

(a) Noisy Semantic Map

Stuck in local minima

(b) Local Minima

Fig. 6: Examples of failure cases observed in our approach.

These failure cases are potential areas of improvement for
future work which can increase the exploration performance
of our approach.

VI. CONCLUSION

In this work, we present a semantically-informed MPC
approach for context-aware object goal navigation under
kinodynamic constraints. Our proposed U-Net based network
architecture includes a novel way of fusing mid-level repre-
sentations which takes into account the orientation of the
robot. The chosen sampling-based variant of MPC allows us
to develop a lean and tight coupling between semantic mod-
eling components and downstream control. The experiments
show that our method achieves more efficient and accurate
goal navigation with higher quality paths than the reported
baselines. The results also indicate the importance of mid-
level representations for navigation by improving the success
rate by 8 percentage points. As future work, we wish to
perform experiments on real robots and tackle uncertainties
as dense cost maps provide an appropriate base for that.
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