
Efficient Motion Planning for Manipulation Robots
in Environments with Deformable Objects

Barbara Frank Cyrill Stachniss Nichola Abdo Wolfram Burgard

Abstract— The ability to plan their own motions and to reliably
execute them is an important precondition for most autonomous
robots. In this paper, we consider the problem of planning
the motion of a mobile manipulation robot in the context of
deformable objects in the environment. Our approach combines
probabilistic roadmap planning with a deformation simulation
system. Since appropriate physical deformation simulation is
computationally demanding, we use an efficient variant of
Gaussian Process regression to estimate the deformation cost for
individual objects based on training examples. We generate the
training data as a preprocessing step offline using the physical
deformation simulation system so that no simulations are needed
during runtime. We implemented and tested our approach
on a mobile manipulation robot. Our experiments show that
the robot is able to accurately predict and thus consider the
deformation cost its manipulator introduces to the environment
during motion planning. Simultaneously, the computation time
is substantially reduced compared to the system that employs
physical simulations online.

I. INTRODUCTION

The ability to plan its own motion is an important capability
of a truly autonomous robot. There is a large body of literature
on path and motion planning for mobile robots, most of
them assuming a static world or environments that consist
of rigid objects only. Recently, several researchers addressed
the problem of dealing with deformable objects or even a
deformable robot [9, 1, 2, 6, 18]. An increasing number of
robots has to deal with deformable objects such as plants,
pillows, cloth, or towels [13]. Other real world applications of
planning in deformable environments are surgical simulations,
where the injury of organs should be minimized.

In our previous work [3], we considered the problem of
2D navigation among deformable objects and similar aspects
in the context of reactive collision avoidance systems [5].
In this work, we extend our planning framework towards
manipulation planning in the presence of deformable objects.
This transition from 2D path planning imposes different
challenges for the modeling of the interactions between
the robot and objects in the environments, especially the
prediction of the deformation costs.

The straightforward way of considering deformations
of objects during planning is to generate collision-free
trajectories while considering all deformable objects as free
space. When planning a path, the planner has to simulate the
deformation of the objects resulting from the interaction with

All authors are with the Department of Computer Science, University of
Freiburg, Germany.

This work has partly been supported by the DFG under SFB/TR-8, by
the European Commission under FP7-248258-First-MM, and by Microsoft
Research, Redmond.

Fig. 1: Our mobile manipulation robot Zora.

the robot and its manipulator and consider these additional
costs online. The problem with this approach is that an
appropriate physical simulation typically requires significant
computational resources which makes such an approach
unsuitable for realistic problems. In this paper, we present
a novel approach that applies an efficient Gaussian Process
regression approach to approximate the deformation cost
function of objects in configuration space. This allows a
robot such as the one shown in Fig. 1 including its arm
to plan trajectories in the presence of deformable objects.
An assumption that is made throughout this paper is that the
robot can deform but cannot move objects in the environment.
In addition to that, we restrict the set of possible trajectories
for deforming objects—details are provided in Section IV.

II. RELATED WORK

Recently, several path planning approaches for deformable
robots in static environments have been presented [1, 2, 6,
9]. These approaches have in common that a probabilistic
roadmap is used to plan motions and a deformation simu-
lation is used to compute the expected deformations. The
considered deformation models used among the different
approach vary. Often, robots are assumed to be surface
patches [10, 9] or consist of basic volumetric elements [1]
and are modeled using spring-mass systems. To achieve a
physically more realistic simulation of deformations, Gayle et
al. [6] add constraints for volume preservation. Due to the
required deformation simulations, the path planning process
is computationally demanding. Bayazit et al. [2] apply a free-
form deformation to the robot in order to avoid collisions
with obstacles. This deformation method can be computed
more efficiently but is less accurate than physically motivated
approaches. In contrast to our approach, these planners deform

the robot rather than the obstacles to avoid collisions. In our
approach, collisions with deformable objects are allowed
but introduce additional costs. An approach to planning in
completely deformable environments has been proposed by
Rodrı́guez et al. [18]. They employ a spring-mass system
with additional physical constraints for volume-preservation
to enforce a more realistic behavior of deformable objects.
Instead of probabilistic roadmaps, they use rapidly exploring
random trees and apply virtual forces to expand the leaves
of the tree until the goal state is reached. The obstacles
in the environment are deformed through external forces
resulting from collisions with the robot. Other approaches
such as [14] plan paths for a surgical tools. In this work, the
organs are modeled as deformable objects and the aim is to
minimize their deformation as well as penetration. This is
done by optimizing the control points of a path with respect
to constraints that consider the stiffness of objects and the
penetration depth of the surgical tool. The tool, however, is
constrained to a rod, that always has to pass through a fixed
point (the insertion position), and the degrees of freedom are
limited to four.

A drawback of the approaches discussed above is that
they need to compute the deformation simulations during
runtime. This is computationally demanding when planning
the motions of real robots. In our previous work, we presented
an approximation of the deformation cost functions for
wheeled robots moving in a plane [3, 5] that can run online. In
our new work, we extend our previous approach to the more
complex problem of planning motions for manipulators with
many degrees of freedom that operate in 3D world. In this
setting, the possible trajectories that need to be considered are
more complex and thus more sophisticated for estimating the
deformation costs given a set of training examples is needed.
We present an efficient approximation based on Gaussian
Processes that allow to carry out motion planning tasks on
the fly. Computationally demanding preprocessing steps are
only needed per object type that is considered during planning.
These preprocessing operations are independent of the shape
of the environment itself.

In the context of robot learning tasks, Gaussian processes
(GPs) are becoming increasingly popular. A good introduction
into GPs can be found in [17]. In robotics, GPs have been
used for terrain modeling [20], for occupancy mapping [16],
for estimating gas distributions [19], learning motion and
observation models [12] and several other problems. In some
parts, the approach of Vasudevan et al. [20] is similar to
our method. To model large outdoor terrain structures, they
perform a nearest neighbor query on measured elevation data
and consider only inputs in the local neighborhood of the
query point. This is done efficiently using a KD-tree. We
apply the same trick to reduce the number of training points
used in the GP to the subset of the most relevant ones for
solving the regression problem at hand.

III. OUR APPROACH TO MOTION PLANNING
IN THE CONTEXT OF DEFORMABLE OBJECTS

A. Planning using Probabilistic Roadmaps

To plan trajectories for our manipulation robot, we use
the probabilistic roadmap framework [11]. The key idea of
methods belonging to this class of planning algorithms is to
represent a set of collision-free configurations of the robot that
are considered during planning by sampled configurations.
These configurations form the nodes in a graph, which is often
called roadmap. In addition to the sampling, edges between
nearby nodes are constructed. These edges model possible
trajectories for the robot to move from one configuration to
another. To plan a real trajectory of a robot given such a
roadmap, one typically connects the current configuration of
the robot as well as the target configuration with the graph.
Most motion planning systems assign costs to the edges that
correspond to their distance in configuration or works space or
to the time needed to move the robot from one configuration
to another. Then, this graph allows for applying graph search
techniques such as A? or Dijkstra’s algorithm to search for
the optimal path between a given start and goal point in the
roadmap.

In the typical motion planning framework, samples in the
roadmap represent collision-free configurations and trajec-
tories between samples, i.e., the edges, are also checked
for collision-free executability. Since we are interested in
considering deformable objects, we need to allow for samples
that lead to collisions with deformable object. Thus, when
generating the probabilistic roadmap, samples that lead to
collisions with deformable objects are accepted and not
rejected.

To build up a motion planning system that considers
deformable objects in the environment, the costs that are
assigned to the edges of the roadmap need to consider the
deformation costs. Our system uses a weighted sum between
the distance of the nodes in configuration space and the
deformation costs. For an edge between the nodes i and j,
its cost is given by

C(i, j) := αCdef (i, j) + (1− α) dist(i, j), (1)

where α ∈ [0, 1] is a user-defined weighting coefficient. The
term Cdef (i, j) represents the deformation costs that are
introduced by deforming objects in the environment. In case
the robot does not interact with any object, this term is zero.
The term dist(i, j) corresponds to the distance between both
nodes in configuration space. As a result, the robot prefers
shorter trajectories over longer ones.

Our current implementation applies A? to find the optimal
path in the roadmap given Eq. (1). To obtain an admissible
heuristic for A?, i.e., a heuristic that underestimates the real
costs, we use the distance to the goal configuration weighted
with (1− α). Thus, we are able to find the path in the
roadmap that optimizes the trade-off between travel cost
and deformation cost for a given user-defined parameter α.

The key difficulty when considering deformable objects in
real world planning tasks is to obtain the cost of deformations,

i.e., estimating the term Cdef (i, j), in an efficient way. One
possible way to determine this quantity is to use a physical
simulation engine.

B. Determining Deformation Costs via Physical Simulation

To determine the object deformations introduced by the
robot and the associated costs, we employ a physical
simulation engine that is based on finite element methods.
In particular, we use DefCol Studio [8] as our simulation
environment. It combines FEM-based simulation of the
deformations on volumetric meshes following the approaches
described in [7, 15], with an efficient collision handling
scheme.

In our previous work, we presented an approach for
building such volumetric meshes consisting of tetrahedrons
from sensor data and estimating the deformation parameters
for real objects [4]. The parameters, which cannot be observed
directly, are estimated by actively deforming a real object
and simultaneously optimizing the deformation parameters in
simulation until the real shape and the simulated ones match.
Here, we use the parameters estimated with our previous
method [4].

C. Limitations

The approach described so far can be used for planning the
trajectory of a robot and its manipulator amongst deformable
objects. The key problem, however, is the computational
requirements. Although the deformation simulation can be
executed online for a scene, a large number of hypotheses
needs to be evaluated for building up the roadmap or for
planning online using A?. Additionally, small changes in the
world require to recompute the costs for the edges of the
roadmap—this makes real world application basically impos-
sible. To overcome this limitation, the next section presents
an efficient way to accurately estimate the deformation costs
for individual objects using Gaussian Process regression.
Our approach uses the simulation system to generate the
training inputs and estimates the deformation costs for new
trajectories or in a modified environment based on the training
data that are generated beforehand. The combination of the
planning system and the regression technique allows for
efficient planning amongst deformable objects online.

IV. EFFICIENT ESTIMATION OF THE DEFORMATION COST
USING GAUSSIAN PROCESS REGRESSION

A. Parametrization

The problem of estimating the deformation cost introduced
by a robot given a set of training samples can be efficiently
approached by regression techniques. Let y1:n be the de-
formation cost values obtained from n simulations where
the virtual robot executed n different trajectories x1:n. Then,
the goal is to learn a predictive model p(y∗ | x∗,x1:n, y1:n)
for estimating the deformation cost y∗ given a (new) query
trajectory x∗.

In theory, all possible trajectories through a deformable
objects can be executed. To bound the complexity of the
regression problem, we consider only straight line motions

s

e

l

Fig. 2: Trajectory parametrization: starting point s and end point e
on a virtual sphere around the deformable object together with the
distance l from s towards the object.

through the object here. This is an assumption but not a
really strong one since the trajectories generated by most
roadmap planners are often piecewise linear motions. The
motions considered to estimate the deformation cost are
parametrized by five parameters: a starting point s and end
point e on a virtual sphere around the robot. The points s
and e are each described by an azimuth φ and an elevation
angle θ, together with a distance l from the starting point
that describes the length of the motion. Fig. 2 illustrates this
parametrization. Thus, xi is a five-dimensional vector in our
case with xi = [θsi , φ

s
i , θ

e
i , φ

e
i , li]

T where the superscript s
refers to the starting point and e to the end point.

B. Regression for Estimating Deformation Costs

We approach the problem of estimating the deformation
costs by means of nonparametric regression using the Gaus-
sian Process (GP) model [17]. In this Bayesian approach
to non-linear regression, one places a prior on the space of
functions using the following definition: A Gaussian process
is a collection of random variables, any of which have a
joint Gaussian distribution. More formally, if we assume that
{(xi, fi)}ni=1 with fi = f(xi) are samples from a Gaussian
process and define f = (f1, . . . , fn)

>, we have

f ∼ N (µ,K) , µ ∈ Rn,K ∈ Rn×n . (2)

For simplicity, we set µ = 01. The interesting part of the
GP model is the covariance matrix K. It is specified by
[K]ij = k(xi,xj) using a covariance function k. Intuitively,
the covariance function specifies how similar two function
values f(xi) and f(xj) are. The standard choice for k is the
squared exponential covariance function

kSE(xi,xj) = σ2
f exp

(
−1

2

|xi − xj |2

`2

)
, (3)

where the so-called length-scale parameter ` defines the global
smoothness of the function f and σ2

f denotes the amplitude
(or signal variance) parameter. These parameters, along with
the global noise variance σ2

n that is assumed for the noise
component, are known as the hyperparameters of the process.

The standard squared exponential covariance function given
in Eq. (3) is clearly suboptimal for our problem. The reason
for that is our parametrization, which is based on four angles

1The expectation is a linear operator and for any deterministic mean
function m(x), the Gaussian process over f ′(x) := f(x)−m(x) has zero
mean.

and one Euclidean distance. Considering these dimensions
alike does not allow us to model the “similarity” between
trajectories well. Therefore, we define a variant of the squared
exponential covariance function that considers that the these
angles are used to describe two points on a sphere. Thus, we
consider the distance between the starting points and the end
points lying on the sphere from the two inputs xi and xj

plus the difference in the length of the trajectory. This results
in

k(xi,xj) = σ2
f exp

(
−1

2

d2(xi,xj)

`2

)
, (4)

with

d(xi,xj) = ||li − lj ||+ ||p2e(θsi , φ
s
i)− p2e(θsj , φ

s
j)||+

||p2e(θei , φ
e
i)− p2e(θej , φ

e
j)|| (5)

and where p2e(·) is the mapping of the spherical coordinates
to points on the sphere expressed in R3.

Given a set D = {(xi, yi)}ni=1 of training data obtained
from the physical simulation engine, we aim at predicting
the target value y∗ for a new trajectory specified by x∗. Let
X = [x1; . . . ;xn]

> be the matrix of the inputs and X∗ be
defined analogously for multiple test data points. In the GP
model, any finite set of samples is jointly Gaussian distributed.
To make predictions at X∗, we obtain the predictive mean

E[f(X∗)] = k(X∗,X)
[
k(X,X) + σ2

nI
]−1

y (6)

and the (noise-free) predictive variance

V[f(X∗)] = k(X∗,X∗)− k(X∗,X)[
k(X,X) + σ2

nI
]−1

k(X,X∗), (7)

where I is the identity matrix and k(X,X) refers to the
covariance matrix built by evaluating the covariance function
k(·, ·) for all pairs of all row vectors (xi,xj) of X.

In sum, Eq. (6) provides the predictive means for the
deformation cost when carrying out a movement along x∗

and Eq. (7) provides the corresponding predictive variance.

C. Efficient Regression by Problem Decomposition
With the GP model explained above, we can make

predictions for a set of trajectories deforming an object given
training data obtained form the physical simulation. The
key problem in practice, however, is that a substantial set
of training data is required to obtain accurate predictions
of the deformation cost. For the objects we experimented
with, around 3000 training trajectories are needed for obtain
good predictions. The GP framework, however, has a runtime
that is cubic in the number of training examples so that the
approach gets rather inefficient for more than 1000 training
examples.

Therefore, we decompose the overall regression problem
into a number of local ones. For a query trajectory x∗, we
determine its M closest neighbors from the training data
under our covariance function given in Eq. (4) and Eq. (5) as

X′(x∗) = [x′1; . . .x
′
M] = argmin

[x′
1;...;x

′
M]

M∑
k=1

d(x′k,x
∗). (8)

The M closest neighbors X′ to the query trajectory x∗

are the training data points that have the highest influence
on the prediction of y∗ in the GP framework. Considering
only X′ instead of X in the GP is equivalent to assuming
that k(x∗,xi) = 0 for all xi that are not part of X′. In
our current implementation, we are able to get appropriate
prediction by setting M = 50. We experienced that the loss
is negligible with respect to larger values of M , at least in
all in our experiments. Determining the M closest neighbors
to x∗ can be computed efficiently by a KD-tree that is once
built from the training data. Thus, queries can be obtained in
logarithmic time in the number of training examples and the
GP prediction does not depend on the size of the training set
anymore but only on M .

D. Considering the Full Kinematic Chain for Estimating the
Deformation Cost

The deformation simulation system considers the movement
of a rigid sphere with a diameter that is equal to that of
the robot’s manipulator along the described trajectory to
compute the deformation cost. It does not consider the full
configuration of the arm. This is done intentionally (the
simulation supports for that) and it is clearly an approximation
but it allows us to parametrize the regression problem with a
low-dimensional input. Otherwise, the full configuration of
the robot would need to be considered in the GP framework.
With higher-dimensional inputs, a much larger number of
training examples would be needed. To take into account the
fact that not only the end-effector but also other body parts
may deform an object, we sample multiple points along the
kinematic chain of the robot. Then, we perform the estimation
of the deformation cost for all sampled points along the
kinematic chain and consider the maximum of the individual
costs

Cdef = max
b

GP(x∗(b),X′(x∗(b)),y′(x∗(b))), (9)

where b refers to the individual body parts and x∗(b) to the
motion that the body parts carry out given the kinematic
structure of the robot. Considering the maximum in Eq. (9)
instead of, for example, the sum, typically generates more
accurate predictions since the largest deformation forces are
typically generated by one body part only.

In theory, there may be situations in which this assumption
is not valid, for example when a robot with two manipulators
would squeeze an object—such situations, however, are rarely
observed in most practical settings.

V. EXPERIMENTAL EVALUATION

A. Prediction of Deformation Costs

In this section, we evaluate our GP-based regression
technique for predicting the deformation costs of robot
trajectories. To show the effectiveness of the GP-based
technique, we furthermore compare it to a standard nearest-
neighbor prediction, which uses the average of the M nearest
neighbors as an estimate.

Our deformable object is a plush teddy bear for which
we estimated the deformation parameters. To learn the

TABLE I: Performance comparison for GP-based regression and
nearest-neighbor approximation.

RMSE ∅ time (ms)
Dataset NN GPStandard GPOpt GPStandard GPOpt

leave-one-out
D1 24.3 18.4 9.2 26.3 48.2
D2 19.5 27.0 5.8 19.3 42.9

D12 18.0 15.2 7.5 46.9 69.7
cross-validation

D1 on D2 26.9 22.5 17.8 19.4 42.1
D2 on D1 17.3 14.6 9.4 25.0 46.5

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

 P
re

d
ic

ti
o

n

 True costs

50NN
GP No Opt

GP Opt

 0

 2

 4

 6

 8

 10

 12

 NN GPStd GPOpt

E
rr

o
r

Method

Prediction error

Fig. 3: Comparison of the prediction performance for Nearest-
Neighbor estimation and GP-Regression (Leave-One-Out cross-
validation on D12).

deformation cost function of the teddy bear, we generated a
set of (trajectory, deformationcost) samples by performing
deformation simulations for the trajectory parameters. Since
the computation of sample trajectories is time-consuming, we
restrict the manipulation movements to those movements in
the plane at different z-levels. Note that this can easily be
generalized to arbitrary trajectories in 3D.

We consider 3 different data sets, which are D1 with
1,800 trajectory samples at z = 0, 20, and 40 cm, D2 with
1,400 trajectory samples at z = 10 and 30 cm, and D12
which is the combination of D1 and D2 with 3,200 trajectory
samples. To evaluate the accuracy of the deformation cost
prediction, we performed two different experiments, namely
leave-one-out cross-validation for D1, D2, and D12 as well
as cross-validation of D1 on D2 and vice versa. We compare
the prediction results for the 50 nearest neighbor prediction
(NN), the prediction of a GP with standard hyperparameters
(GPStandard), and the prediction of a GP with optimized
hyperparameters (GPOpt). The results for the different data
sets are summarized in Tab. I.

Whereas a visual comparison for the leave-one-out valida-
tion is shown in Fig. 3, the results for the cross-validation
are depicted in Fig. 4.

B. Performance

In this section, we analyze the computational overhead in-
troduced by our estimation of the deformation cost compared
to a standard roadmap planner.

1) Generation of path examples: The computation of the
example trajectories is done offline in a preprocessing step
and is quite time-consuming. The simulation of one example
trajectory takes on average 40 s for a trajectory length of
approximately 1 m. To obtain the 3,200 path examples we

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

 P
re

d
ic

ti
o

n

 True costs

50NN
GP No Opt

GP Opt

 0

 2

 4

 6

 8

 10

 12

 14

 NN GPStd GPOpt

E
rr

o
r

Method

Prediction error

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

 P
re

d
ic

ti
o

n

 True costs

50NN
GP No Opt

GP Opt

 0

 2

 4

 6

 8

 10

 12

 14

 16

 NN GPStd GPOpt

E
rr

o
r

Method

Prediction error

Fig. 4: Comparison of the prediction performance for Nearest-
Neighbor estimation and GP-Regression(top row: Cross-validation
D2 on D1, bottom row: Cross-validation D1 on D2).

used in our evaluation, the total simulation time was around
129,417 s (approx. 36 h).

2) Roadmap Computation: The roadmap for a given
static and non-deformable environment is computed in a
preprocessing step. The main computational load comes
from collision checks that need to be performed in order to
determine edges that can be connected by collision-free paths.
This is independent of our deformation cost estimation and
takes for our test scenario with 1,000 sample configurations
and 7,306 collision-free edges around 40 min. This could
further be improved by using a more sophisticated collision
checking algorithm. Evaluating the deformation cost for the
7,306 edges additionally takes 105 s (note that only the edges
intersecting the bounding sphere of the deformable object
need to be further analyzed using our GP based regression.
This were 801 edges in this example).

3) Answering Path Queries: To answer path queries,
starting and goal configurations need to be added to the
roadmap. This means that the planner attempts to connect
these configurations to the M nearest neighbors in the
roadmap. The time-consuming factor here is again the
collision-checking. We evaluated 12 path queries. Connecting
them to the roadmap took on average 3.5 s. The necessary
evaluation of the deformation costs of the collision-free edges
additionally requires 1.8 s on average.

4) Comparison to a Roadmap Planner with Integrated
Deformation Simulation: Instead of precomputing sample
trajectories and estimating the deformation costs of edges in
the roadmap using regression, it would be possible to perform
the simulation of the edges directly when constructing the
roadmap. Considering the example above, evaluating 801
edges requires an additional 267 min when constructing the
roadmap. Furthermore, when answering path queries, we need
to connect the start and the goal by adding new edges for
which simulations need to be performed online. This requires

Fig. 5: Planning example. Left image: shortest path, right image:
trade-off between path cost and deformation cost.

Fig. 6: Planning example. Left image: shortest path, right image:
trade-off between path cost and deformation cost (only minimal
deformations occur here).

another 10 min per path query. In contrast to that, our GP-
based approach adds an overhead of approximately 1.8 s, thus
requiring two orders of magnitude less computation time.

C. Example Trajectories

Finally, we carried out two planning experiments that are
designed to illustrate the generated trajectories of our planner.
We placed the teddy bear, which is deformable, in a shelf
that is considered as a static obstacle. In both experiments,
the robot had to move its arm from the current location to a
goal. Once, the target is behind the teddy bear (Fig. 5) and
once on the other side (Fig. 6). In both cases, the planner
that does not consider the deformation costs would lead to
significant deformation (left images) whereas our approach
results in less deformation and still short paths (right images).

VI. CONCLUSION

In this paper, we presented a novel approach for efficiently
planning the motion of a manipulation robot in environments
that contain deformable objects. Our planner is based on
probabilistic roadmaps and considers deformation costs
that are computed from a physical simulation engine. To
overcome the high computational demands of an appropriate
physical deformation simulation, our approach employs an
efficient variant of Gaussian Process regression to estimate
the deformation cost for individual objects based on training
examples. To limit the complexity of the regression problem,
we train the Gaussian Process only based on the most relevant
training data given a specific query trajectory. The training

data is generated offline in a preprocessing step using the
physical deformation simulation system so that no simulations
are needed during runtime. Our experimental evaluation shows
that our approach enables the robot to accurately estimate
the expected deformation cost that its manipulator introduces
to the objects in the scene along its path. It furthermore
shows that our method substantially reduces the computation
time compared to an approach that completely relies on the
simulation engine during planning.

REFERENCES

[1] E. Anshelevich, S. Owens, F. Lamiraux, and L.E. Kavraki. Deformable
volumes in path planning applications. In Proc. of the Int. Conf. on
Robotics & Automation (ICRA), pages 2290–2295, 2000.

[2] O.B. Bayazit, J.-M. Lien, and N.M. Amato. Probabilistic roadmap
motion planning for deformable objects. In Proc. of the Int. Conf. on
Robotics & Automation (ICRA), pages 2126–2133, 2002.

[3] B. Frank, M. Becker, C. Stachniss, M. Teschner, and W. Burgard.
Efficient path planning for mobile robots in environments with
deformable objects. In Proc. of the Int. Conf. on Robotics & Automation
(ICRA), 2008.

[4] B. Frank, R. Schmedding, C. Stachniss, M. Teschner, and W. Burgard.
Learning the elasticity parameters of deformable objects with a
manipulation robot. In Proc. of the Int. Conf. on Intelligent Robots
and Systems (IROS), 2010.

[5] B. Frank, C. Stachniss, R. Schmedding, M. Teschner, and W. Burgard.
Real-world robot navigation amongst deformable obstacles. In Proc. of
the Int. Conf. on Robotics & Automation (ICRA), 2009.

[6] R. Gayle, P. Segars, M.C. Lin, and D. Manocha. Path planning for
deformable robots in complex environments. In Proc. of Robotics:
Science and Systems (RSS), pages 225–232, 2005.

[7] M. Hauth and W. Strasser. Corotational Simulation of Deformable
Solids. In Int. Conf. on Computer Graphics, Visualization, and
Computer Vision (WSCG), pages 137–145, 2004.

[8] B. Heidelberger, M. Teschner, J. Spillmann, M. Mueller, M. Gissler, and
M. Becker. DefColStudio – interactive deformable modeling framework.
http://cg.informatik.uni-freiburg.de/software.htm.

[9] C. Holleman, L.E. Kavraki, and J. Warren. Planning paths for a flexible
surface patch. In Proc. of the Int. Conf. on Robotics & Automation
(ICRA), pages 21–26, 1998.

[10] L.E. Kavraki, F. Lamiraux, and C. Holleman. Towards planning for
elastic objects. In Proc. of the Workshop on the Algorithmic Foundations
of Robotics (WAFR), pages 313–325, 1998.

[11] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580,
1996.

[12] J. Ko and D. Fox. GP-BayesFilters: Bayesian filtering using gaussian
process prediction and observation models. Autonomous Robots, 2009.

[13] J. Maitin-Shepard, J. Lei M. Cusumano-Towner, and P. Abbeel. Cloth
grasp point detection based on multiple-view geometric cues with
application to robotic towel folding. In Proc. of the Int. Conf. on
Robotics & Automation (ICRA), 2010.

[14] B. Maris, D. Botturi, and P. Fiorini. Trajectory planning with task
constraints in densely filled environments. In Proc. of the Int. Conf. on
Intelligent Robots and Systems (IROS), 2010.

[15] M. Mueller and M. Gross. Interactive Virtual Materials. In Graphics
Interface, pages 239–246, 2004.

[16] S. O’Callaghan, F.T. Ramos, and H.F. Durrant-Whyte. Contextual
occupancy maps incorporating sensor and location uncertainty. In
Proc. of the Int. Conf. on Robotics & Automation (ICRA), 2010.

[17] C. E. Rasmussen and C. K.I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2006.

[18] S. Rodrı́guez, J.-M. Lien, and N.M. Amato. Planning motion in
completely deformable environments. In Proc. of the Int. Conf. on
Robotics & Automation (ICRA), pages 2466–2471, 2006.

[19] C. Stachniss, C. Plagemann, and A.J. Lilienthal. Gas distribution
modeling using sparse gaussian process mixtures. Autonomous Robots,
26:187ff, 2009.

[20] S. Vasudevan, F.T. Ramos, E.W. Nettleton, and H.F. Durrant-Whyte.
Gaussian process modeling of large scale terrain. Journal of Field
Robotics, 26(10), 2009.

