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1 Summary

The report describes the basics of symmetric least squares matching (Sym-LSM) which
is useful for high precision image matching and realized in Matlab.

The principle of Sym-LSM is to minimize the weighted sum of the squares of the
residuals of the intensity of two images g and h and this way obtains statistically
optimal estimates for the parametrized geometric and radiometric distortions between
two overlapping images. The estimated geometric transformation may be used in
the context of relative image orientation for re�ning the coordinates of corresponding
keypoints or for tracking keypoints within a video sequence. We assume images are
grey-level images.

The main properties of the method are the following:

1. In contrast to classical approaches, exchanging the two signals leads to identical
results, i.e., mutually inverse geometric and radiometric transformations.

2. LSM can be realized such that � for sets of simulated data � the three statistical
tests on the correctness of the implementation generally do not �re:

(a) The estimated variance factor does not di�er from 1 too much. This indi-
cates that model and (simulated) data are consistent.

(b) The empirical covariance matrix derived from samples does not signi�cantly
di�er from the theoretical covariance matrix, which is the Cramer-Rao
bound. This suggests, that the theoretical covariance matrix can be used as
reliable uncertainty indicator.

(c) The estimates show no signi�cant bias.

Therefore we can rely on the estimated parameters and their covariance matrix
in real cases if convergence is achieved and the variance factor does not di�er
from 1 too much. If σ̂0 is not close to 1, this indicates, the assumed model does
not �t to the observations. The cause of this e�ect cannot be given: it may be,
that the scene is not �at, the windows are too large, the estimated noise variance
deviates from the noise variance in the windows, the shadow situation in both
images is di�erent, and so on.

3. Individual variances for all observations can be taken into account, especially,
position or signal depending variances. Covariances are neglected. The signal
dependent noise variacances can be derived from given images without needing
any control parameters.

4. Interpolation of the observed signals is necessary for reconstructing the unknown
signal. This causes some � generally negligible � approximations in the method.

5. For a�ne geometric transformations the similarity transformation derivable from
corresponding Lowe-keypoints can be used as approximate transformation.
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6. From the estimated parameters and their covariance matrix one can derive re�ned
point correspondences of a�ne correspondences. The a�ne parameters on an av-
erage have a relative accuracy a few percent, and the estimated shifts/parallaxes
a standard deviation below 0.1 pixels.

The a�ne correspondences can be used for estimating the relative pose of two
calibrated or partially calibrated cameras, i.e., with or without focal length based
on pairs of a�ne matches.

The Matlab software provided consists of a core routine
LSM_62_sym_main.m

and several demo routines

• demo_LSM_small.m for showing the use of the main routine,

• demo_LSM_medium.m for showing the use of keypoints and the noise varaicne
estimation,

• demo_LSM_simulated.m for checking the implementation with simulated data,
and

• demo_LSM_image_pairs.m for manually providing keypoints in real data.

On Notation. Signals are two-dimensional function. The function names taken from
the middle of the alphabet, e.g., f , g, and h. Coordinate names are taken from the end
of the alphabet: so e.g., f(x), g(y), and h(z). Sometimes, we use the convention x =
[x, y]T. Functions depend on coordinates xi, where the index range is a set of integers
∈ ZZ. If a coordinate x has no index, the context tells whether it is a real or an integer.
If two coordinates, say xi and yi have the same index they refer to corresponding
points. Homogeneous coordinates and matrices are boldface upright, e.g., coordinates
x or transformation A. The dimension depends on the context. Stochastical variables
are underscored, e.g., the discrete noise function is m(xi). Sets and names are written
with calligraphic letters, e.g., the set of all pixels in the �rst image is g = {(x, y, g)i, i =
1, ..., I}. We denote the two images g and h as left and right image or �rst and second
image, depending on the context.

2 Image Matching

This section describes the details of the model underlying the matching approach and
the method for estimating the unknown parameters and their uncertainty.

The pipeline for using the matching procedure Sym-LSM is shown in Fig. 1.

2.1 Model

Let the two square image windows g(y) and h(z) be given, see Fig. 2. The coordinates
refer to the centre of the windows. We assume, both windows are noisy observations of
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Sym-LSM

variance of image noise
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Figure 1: Pipeline for image matching. Starting from two images and measured key-

points with position, scale and direction, two corresponding windows are determined as

input to the matching procedure Sym-LSM. Given approximate values and variances for

the image noise it iteratively mutually undistorts the two image windows. After conver-

gence it provides best estimates for the geometric and radiometric transformation between

the two image windows, which allow to derive a point or an a�ne correspondence together

with its covariance matrix

an unknown true underlying signal f(x), with individual geometric distortion, bright-
ness, and contrast. We want to determine the geometric distortion z = A(y) and the
radiometric distortion h = R(g) = pg + q. Classical matching methods, assume the
geometric and radiometric distortion of one of the two windows is zero, e.g., assuming
the reference image is identical to the �rst image g(y) = f(x), with y = x.

We break this asymmetry by placing the unknown signal f(x) in the middle between

5



����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

i

S

ff
-N :N

3

3

3

i

3

xf

B

zh

A=B 2 R=S 2

S

-N :Nh h

yg

-N :Ng g

-N :N

B

Figure 2: Relations between two given square image patches g(y) (blue) and h(h) (green)
and the mean patch f(x) (which is the black within the red region). The two image

patches g and h are related by geometric and radiometric a�nities B and S , respectively.
The correspondence is established by the patch f . Geometrically and radiometrically it

lies in the middle between g and h. Only a region in the overlap of the two patches g and
h mapped to f can be used. We choose the maximum square (black). The observations

are all pixels in g and h which map into the black square of the reference image f .
We assume the reference image f is a restored version of the weighted mean of the two

projected images g and h. The patches g and h may have di�erent sizes. The size of the

unknown signal (black, textured) depends on the sizes of g and h, the approximate a�ne

transformation A = B2 and a border to allow bi-cubic interpolation, and is adapted in

each iteration. The large image in the x -frame is used for generating arti�cial images.

The radiometric transformation R = S2 is splitted in the same way (not shown here).

The size of the windows is given by the ranges of the pixels, e.g., for image f the range

is −Ni : Ni := −Ni, ..., Ni

the observed signals between g and h:

g(y)
B,S−→ f(x)

B,S−→ h(z) such that A = B2 ,R = S2 . (1)

The geometric and the radiometric transformations A and R are split into the sequence
of two identical geometric and radiometric transformations B and S , with the signal
f(x) having the same distortion w.r.t. g(y) as the signal h(z) has w.r.t. f(x). There-
fore the complete geometric transformations A and R result from two times applying
B and S to g(y): hence, we have z = B(B(y)) = B2(y) and h = S(S(g)) = S 2(g).

Assuming a�nities for the geometric and the radiometric distortion, we have the
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following generative model. The geometric and the radiometric models for the two
images are

y 7→ x : x = By + b and x 7→ z : z = Bx+ b (2)

g 7→ f : f = sg + t and f 7→ h : h = sf + t (3)

with

B =

[
b1 b3
b2 b4

]
and b =

[
b5
b6

]
(4)

In the following we collect the eight unknown parameters of the a�nities in the vector

θ =

[
θG
θI

]
with θG = [b1, b2, b3, b4, b5, b6]

T and θI = [s, t]T . (5)

Hence, we have the relation of the geometric transformations B to the compound
transformation A with the six parameters in a

A =

[
A c
0T 1

]
= B

2 with A =

[
a1 a3
a2 a4

]
and c =

[
a5
a6

]
(6)

This model is rigorous only, if

1. the scene surface is planar in a di�erentiable region, and

2. the intensity di�erences result from brightness or contrast changes only.

Hence, the geometric model is adequate, if the surface is smooth and the window size
is not too large. Usually we have window sizes between 15× 15 and 100× 100 pixels,
but larger windows may be �ne in special cases. The radiometric model is adequate if
there are no occlusions or local illumination di�erences, e.g., caused by shadows, when
the images are not taken simultaneously.

We now assume the intensities g and h are noisy and distorted versions of an un-
derlying true signal f with standard deviations σn(g) and σm(h) depending on g and
h. Integrating the geometry and intensity transformation we arrive at the following
model, which is generative, i.e., allows to simulate observed images. Using the radio-
metric transformations (3) we �rst obtain for all pixels j and k in the �rst and the
second image and the corresponding pixels in the reference image f

g(yj) = 1/s · (f (xj)− t) + n(yj) , j = 1, . . . , J (7)

h(zk) = (s f (xk)) + t) +m(zk) , k = 1, . . . , K (8)

With the geometric transformations (2) we thus explicitly have

g(yj) = 1/s ·
(
f
(
Byj + b

)
− t
)

+ n(yj) , j = 1, . . . , J (9)

h(zk) =
(
s f
(
B
−1(zk − b)

)
+ t
)

+m(zk) , k = 1, . . . , K . (10)

The reference image f is assumed to be a smooth function. We represent it using
a regular grid with bi-cubic interpolation, which is necessary, since the coordinates
xj = Byj + b and xk = B

−1(zk − b) are real valued and generally do not fall on the
grid.
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2.2 The estimation

The task is to estimate the eight parameters θ = (θG,θI) for the geometric and the
radiometric transformation and the unknown true signal f from the observed values
g(yj) and h(zk).

The explicit modeling in (9) and (10) allows us to write the problem as nonlinear
Gauss-Markov model with the residuals

nj(θ, f) = gj − 1/s ·
(
f
(
Byj + b

)
− t
)
, D(nj) = σ2

nj
, j = 1, ..., J (11)

mk(θ, f) = hk −
(
s f
(
B
−1(zk − b)

)
+ t
)
, D(mk) = σ2

mk
, k = 1, ..., K (12)

for all pixels gj := g(yj) of g and all pixels hk := h(zk) of h falling into the common
region in f . Maximum likelihood (ML) estimates result from minimizing the weighted
sum of the residuals

Ω(θ, f) =
∑
j

wjn
2
j(θ, f) +

∑
k

wkm
2
k(θ, f) (13)

w.r.t. the unknown distortion parameters θ and the unknown signal f , using proper
weights

wj =
1

σ2
nj

and wk =
1

σ2
nk

(14)

The statistical properties of the noise need to be speci�ed, e.g., assuming the variance
to be signal dependent, thus e.g.,

σ2
n(y) = Vg(g̃(y)) σ2

m(z) = Vh(h̃(z)) . (15)

We prior to the optimization estimate the signal dependent variance functions of the
two images, see Förstner (2000). In addition we take the e�ect of bi-linear interpolation
into account, see (18).

Since, due to the size of f , the number of unknowns is comparably large, say, in the
range between 200 and 10000. Therefore we solve this problem by alternatively �xing
one group of the parameters and solving for the other:

θ̂ | f̂ = argminθΩ(θ, f̂) , (16)

f̂ | θ̂ = argminfΩ(θ̂, f) , (17)

in a block Gauss-Seidel fashion.
Especially, the estimated unknown function f is the weighted mean of the functions

g and h transformed into the coordinate system x of f , which can be calculated pixel
wise as a weighted sum of the two image windows warped into f :

f̂i | θ̂ =
w

(g)
fi
f
(g)
i + w

(h)
fi

f
(h)
i

w
(g)
fi

+ w
(h)
fi

, (18)

with the warped image windows

f
(g)
i := f

(g)
i (xi) = s · g(yi) + t and f

(h)
i := f

(h)
i (xi) = 1/s · (h(zi)− t) (19)
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from (3) and
yi = B

−1(xi − b)) and zi = Bxi + b (20)

from (2). The weights are

w
(g)
fi

=
1

s2 · Vg(g(yi))
and w

(h)
fi

=
s2

Vg(h(zi))
. (21)

Bi-cubic interpolation is used to transfer g(yi) and h(zi) to f(xi), see (19). Observe,
the individual pixels fi of the estimated function function generally do not lie in the
middle of corresponding pixels f (g)

i and f (h)
i .

Bi-cubic interpolation induces additional errors, which we interprete as additional
noise of the observations. Hence, the variances of the observations are assumed to have
two components, one from the imaging process and one, the variances σ2

δg
and σ2

δh
,

from the interpolation process:

σ2
n(y) = Vg(g̃(y)) + 1/s · σ2

δg σ2
m(z) = Vh(h̃(z)) + s σ2

δh
. (22)

For details for the interpolation error see the Appendix, Eq. (129).
As a result of the ML-estimation we obtain: (1) the parameters θ̂, (2) their Σθ̂θ̂,

and (3) the variance factor ,

σ̂2
0 =

Ω(θ̂, f̂)

R
, (23)

where R is the redundancy of the system, i.e., the e�cient number of observations1 Kg+
Kh minus the number of unknown parameters 8+Kf , where we take the approximation
Kf =

√
KgKh for the number of parameters of the grid de�ning f :

R = Kg +Kh − (8 +
√
KgKh) . (24)

If the model holds, the variance factor is Fisher distributed with F (R,∞), thus should
be close to 1. Therefore, it is reasonable to multiply the covariance matrix Σθ̂θ̂ with
the variance factor to arrive at a realistic characterization

Σ̂θ̂θ̂ = σ̂2
0 Σθ̂θ̂ (25)

of the uncertainty of the estimated parameters.
The covariance matrix Σ̂ψ̂ψ̂ of the sought a�nities �nally are derived by variance

propagation from

A(ψ1..6) =

 ψ1 ψ3 ψ5

ψ2 ψ4 ψ6

0 0 1

 = B(θ1..6)
2 =

 θ21 + θ2θ3 θ1θ3 + θ3θ4 θ5 + θ1θ5 + θ3θ6
θ1θ2 + θ2θ4 θ24 + θ2θ3 θ6 + θ2θ5 + θ4θ6

0 0 1


(26)

and

R(ψ7,8) =

[
ψ7 ψ8

0 1

]
= S(θ7,8)

2 =

[
θ27 θ8 + θ7θ8
0 1

]
(27)

1We set Kg := J and Kh := K.
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with the Jacobian

Jψθ =



2 θ1 θ3 θ2 0 0 0 0 0
θ2 θ1 + θ4 0 θ2 0 0 0 0
θ3 0 θ1 + θ4 θ3 0 0 0 0
0 θ3 θ2 2 θ4 0 0 0 0
θ5 0 θ6 0 θ1 + 1 θ3 0 0
0 θ5 0 θ6 θ2 θ4 + 1 0 0
0 0 0 0 0 0 2 θ7 0
0 0 0 0 0 0 θ8 θ7 + 1


, (28)

hence
Σ̂ψ̂ψ̂ = σ̂2

0 Jψθ Σθ̂θ̂ J
T
ψθ . (29)

2.3 Re�ned correspondences

The result of the LSM can be used to provide re�ned correspondences.

2.3.1 Point and a�ne correspondences

Point correspondences follow from (26). For some arbitrary point y0 in the left image
we obtain its correspondent coordinates in the right image from

z = Â y0 + ĉ (30)

with

Â =

[
ψ̂1 ψ̂3

ψ̂2 ψ̂4

]
and ĉ =

[
ψ̂5

ψ̂6

]
. (31)

Thus we have the corresponding point pair

{y0, z} with z = Â y0 + ĉ . (32)

If the centre point in the left image is taken, we have y00 = 0 and the corresponding
point pair is

{y00, z} with y00 = 0 and z = ĉ . (33)

A�ne correspondences are de�ned as a pair {y0, z0} of corresponding keypoints
together with the a�ne transform Â in (26) which � as seen above, see (30) � can be
used to re�ne the position of z0 as in (30) together with the local distortion:{

y0, z0, Â
}
. (34)
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2.3.2 Uncertain point correspondences

The covariance matrix of the estimated parameters can be used to derive a pair of
corresponding points together with their uncertainty. In case we choose the centre
y00 = 0 of the left window as point to be matched we have the following uncertain
correspondence

{y00, z,Σzz} (35)

with

y00 = 0 , z = ĉ =

[
ψ̂5

ψ̂6

]
and Σzz = Σĉĉ =

[
σ2
ψ̂5

σψ̂5
σψ̂6

σψ̂6
σψ̂5

σ2
ψ̂6

]
(36)

Observe, the point in the left image is assumed to be certain, while the point in the
right image carries all uncertainty. The covariance matrix Σââ therefore also provides
the uncertainty of the parallaxes p = z − y00 = c:

Σpp = Σĉĉ . (37)

3 Realization of symmetric least squares matching

In this section we derive the Jacobians in detail.

3.1 Jacobians of g

We start with the di�erential for

gj = 1/θ7 · (f(xj)− θ8) with xj = Byj + b (38)

w.r.t. to the unknown parameters θ. We explicitly have

gj = 1/θ7 · (f(θ1xj + θ3yj + θ5, θ2xj + θ4yj + θ6)− θ8) . (39)

Assuming approximate values θa for the parameters, we have

gj = gaj + dgj = gaj +
∂gj
∂θ

∣∣∣∣
θa

dθ , (40)

with
gaj = 1/θa7 ·

(
f(Bayj + ba)− θa8

)
, (41)

and

∂gj
∂θ

= 1/θ7 · [fx,jxj | fy,jxj | fx,jyj | fy,jyj | fx,j | fy,j | −(fj − θ8)/θ7 | −1] , (42)
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evaluated at the approximate values. This is due to d(1/x) = −1/x2 dx, which yields

dgj = +1/θ7 · fx,j · xj · dθ1 (43)

+1/θ7 · fy,j · xj · dθ2 (44)

+1/θ7 · fx,j · yj · dθ3 (45)

+1/θ7 · fy,j · yj · dθ4 (46)

+1/θ7 · fx,j · dθ5 (47)

+1/θ7 · fy,j · dθ6 (48)

−1/θ27 · (fj − θ8) · dθ7 (49)

−1/θ7 · dθ8 . (50)

3.2 Jacobians of h

For the derivatives of

hk = θ7f(xk)︸ ︷︷ ︸
fk

+ θ8 with xk = B
−1(zk − b) (51)

w.r.t. θ we need some preparation. The Jacobian of the inverse is

dB−1 = −B−1(dB)B−1 with B
−1 =

1

D

[
a4 −a2
−a3 a1

]
and D := |B | . (52)

We in addition use the substitution

x′k = B
−1(zk − b) . (53)

These are the coordinates of the point in f corresponding to zk. Hence, we have � only
referring to the �rst four parameters

d(B−1(zk − b)) = −B−1(dB)B−1(zk − b) (54)

= −B−1(dB)x′k (55)

= −(x′
T
k ⊗ B−1)dθ . (56)

We �nally have

∂f(z′k)

∂θ
=

∂f(z′k)

∂x′k

∂x′k
∂θ

+
∂f(z′k)

∂y′k

∂y′k
∂θ

(57)

= − ∇Tf (x′
T
k ⊗ B−1) (58)

= −(1⊗∇Tf)(x′
T
k ⊗ B−1) (59)

= −x′Tk ⊗∇TfB−1 (60)

Therefore with

∇α =

[
αx
αy

]
= B

−T∇f (61)
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we obtain
∂f(z′k)

∂θ
= −x′Tk ⊗∇Tαk = −[x′kαx,k x′kαy,k y′kαx,k y′kαy,k] . (62)

Finally, the di�erential of h is

dhk = −θ7αx,kx′k dθ1 (63)

−θ7αy,kx′k dθ2 (64)

−θ7αx,ky′k dθ3 (65)

−θ7αy,ky′k dθ4 (66)

−θ7αx,k dθ5 (67)

−θ7αy,k dθ6 (68)

+fk dθ7 (69)

+1 dθ8 (70)

Hene we have the compact form

hk = hak + dhk = hak +
∂hk
∂θ

dθ (71)

with
∂hk
∂θ

= −θ7
[
αx,kxk | αy,kxk | αx,kyk | αy,kyk | αx,k | αy,k | −fkθ−17 | −1

]
, (72)

evaluated at the approximate values θa and

hak = θa7f
(
(Ba)−1(zk − ba)

)
+ θa8 . (73)

3.3 Jacobian X and the linearized observations ∆y

With the abbreviations

xT
gjθ

=
∂gj
∂θ

and xT
hkθ

=
∂hk
∂θ

(74)

the design matrix X = ∂y/∂θ is given by

X =
∂y

∂θ
=

[
X g

X h

]
with X g =


xT
g1θ

. . .
xT
gjθ

. . .
xT
gJθ

 and X h =


xT
h1θ

. . .
xT
hkθ

. . .
xT
hKθ

 (75)

Similarly, we have the residuals or the negative linearized observation

v = −∆y = −
[

∆yg
∆yh

]
=

[
[gaj − gj]
[hak − hk]

]
. (76)

This leads to the normal equation system

N∆̂θ = n with N = X
T
WX and n = X

T
W∆y , (77)

and the updates in the ν-th iteration

θ̂
(ν+1)

= θ̂
(ν)

+ ∆̂θ
(ν)
. (78)
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3.4 The accuracy potential of LSM

The potential of the re�nement of the a�nitiy using LSM, namely the expected pre-
cision of the a�nity for ideal cases, can be easily derived, see Barath et al. (2020b).
This is based on the part of the normal equation matrix N related to the 6 parameters
of the geometric a�nity: N = σ−2n

∑
ij∇fθ(i, j)∇fT

θ (i, j), where the sum is over all
pixels in an N ×N window. If we assume the distortion is zero and f is known, then
the gradient is ∇f = [xfx, yfx, xfy, yfy, fx, fy], see (43) �. Observe, the 2 × 2 matrix
referring to the translation parameters is proportional to the structure tensor of the
patch. We now assume that the gradients in the window have the same variance σ2

f ′

and are mutually uncorrelated. Then the normal equation matrix will be diagonal
leading to the covariance matrix

Σαα =

[
σ2
aI 4 0

0 σ2
pI 3

]
with σa =

√
12

N2

σn
σf ′

and σp =
1

N

σn
σf ′

. (79)

Hence, the standard deviations of the estimated a�nity Â and shift ĉ are below 1%
and 0.1 pixels, except for very small scales. Moreover, for the window size M ×M , the
standard deviations decrease with on average withM2 andM , respectively, see Barath
et al. (2020a)

3.5 The algorithm

The algorithm LSM_62_sym_main.m is given below.
The input, the output and the algorithmic steps are the following:

• The two image windows must be square and have values in the range [0, 255].
They have sizes Mg ×Mg and Mh ×Mh, where the widths Mg and Mh are odd
numbers. Their centres are at [Ng + 1, Ng + 1] and [Nh + 1, Nh + 1] with

Ng =
Mg − 1

2
and Nh =

Mh − 1

2
. (80)

The centres of the image windows � with coordinates x0 and y0 in the image
� are assumed to be given by some keypoint detector, possibly with rounded
coordinates. The a�nity refers to a coordinate systems Sy and Sz parallel to the
image coordinate system located at these centres. The coordinate systems are
right handed, with x =rows and y =columns � in contrast to the Matlab-image
convention.

• The geometric a�nity must not change the sign or the cheirality of the coordinate
system, i.e., must not contain a mirroring or an exchange of the two axes. This
is checked internally. In case the a�nity between the two images is not sign
preserving, one of the images needs to be mirrored before calling the matching
routine.

• The variance functions Vg = Vg(g) and Vh = Vh(h) provide the variances as a
function of the intensities. These function may be derived by some ,blindÂ� noise
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Algorithm 1: Symmetric Least Squares Matching.
[θ̂,Σθ̂θ̂, σ̂

2
0, R] = {Sym_LSM}(g, h, Vg, Vh,A

a,Ra, σs,maxν)
Input: observed image patches {g, h}, must be square with odd width
variance functions Vg, Vh
approximate transformations Aa,Ra

smoothing parameter σs
maximum number of iterations maxν .
Output: estimated parameters {θ̂,Σθ̂θ̂};
variance factor σ̂2

0;
redundancy R.

1 Initial approximate transformations/parameters: Ba = (Aa)1/2, Sa = (Ra)1/2;

2 set iterations ν = 0, approximate parameters θ̂
0

:= θ̂
a
;

3 repeat

4 iteration ν := ν + 1;
5 �nd overlap Nf and observing pixels Y , Z with weights w;

6 determine estimate f̂ of true signal, possibly smoothed with G(σs);

7 determine derivatives f̂x and f̂y;
8 foreach i = {g, h} do
9 warp [f̂ , f̂x, f̂y] into i;
10 forall p ∈ i do
11 determine f̂(p), f̂x(p), f̂x(p);
12 determine ∆y and xiθ;
13 end

14 end

15 build system N∆θ = n with N = X
T
WX , n = X

T
W∆y;

16 determine estimates ∆̂θ and new approximate values θ̂
ν+1

;
17 determine covariance matrix Σθ̂θ̂ = N

−1;
18 determine the redundancy R and the variance factor σ̂2

0;

19 until maxu(||∆̂θu||/σθ̂u) < 0.1 or ν = maxν ;

20 derive transformations Â and R̂ and parameters ψ̂ with Σψ̂ψ̂

estimation procedure, e.g. noise_standard_deviation_estimation.m, which
yields the noise standard deviation as a function of the intensity without requiring
ground truth. Interpolation errors can be taken into account in this function.

• The approximate a�nities for the geometric and the radiometric transformation
are to be given as 3× 3 matrix and 1× 2 vector.

line 1 Internally half of the the approximate transformations is used.

line 2 The eight parameters in θ refer to the six geometric parameters column wise and
the two radiometric parameters.
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line 5 LSM_62_sym_par_find_observation_positions.m: The overlap of the two im-
ages yields a square image f with sizeMf×Mf (odd) with centre at [Nf+1, Nf+1]
being the origin of the coordinate system Sx, where the geometric coordinate
transformations refer to. Again, the half size is Nf = (Mf − 1)/2. Only those
pixels in g and h which fall into the common overlap after transformation into
the coordinate system of f are used. Their coordinates are stored in Y (yi) and
Z(zi). In order to obtain stable results and avoid oscillations, the overlap is not
changed if the parameters change less than 50% of their standard deviations.

line 6 LSM_62_sym_par_estimate_f.m: The estimated signal f̂ in a �rst instance is the
weighted average of g and h, transformed into the coordinate system Sx. It may
be smoothed with a Gaussian having smoothing kernel σs.

7�18 LSM_62_sym_par_estimate_parameters.m.

lines 7 The derivatives f̂x and f̂y are realized by convolutions with Scharr's improved
Sobel operator, see Jähne et al. (1999, Vol. II, p. 223 )

dx =
1

32

 1
0
−1

 [3 10 3] and dy = dTx . (81)

(see also https://en.wikipedia.org/wiki/Sobel_operator, Alternative oper-
ators).

line 9 The three images [f̂ , f̂x, f̂y] are simultaneously warped into the images g and h
to directly access the values in the coordinate systems Sy and Sz.

line 11 All function values and their derivatives are interpolated at the observing pixels,
stored in Y and Z.

line 12 The linearized observation ∆̂y refers to the original pixels in g and h and the
interpolated pixels in f . This allows to determine the Jacobian X for all pixels
stored in Y and Z.

line 16 The parameters are corrected additively.

line 18 The redundancy needs an explanation. We have Kg = |Y | and Kh = |Z obser-
vations in g and h. The unknowns are the eight parameters θ and the unknown
function f . We assume, that the function f can be represented by the geometric
mean ofKg andKh parameters, which re�ects the fact that if the a�nity is a pure
scaling, say by s, the numbers Kg and Kh di�er by s2. Therefore we determine
the redundancy by

R = (Kg +Kh)− (8 +
√
KgKh) . (82)

line 20 The full transformations are determined by squaring the estimated transforma-
tions together with their covariance matrix.
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3.6 Realizing image warpings

Two steps in the algorithm require to warp images:

1. the warping of g and h into f in order to determine the estimate f̂ .

2. the warping of f and its derivatives for building the design matrix X and the
lienarized observations ∆y.

We provide two realizations. They di�er in speed:

1. The �rst realization2 perfoms the warping in a loop over all pixels. Due to the
interpreter-characteristics of Matlab this is slow.

2. The second realization3 performs the warping using the function imtransform.m,
see the blue and green boxes in Fig. 1. The Matlab function imtransform.m

is optimized which leads to lower CPU-times.

A transfer to a language which allows to compile the code, like C, preferably uses the
�rst realization, since only the necessary pixels are handled. Furthermore, the set of
pixels used for matching could be restricted to those, where the gradient is above a,
possibly local, threshold in order to further speed up the algorithm.

4 Checking the implementation

We can check the coherence of the assumed model and the implementation using sim-
ulated data. For this purpose, we start from some ideal, true observation, i.e., image
windows, and add noise according to the assumed model to all pixels. Varying the noise,
we obtain K samples for the observations, and consequently k = 1, ..., K samples for
the estimates.4

We then can perform three checks, which can be realized as statistical tests:

1. The K estimated variance factors σ̂2
0,k should on an average be 1, since if the

observed images are noisy a�nly distorted versions of the true image, the expec-
tation of the variance factors is 1. Deviations of the mean variance factor from 1
indicates, that the assumed model may not hold. If the variance factors do not
di�er from 1 too much, there is no reason to doubt the underlying model. The
mean estimated variance factor follows a F -distributed test statistic F .

2. TheK samples lead toK estimates θk of the unknown parameters. The variation
of these parameters, captured in their empirical covariance matrix should be close
to the theoretical covariance matrix derived from estimation process, which is
determined by variance propagation. The di�erence between the empirical and
the theoretical covariance matrix is measured by a χ2-distributed test statistic

2in LSM_62_sym_estimate_f and LSM_62_sym_estimate_parameters
3in LSM_62_sym_warp_estimate_f and LSM_62_sym_warp_estimate_parameters
4In this context the number K is not to be confused with the number of pixels in the image h.
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X. If this test statistic is not in the rejection region, we have no reason not to
use the theoretical covariance matrix as substitute for the empirical covariance
matrix.

3. The K estimates θk of the unknown parameters should on an average be close
to the given/true parameters speci�ed by the simulation. The bias, i.e., the
di�erence between the mean of the parameters and the true values, leads to a
χ2-distributed test statistic X. If this test statistic is not in the rejection region,
we have no reason to assume the estimates are biased.

The interpretation of the three test statistics assumes the model underlying the
estimation procedure does not contain any approximations and the software imple-
mentation of the estimation model is perfect. Hence, if the tests to not �re, i.e., the
test statistics are not in the rejection reason, we can assume both, possible approxima-
tions in the model are small and the implementation does not contain (severe) errors.
This is the value of these tests.

If, however, the test statistics are in the rejection region, this indicates either the
model is valid only approximately or the implementation contains errors.

In our case, there are several small approximations in the estimation process, e.g.,
the bi-cubic interpolation only leads to approximated interpolated values, since the
true underlying signal is not known. This refers to the estimated signal f as well to
the �rst derivatives, which need to be determined at non-integer coordinates.

The three tests are quite sensitive, i.e., increasing the number of samplesK increases
the probability that the test statistics lie in the rejection region.

The theory for these tests is documented in Förstner and Wrobel (2016, Sect.
4.6.8.1), see App. 8.3.

5 Noise variance estimation

The strength of the estimation procedure is to provide the covariance matrix of the
estimated parameters which indicates the uncertainty of the estimated geometric and
radiometric transformations. In order to this covariance matrix to be realistic, we need
realistic variances for the given observations, i.e., the pixels in the two image windows.

In a �rst approximation we assume the pixels to be statistically independent and the
variance of each pixels is a function of the intensity. This is motivated by the Poisson
statistics of the photon counts which electronically are transferred into intensities. Since
digital cameras generally aim at yielding nicely looking images, the photon counts of
the sensors are further processed. This process usually is not made public by the
producer of cameras.

Therefore we assume the variance of the intensities are some arbitrary smooth
function of the intensity, and estimate this functions. This is done for each channel of
the left and the right image. Since the matching algorithms assumes gray-level images,
we take the average variance of the three channels as su�ciently good approximation
for the variance function.
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The noise variance estimation assumes, that the image contains su�ciently many
pixels where the gradient is small, and estimates the noise variance from the gradients
in these regions. Therefore noise estimation should be based on large enough windows,
possibly larger than those used for matching.

Hence noise variance estimation can be done in two modes:

1. The noise variance functions σ2
n(g) and σ2

n(h) (variables vg and vh) are determined
from one or several images which are characteristic for the matching windows,
and used during the matching process.

2. The noise variance function σ2
n(g) and σ2

n(h) are determined from a large enough
region, e.g., 400× 400 pixels around the matching window, e.g., if the matching
windows are speci�ed by a keypoint in a larger image.

The second alternative is realized in the demos demo_medium.m and demo_image_pairs.m.
The theory for the noise estimation is given in Förstner (2000, Sect. 3), see App.

8.2.

6 Demo routines

We have realized four demo-routines,

1. demo_LSM_small.m for showing the use of the main routine when two image
windows, approximate values and the variacne functions are given,

2. demo_LSM_medium.m for showing the use of the main routine when two image
windows together with two corresponding Lowe-keypoints are given,

3. demo_LSM_simulated.m using simulated data for checking the correctness of the
implementation, and

4. demo_LSM_image_pairs.m using real data with interactively identi�ed correspon-
dences.

Generally the control parameters are set in separate �les and stored in the struct
par.

The two �les are simulated_set_parameters.m and image_pair_set_parameters.m.

6.1 Demo demo_LSM_small.m

The demo routine demo_LSM_small.m shows the most simple form of using of the main
routine, here LSM_62_sym_warp_main.m. The required input data are loaded from �le.
The routine assumes the approximate values for the geometric transformation is given.
Furthermore, the noise variance functions vg and vh are assumed to be provided, e.g.
determined from a representative image using the routine noise_standard_deviation
_estimation.m. The input images, the noise standard deviations and the change of
the estimated image windows are shown in �gures. It is best to start with this demo.
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6.2 Demo demo_LSM_medium.m

The demo routine demo_LSM_medium.m shows how the noise variance estimation is
integrated into the matching process. Again the required input data are loaded from
�le. Here these are the two complete images together with two corresponding Lowe-
keypoints (coordinates, scale, direction). These are used to de�ne the window size
and the approximate values. The noise variance functions vg and vh are determined
automatically from the area around the keypoints. First, the input images with the
keypoints are shown. When zooming into the keypoints the centre and the direction
vector �xing the scale and the direction can be seen. The start and the end of this arrow
can be provided interactively, when setting the parameters par.readX=1 in the routine
image_pair_set_parameters.m, line 34. Further �gures show the selected windows,
the noise standard deviations and the change of the estimated image windows.

6.3 Demo demo_LSM_simulated.m

The demo routine demo_LSM_simulated.m is meant to check the correctness of the
implementation based on simulated data. It allows to monitor the individual itera-
tions for a single case, or to statistically test, whether the resultant parameters and
their covariance matrix are coherent with the theoretical values, the true values of the
parameters and the theoretical covariance matrix derived by the estimation procedure
(Cramer-Rao bound).

6.3.1 Control parameters

We have the following options, which can be set in the main routine:

• Choosing whether the random sequence is pre-speci�ed or randomly initiated:
variable init_rand

• Choosing the number of samples for checking the covariance matrix and for bias:
variable N_samples

• Choosing between three arti�cially generated images and taking a window of a
given image as reference:
variable type_data

The true transformations and the true images are generated. Within a loop, the true
images are perturbed by Gaussian noise and rounded to integers. The N_samples are
used to test for the correctness of the estimation. In addition we have the following
options, which can be set in the routine simulated_set_parameters.m:

• Choosing the approximate window size of the overlapping image:
variable Nh

• Choosing whether a test on swapping the two images is to be performed:
variable test_symmetry
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• Choosing the geometric and radiometric transformation:
variables A_true and R_true

• Choosing the smoothing kernel σs:
variable sigma_smooth

• Choosing the maximum number of iterations:
variable max_iter

• Choosing the signi�cance number S of the statistical tests:
variable S

6.3.2 Output

The output is di�erent, when looking into the individual iterations (N_samples = 1)
or when checking the implementation (N_samples > 9).

The individual iterations. When analysing the individual iterations for a single
sample (N_samples = 1), the command window shows the following information

• Document of the control parameters

• Per iteration the the number of observations, N and the estimated σ̂0 as sigma_0_est.
If σ̂0 is not close to 1, this indicates, the assumed model does not �t to the obser-
vations. The cause of this e�ect cannot be given: it may be, that the scene is not
�at, the windows are too large, the estimated noise variance deviates from the
noise variance in the windows, the shadow situation in both images is di�erent,
and so on.

• The �nal result is characterized by the estimated transformations A_est and
R_est.

• A warning is given, if the maximum number of iterations is reached.

• If the symmetry of the solution is tested, the checks Â · Â−1− I 3 and R̂ · R̂−1− I 2
are provided as check_symmetry_AAi_I and check_symmetry_RRi_I

In addition the following �gures are provided

• the true image f(x) (large black box in Fig. 2)

• the true mean, left, and right images f(x), g(y) and h(z), respectively (the small
black box,and blue and the green box in Fig. 2)

• the noisy image window pair

• for each iteration, left and the right image warped into the x-coordinate system,
i.e., f(y) and f(z) (the part of the blue and the green parallelograms lying within
the small black box in Fig. 2)5.

5The size of the image patches depends on the maximum number of iterations.
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Checking the implementation. When checking the implementation, thus N_samples
> 9, the command window shows the following informations

• Document of the control parameters

• Monitoring the samples

• The number of cases, where the maximum number of iterations is reached is
documented as a warning. These are not used for the following analysis.

• The result of the statistical tests for all 8 parameters and only the 6 geometric
parameters:

1. test whether the mean of the estimated variance factor deviates from 1,

2. test whether the empirical covariance matrix Σ̂θ̂θ̂ of the parameters, derived
from the estimates θ̂, coincides with the theoretical covariance matrix Σθ̂θ̂

from the inverse normal equation matrix,

3. test whether the mean of the estimated parameters is identical to the true
(simulated) value,

see Förstner andWrobel (2016, Chapt. 4.6.8). Test statistics lying in the rejection
region are indicated with *****. Actually, the non-rejection region is given.

• For each parameter, the theoretical and the empirical standard deviation, their
ratio, the mean, the standard deviation, and the maximum bias.

• The average standard deviation of the parameters of the a�nity, the translation
and the radiometric transformation.

• Information about the CPU time.

In addition there are �gures showing a noisy sample image window pair, the histograms
of the estimated variance factors (twice) and the number of iterations.

6.4 Demo demo_LSM_image_pairs.m

The routine is meant to apply the matching routine to real data. The user may choose
to interactively measure the correspondences or read the previously measured data
from �le in folder Images. For each image pair the correspondences are stored in a
mat-�le in the folder Data/ImageCoordinates. Color images are converted to black
and white images.

The user is asked to identify two corresponding points together with a scale σ and
orientation, mimicking the output of the Lowe-detector. The sequence of actions is the
following. For each image

• identify an approximate position in the image,

• a blow-up of the surrounding point is provided,
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• the �rst point to be measured is the centre of the window,

• the second point to be measured provides three times the dominant scale σ and
the direction.

Windows of size 8σ × 8σ around the measured keypoints are used for matching. The
signal dependent noise variances for both images are estimated from a larger neigh-
bourhood (≤ 200× 200 pixels) and used for de�ning the weights of the intensities.

6.5 Error messages and convergence

The following error messages may occur:

• Geometric affinity is not positive definite. The approximate a�nity
must be represented by a positive de�nite 2 × 2 matrix A. No mirroring is
allowed.

• Overlap is too small. The overlap of the two images in each iteration must
lead to a square window of at least 9× 9.

In both cases the output parameter Red of the main-routine is negative.
Convergence is guaranteed if the number N_iter of used iterations is smaller than

the maximum number max_iter of iterations. If the number of used iterations is
identical to the maximum number of iterations, and the maximum relative change

max_ratio= maxu(||∆̂θ
(ν)

u ||/σθ̂) of the parameters in the last iteration is smaller than
1, then convergence can be assumed. Generally, there is no guarantee, that the global
optimum is reached.

7 Timing

The time mainly depends on the size of the images, i.e., the average number N of
pixels in the two images. On an Lenovo X220 with Matlab 2018 we have found the
following approximate relation between the number of pixels and the time per iteration,
depending on whether the warping function of Matlab is used or the design matrix
is built up using loops on the individual pixels:

twarping [ms] = (0.0047 N + 12) [ms] and tloop [ms] = (0.050 N + 6.2) [ms] . (83)

Hence, when using the warping function of Matlab, the computing time takes below
0.05 milliseconds/pixel. With usually 3 iterations, windows of 40× 40 can be matched
in less than 0.1 seconds.

8 Appendix

8.1 Bi-cubic interpolation

Bi-cubic interpolation is required for estimating the true underlying function f from the
observed images g and h. This interpolation induces errors, which we take into account
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when specifying the variances of the observed images. Therefore, we analyse the e�ect
of this interpolation onto a signal and derive the relations between the original and the
interpolated signal as a basis for variance propagation.

8.1.1 1D cubic interpolation

Compact representation. Here we follow Shu (2013). For each value x in the inter-
val [i, i+ 1] the function is a cubic polynomial which satis�es the following conditions

1. The function at i has the values f(i) = bi

2. The function at i+ 1 has the value f(i+ 1) = bi+1.

3. The derivative at i is f ′(i) = (bi+1 − bi−1)/2.

4. The derivative at i+ 1 is f ′(i) = (bi+2 − bi)/2.

Hence, we need the four neighbouring values collected in

b =


bi−1
bi
bi+1

bi+2

 . (84)

We use the substitution

u(x) =


1

(x− i)
(x− i)2
(x− i)3

 with i = bxc . (85)

Then with

M0 =
1

2


0 2 0 0
−1 0 1 0
2 −5 4 −1
−1 3 −3 1

 . (86)

the interpolated value is
f(x) = uT(x)M0b , (87)

as above.
Proof: We use

a =


a0
a1
a2
a3

 . (88)

Then cubic function in the i-th interval [i, i+ 1] can be written as

f (i)(u) = a0 + a1(u− i) + a2(u− i)2 + a3(u− i)3 = uTa (89)
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The derivative is

f (i)u (u) = a1 + 2a2(u− i) + 3a3(u− i)2 = u


a1
2a2
3a23
0

 = uT
Da with D =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


(90)

The four conditions then can be written as
f (i)(i)

f (i)(i+ 1)

f
(i)
u (i)

f
(i)
u (i+ 1)

 =


0 1 0 0
0 0 1 0
−1/2 0 1/2 0
0 −1/2 0 1/2


︸ ︷︷ ︸

U


bi−1
bi
bi+1

bi+2

 =


1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3


︸ ︷︷ ︸

V


a0
a1
a2
a3

 (91)

or compactly

c = Ub = Va . (92)

Therefore

a = V
−1
U = M0b , (93)

which holds since

U = VM0 =


0 1 0 0
0 0 1 0
−1/2 0 1/2 0
0 −1/2 0 1/2

 =
1

2


1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3




0 2 0 0
−1 0 1 0
2 −5 4 −1
−1 3 −3 1

 .
(94)

�
Remark: This de�nition of interpolating cubic splines does not minimize the total cur-

vature of the interpolating function, thus di�ers from the classical de�nition. In contrast to

the classical de�nition, the function values f(u) only depend on four neighbouring points bi
linearly, not on all values of the pro�le. �

Since, with a = M0b the �rst derivative of the polynomial from (90) we obtain the
compact expression for the derivative

f ′(x) = uT(x)M1b (95)

with

M1 = DM0 =
1

2


−1 0 1 0
4 −10 8 −2
−3 9 −9 3
0 0 0 0

 . (96)

Variance of cubic interpolation. We now give the variances of cubic interpola-
tion. This is the uncertainty of the interpolated values assuming the given values are
uncertain and bi-cubic interpolation is the correct model.
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Cubic interpolation at r ∈ [0, 1] requires the vales of g at [−1, 0, 1, 2]. Speci�cally
we obtain the interpolated value

g(r) =
1

2

[(
−r + 2 r2 − r3

)
g−1 (97)

+
(
2− 5 r2 + 3 r3

)
g0 (98)

+
(
r + 4 r2 − 3 r3

)
g1 (99)

+
(
−r2 + r3

)
g2
]
, (100)

see (86). Assuming homogeneous noise variance, we obtain the variance

σ2
n(r) = q2cubic(r)σ

2
n (101)

with
with q2cubic(r) =

1

2

[
2− 9 r2 + 8 r3 + 21 r4 − 30 r5 + 10 r6

]
. (102)

It is symmetric w.r.t. r = 1/2. It reaches its its maximum σ2
x(0) = σ2

n at r = 0 and
r = 1 and its minimum at r = 1/2 min

σ2
n(r = 1/2) =

41

64
σ2
n ≈ 0.641σ2

n . (103)

We may derive an individual variance as a function of the remainder r = x − bxc.
Furtheron, we also can use the average variance, which is

σ2
n =

∫ 1

r=0

σ2
xdr =

57

70
σ2
n ≈ 0.814σ2

n . (104)

Using this mean value, we have an error of approximately 13% in the variance.

8.1.2 2D cubic interpolation

We thus obtain bi-cubic interpolation using the substitution

v(y) =


1
v
v2

v3

 with v = y − byc (105)

and the collection of the 4× 4 neighbouring values in the cell [i, i+ 1]× [j, j + 1]

B =


bi−1,j−1 bi−1,j bi−1,j+1 bi−1,j+2

bi,j−1 bi,j bi,j+1 bi,j+2

bi+1,j−1 bi+1,j bi+1,j+1 bi+1,j+2

bi+2,j−1 bi+2,j bi+2,j+1 bi+2,j+2

 , (106)

We obtain
f(x, y) = uT(x)M0BM

T
0 v(y) . (107)
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The partial derivatives then are

fx(x, y) = uT(x)M1BM
T
0 v(y) and fy(x, y) = uT(x)M0BM

T
1 v(y) (108)

The variance of bi-cubic interpolated values is

σn(x, y) = q2bi-cubic(r, s)σ
2
n with q2bi-cubic(r, s) = q2cubic(r)q

2
cubic(s) . (109)

The average variance is

σ2
n =

∫ 1

r=0

∫ 1

s=0

σ2
n(x, y)dxdy =

57

70

2

σ2
n ≈ 0.663σ2

n . (110)

Interpolation error. We want to determine the interpolation error of a function
f(x, y). Here we assume the data are �xed, i.e., not contaminated by random er-
rors, and the interpolation leads to erroneous results, since the interpolation rule may
be di�erent. Since the true interpolation rule is unknown, we perform two bi-cubic
interpolations, and compare the result with the original function.

We do this in three steps, see Fig. 3:

1. Interpolating the function f at the grid at [i+ 1/2, j + 1/2]:

g(x, y) = fB(x+ 1/2, y + 1/2) . (111)

2. Interpolating the function g at the grid at [i− 1/2, j − 1/2]:

h(x, y) = gB(x− 1/2, y − 1/2) . (112)

3. Determining the error induced by the two interpolations

σ2 = D(h(x, y)− f(x, y)) . (113)

We start from (107) using

u = u(x)− i and v = v(x)− j , (114)

with the special choice for x = +1/2

u+ = x− bxc = +1/2− 0 = 1/2 and v+ = 1/2 . (115)

Hence we have

u =


1

1/2
1/4
1/8

 and v =


1

1/2
1/4
1/8

 (116)

We refer to the 49 values of F (1 : 7, 1 : 7), see Fig. 3 This allows to derive G (1 : 4, 1 : 4)
via

g(i, j) = uT
M0F (i : i+ 3, j : j + 3)MT

0 v . (117)
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Figure 3: Interpolation error. The black 7× 7 grid of f is used to interpolate the green

4× 4 grid of g. This is used to obtain the interpolated value h at the position of f(4, 4).
The di�erence is an indication for double the interpolation error.

Similarly, starting from the interpolated signal g, we can derive the backshifted value

h = uT
M0GM

T
0 v . (118)

The di�erence
δ2(F ) = h(F )− f(4, 4) (119)

is a function of the 49 values of F and represents twice the interpolation error.
We now determine the standard deviation of the interpolation. First, the Jacobian

J2 = ∂δ2/∂F is independent of f and given by

J2 =
1

216



1 −18 63 164 63 −18 1
−18 324 −1134 −2952 −1134 324 −18
63 −1134 3969 10332 3969 −1134 63
164 −2952 10332 −38640 10332 −2952 164
63 −1134 3969 10332 3969 −1134 63
−18 324 −1134 −2952 −1134 324 −18

1 −18 63 164 63 −18 1


(120)

We now assume that the signal values f are correlated, depending on the underlying
power-spectrum. We assume three di�erent cases

1. Gaussian power spectrum. Then the covariance function is

C(d) = exp(−(d/d0)
2/2) . (121)

2. Laplacian power spectrum. Then the covariance function is

C(d) =
1

1 + (d/d0)2
. (122)
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3. The powers spectrum follows the power law, e.g., in the form P (u) ∝ f−2, or
P (u) = 1/(1 + u2)/π. Then the covariance function has the form

C(d) = exp(−d/d0) . (123)

The value d0 controls the smoothness of the signal, larger d0 leads to smoother func-
tions. Via variance propagation we obtain V(δ2(f)). Since this di�erence results from
two interpolations we report

σδ =

√
V(δ2)

2
(124)

in the table. We observe:

d0 P(Gauss) P(Lapl) P(Power)
1.0000 0.1855 0.2888 0.3499
1.5000 0.0643 0.1860 0.2947
2.0000 0.0249 0.1180 0.2583
2.5000 0.0112 0.0754 0.2323
3.0000 0.0056 0.0491 0.2128
3.5000 0.0031 0.0327 0.1974
4.0000 0.0019 0.0222 0.1849

Table 1: Standard deviation σδ of bi-cubic interpolation error for di�erent types of

correlations and correlation widths d0 error

1. the larger d0, i.e., the smoother the signal, the smaller the interpolation error is.

2. As to be expected, signals with Laplacian power spectrum are rougher than those
with Gaussian, and smoother than those with the power spectrum following the
power law.

These results refer to the shift [1/2, 1/2] and depend on the assumed stochastical
model for the signal. For the use in LSM, we do not want a dependency on the
stochastical model for the unknown image function. Since J2 = ∂δ2/∂F , we can use
the matrix J2 as �lter for deriving δ2 from f :

δ2 = J2 ∗ f . (125)

Obviously, the matrix J2 represents a highpass �lter. Hence, we can determine the
individual interpolation errors due to forward and backward shifting with interpola-
tion from an arbitrary signal. This allows us to derive the variance of the maximal
interpolation error from

σ̂2
δ,max = 1

|R |
∑

r∈R δ
2
r . (126)

Since we are interested in the average interpolation error within the region of one pixel,
we determine the mean of the expected variance σ2

δ for all forward and backward shifts
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[x, y], x, y ∈ [0, 1]. Hence we can determine the interpolation variance for a speci�c
window f from

σ̂2
δ = k σ̂2

δ,max with k =
σ2
δ

σ2
δ,max

. (127)

As an example we have the variances of the interpolation error for d0 = 1 and Gaussian
covariance function at the grid points [i, j]/8, i, j ∈ {0, ..., 8} of the unit interval:

[σ2
ij] =

1

1000



0 9 93 247 327 247 93 9 0
9 22 111 267 349 267 111 22 9
93 111 208 368 449 368 208 111 93
247 267 368 527 608 527 368 267 247
327 349 449 608 688 608 449 349 327
247 267 368 527 608 527 368 267 247
93 111 208 368 449 368 208 111 93
9 22 111 267 349 267 111 22 9
0 9 93 247 327 247 93 9 0


(128)

As to be expected, the interpolation error is zero in the corners of the square, thus for
integer coordinates.

Interestingly, the factor k does not vary much for di�erent stochastical models of
f , as Tab. 2 shows.

d0 P(Gauss) P(Lapl) P(Power)
1.0000 0.3482 0.3710 0.3803
1.5000 0.3425 0.3608 0.3793
2.0000 0.3432 0.3536 0.3789
2.5000 0.3446 0.3490 0.3787
3.0000 0.3459 0.3462 0.3786
3.5000 0.3468 0.3445 0.3785
4.0000 0.3476 0.3437 0.3785

Table 2: Ratio k of mean and maximal bi-cubic interpolation error variance for di�erent

stochastical models for a signal.

Therefore, we can use the following variances of the model error of the given data,
e.g., for g in graylevels [0, ..., 255]

σ2
n′
j

= σ2
nj

+ k V̂(J2 ∗ g) with k = 0.38 . (129)

depending on the empirical noise variance σ2
nj

of the intensities of gi and the interpo-
lation error derived from the image window.

8.2 Noise Variance Estimation

The following section is taken from Förstner (2000)
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The noise variance needs to be estimated from images. There are three possible
methods to obtain such estimates:

1. Repeated images: Taking multiple images of the same scene without changing any
parameters yields repeated images. This allows to estimate the noise variance for
each individual pixel independently. This certainly is the optimal method in case
no model for the noise characteristics is available and can be used as a reference.

The method is the only one which can handle the case where there is no model
for the noise characteristics.

The disadvantage of this method is the need to have repeated images, which, e. g.
in image sequences is di�cult to achieve.

2. Images of homogeneous regions: Images of homogeneous regions, thus regions
with piecewise constant or linear signal, allows to estimate the noise variance
from one image alone.

The disadvantage is the requirement for the segmentation of the images into
homogeneous regions. Moreover, it is very di�cult to guarantee the constancy
or linearity of the true intensity image within the homogeneous regions. Small
deviations from de�ciencies in the illumination already jeopardize this method.

The method is only applicable in case the noise only depends on the signal.

3. Images with little texture: Images with a small percentage of textured regions
allow to derive the noise variance from the local gradients or curvature. For the
larger part of the image they can be assumed to have approximately zero mean.
Thus presuming a small percentage of textured regions assumes the expectation
of the gradient or the curvature in the homogeneous regions to be negligible
compared to the noise.

Also this method is only applicable in case the noise characteristics is only de-
pending on the signal.

We want to describe this method in more detail. We �rst discuss the method for
intensity images. The generalization to range images is straight forward.

8.2.1 Estimation of a constant noise variance in intensity Images

The idea is to analyze the histogram of the gradient magnitude of the image in the
area where there are no edges and no texture. The procedure given here is similar to
that proposed in Förstner (1991).

We now need to specify the model for the ideal image f . We assume that a sig-
ni�cant portion H of the image area I is homogeneous, thus shows locally constant
intensity, thus µf = const.. Adopting notions from statistical testing H0 = (r, c) ∈ H
is the null-hypothesis, i. e. the hypothesis a pixel belongs to a homogeneous region.
Thus

E(∇f |H0) = 0 (130)

The other area I−H covers edges and textured areas with signi�cantly larger gradients.
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Then, as to be shown, the histogram of the homogeneoity measure h = |∇g| shows
exponential behavior in its left part representing the noise in the image and arbitrary
behavior in the right part representing the edges:

We assume the intensities to be Gaussian distributed with �xed mean and random
noise. Assuming the simple gradient kernels

(
∂

∂r

)
0

=

 0 1 0
0 0 0
0 −1 0

 (
∂

∂c

)
0

=

 0 0 0
1 0 −1
0 0 0

 (131)

neglecting the scaling factores 1/2, we obtain the gradient

∇g =

[
gr
gc

]
=

[
gr+1,c − gr−1,c
gr,c+1 − gr,c−1

]
(132)

which is Gaussian distributed with covariance matrix

D

(
g
r

g
c

∣∣∣∣H0

)
= σ2

n′ I (133)

Here we use the convention
σ2
n′ = σ2

nr = σ2
nc (134)

which in general is given by

σ2
n′ =

∫
x,y

G2
x;s(x, y)dx dy =

1

8πs4
σ2
n, or σ2

n′ =
∑
r,c

∂2r (r, c)σ
2
n (135)

see Förstner (2000, Eq. (15)). In our case eq. (131) leads to

σ2
n′ = 2σ2

n (136)

The squared gradient magnitude measures the homogeneity h

h∇(r, c) = |∇g(r, c)|2 = g2r(r, c) + g2c (r, c) (137)

It is the sum of two squares of Gaussian variables.
In case the mean µg = µf of g is constant in a small region, thus the model eq.

(130) holds, the squared gradient magnitude is χ2
2 or exponentially distributed with

density function (neglecting the index ∇ for simplicity)

p(h|H0) =
1

µh
e
−
h

µh (138)

and mean
E(h|H0) = µh = 4σ2

n (139)

Therefore we are able to estimate the parameter µh from the empirical density
function in the following way:
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1. Set the iteration index ν = 0. Specify an approximate value σ(0)
n for the noise

standard deviation. Use µ(0)
h = 4σ

2(0)
n as approximate value for the gradient

magnitude.

2. Determine all h(r, c)

3. Take the mean m(ν) of all values h(r, c) < µ
(ν)
h . Its expected value is given by

µ(ν)
m =

∫ µ
(ν)
h

h=0

hp(h|H0)dh∫ µ
(ν)
h

h=0

p(h|H0)dh

=
e− 2

e− 1
µ
(ν)
h (140)

in case the edges or textured areas do not signi�cantly contribute to this mean.
Thus a re�ned estimate µ(ν+1)

h for µh is given by:

µ
(ν+1)
h =

e− 1

e− 2
m(ν) ≈ 2.392m(ν) (141)

4. Set ν = ν + 1 and repeat step 3.

Usually, only two iterations are necessary to achieve convergence. A modi�cation would
be, to take the median of the values h(r, c) as a robust estimate and compensate for
the bias caused 1) by taking the median instead of the mean and 2) by the edge pixels
(see Brügelmann and Förstner (1992)).

This procedure can be applied to every channel in a multi channel image, especially
in color images or in gradient images of range images.

8.2.2 Estimating a general general noise variance function

In case the noise variance is not constant over the whole image area and can be assumed
only to depend on the intensity, we need to parameterize the noise variance function
σ2
n = s(g) in some way.
The easiest possibility is to assume it to be continuous. Then we can partition the

range [0..G] of all intensities g into intervals Iγ, γ = 1..Γ and assume the noise variance
to be constant in each interval.

Thus we repeat the procedure of subsection 8.2.1 for each intensity interval under
the condition g ∈ Iγ.

The choice of the intervals obviously requires some discussion, as it may signi�cantly
in�uence the solution. Taking a set of constant intervals may lead to intervals where
no intensities belong to, even in case one would restrict to the real range [gmin, gmax].
Therefore the intervals should be chosen such that

1. they contain enough intensity values..

The number should be larger than 100 in order to yield precise enough estimates
for the noise variances, which in this case has a relative (internal) accuracy better
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than 10 %. The number of intervals should be chosen in dependency of the
expected roughness of s(g). For aerial images we have made good experiences
with intervals between 1 and 8 grey values on image patches of 300 × 300 pixels
(cf. Waegli (1998)).

2. they contain an equal number of intensities. This may easily be achieved by using
the histogram of the intensities.

8.3 Checking the Implementation of the Estimation

This section has been taken from Förstner and Wrobel (2016, Sect. 4.6.8)

Before using the implementation of an estimation procedure we need to check
whether it yields correct results. This refers to (1) the estimated parameters, (2)
their covariance matrix, and (3) the estimated variance factor. The estimated param-
eters should be unbiased, the covariance matrix should re�ect the sensitivity of the
estimated parameters w.r.t. random perturbations of the observations, characterized
by the stochastical model, especially the covariance matrix of the observations; and
the estimated variance factor should not signi�cantly deviate from 1.

If the implementation is correct, small perturbations in the observations following
the stochastical model should lead to small perturbations in the variance factor and
in the estimated parameters, where they also should follow the predicted covariance
matrix. In the case of larger perturbations, e�ects of the linearization of a nonlinear
model will be visible.

Such an evaluation is based on simulated data, since we then have access to the
true values. This also has the advantage that no access to the source code is necessary;
the check can be based on the output {θ̂,Σθ̂θ̂, σ̂0

2}.
Based on given true values θ̃ for the parameters, a given observational design,

represented by the function f(θ) and a stochastical model D(y) = Σyy, we can simulate
K samples of observations yk from

y
k

= f(θ̃)− vk , k = 1, ..., K v ∼ N (0,Σyy) , (142)

leaving the model {f(θ),Σyy} and the true parameters θ̃ �xed.
The estimation leads to K vectors θ̂k of estimated parameters, to K estimates σ̂2

0k

of the variance factor, and � provided the relative accuracy σy/E(y) of the observations
is below 1% � a su�ciently accurate covariance matrix Σθ̂θ̂. In order to be able to check
the validity of the model a su�ciently large number K of samples is necessary, which
should be larger than the number of elements of the largest covariance matrix which is
to be checked.

In the case of Gaussian noise, the evaluation can be based on well-established
statistical tests. If one of these tests fails, there are good reasons to doubt whether
the program code is a reliable realization of the envisaged estimation model. However,
without further tests there are no clues to the source of the discrepancy; it may be the
implementation of the envisaged model or of the simulation. This may require more
detailed testing.
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We now discuss three tests concerning the noise level, the bias, and the validity of
the theoretical covariance matrix. They should be performed on a set of representative
estimation tasks before using the estimation procedure in a real application.

8.3.1 Correctness of the Estimated Noise Level

The correctness of the estimated noise level can be reduced to check the validity of
the variance factor. The validity of the estimated variance factor can be based on the
mean of the K variance factors derived from the K simulations,

s2 =
1

K

K∑
k=1

σ̂2
0k . (143)

When the implemented model, which is the null hypothesis H0, holds, the test statistic

F =
s2

σ2
0

, F |H0 ∼ FKR,∞ (144)

is Fisher distributed with KR and∞ degrees of freedom, where R is the redundancy of
the estimation task. If for a speci�ed signi�cance level S, the test statistic F > FKR,∞;S,
then the estimated variance factor indicates deviations from the assumed model �
possibly caused by implementation errors. In this case, it might be useful to analyse
the histogram in order to �nd possible sources of the deviations.

Observe, this test does not require the theoretical covariance matrix Σθ̂θ̂ of the
estimated parameters.

8.3.2 Correctness of the Covariance Matrix

To make sure we can rely on the theoretical covariance matrix provided by the imple-
mented estimation procedure, we compare it with the empirical covariance matrix of
the simulation sample. It is given by

Σ̂ =
1

K − 1

K∑
k=1

(θ̂k − m̂θ̂)(θ̂k − m̂θ̂)
T (145)

with the estimated mean

m̂θ̂ =
1

K

K∑
k=1

θ̂k . (146)

When the model holds as implemented and the theoretical precision Σθ̂θ̂ is correct, the
test statistic

X2 = (K − 1)
[
ln
(

det Σθ̂θ̂/ det Σ̂
)
− U + tr

(
Σ̂Σ−1

θ̂θ̂

)]
∼ χ2

U(U+1)/2 (147)

is approximately χ2-distributed with U(U + 1)/2 degrees of freedom (cf. Koch, 1999,
Eq. (2.205)). If for a prespeci�ed signi�cance level S the test statistic X2 is larger
than χ2

U(U+1)/2,S, then there is reason to assume the theoretical covariance matrix, as
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it results from the implemented model, does not re�ect the covariance matrix of θ̂
su�ciently well. In this case, it might be useful to visualize the covariance matrix in
order to identify possible causes for the found deviation.

It is su�cient to take one of them as reference, though the theoretical covariances
of the K samples vary slightly, as the variance propagation is performed not using the
true mean, but the estimated parameters. However, as the relative size of this variation
is a second-order e�ect, it can be neglected.

8.3.3 Bias in the Estimates

To check the unbiasedness of the estimated parameters we determine their empirical
mean.

If the mathematical model holds, the implementation is correct, and higher-order
terms during linearization are negligible; the estimated mean of the estimated param-
eters is Gaussian distributed according to

m̂θ̂ ∼ N
(
θ̃,

1

K
Σθ̂θ̂

)
. (148)

Under these conditions, the test statistic, the Mahalanobis distance,

X = K(m̂θ̂ − θ̃)T Σ−1
θ̂θ̂

(m̂θ̂ − θ̃) ∼ χ2
U , (149)

is χ2-distributed with U degrees of freedom. If X > χ2
U,S for the test statistic and

a prespeci�ed signi�cance level S, we have reasons to reject the hypothesis that the
model, including the approximations, actually holds as implemented. In this case it
might be useful to visualize the bias in order to �nd possible causes for the rejection
of the model.

If these statistical tests are passed on a set of representative simulation data sets,
the statistical tests, when applied to real data, can be used as diagnostic tools for
identifying discrepancies between the data and the assumed mathematical model.
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