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Abstract— Simultaneous Localization and Mapping (SLAM)
systems are fundamental building blocks for any autonomous
robot navigating in unknown environments. The SLAM imple-
mentation heavily depends on the sensor modality employed
on the mobile platform. For this reason, assumptions on
the scene’s structure are often made to maximize estimation
accuracy. This paper presents a novel direct 3D SLAM pipeline
that works independently for RGB-D and LiDAR sensors.
Building upon prior work on multi-cue photometric frame-
to-frame alignment [4], our proposed approach provides an
easy-to-extend and generic SLAM system. Our pipeline requires
only minor adaptations within the projection model to handle
different sensor modalities. We couple a position tracking
system with an appearance-based relocalization mechanism
that handles large loop closures. Loop closures are validated
by the same direct registration algorithm used for odometry
estimation. We present comparative experiments with state-
of-the-art approaches on publicly available benchmarks using
RGB-D cameras and 3D LiDARs. Our system performs well
in heterogeneous datasets compared to other sensor-specific
methods while making no assumptions about the environment.
Finally, we release an open-source C++ implementation of our
system.

I. INTRODUCTION

SLAM is a popular field in robotics, and after roughly
three decades of research, effective solutions are available.
As many sectors rely on SLAM, such as autonomous driving,
augmented reality and space exploration, it still receives
much attention in academia and industry. The advent of
robust machine learning systems allowed the community to
enhance purely geometric maps with semantic information or
replace hard-coded heuristics with data-driven ones. Within
the computer vision community, we have seen photometric
(or direct) approaches used to tackle the SLAM (or Structure
from Motion) problem. The direct techniques address pair-
wise registration by minimizing the pixel-wise error between
image pairs. By not relying on specific features and having
the potential of operating at subpixel resolution on the
entire image, direct approaches do not require explicit data
association and offer the possibility to boost registration ac-
curacy [25]. Whereas these methods have been successfully
used on monocular, stereo, or RGB-D images, their use
on 3D LiDAR data is less prominent—probably due to the
comparably limited vertical resolution relation to cameras.
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Fig. 1: Scenes reconstructed using our pipeline. Top: results of a
self-recorded dataset using Intel Realsense 455 RGB-D. Bottom: us-
ing LiDAR OS0-128 of the cloister sequence from the Newer College
Dataset [37].

Della Corte et al. [4] presented a multi-cue photometric
registration methodology for RGB-D cameras. It is a system
that extends photometric approaches to different projective
models and enhances the robustness by considering addi-
tional cues such as normals and depth or range in the cost
function. Recently released 3D LiDARs sensors offer up to
128 beams, making direct approaches also more attractive for
LiDAR data. In addition, most LiDARs provide intensity or
reflectivity information besides range data. This intensity can
be used to sense a light reflectivity cue from the objects in the
environment. Being able to assemble an intensity-like image
out of a LiDAR scan has unleashed the possibility of using
well-known computer vision appearance-based methods for
place recognition [7].

The dominant paradigm for modern SLAM systems to-
day is graph-based SLAM. A graph-based SLAM system
works by constructing a SLAM graph where each node
represents the sensor position or a landmark, while edges
encode a relative displacement between nodes. Pose-graphs
are a particular case in which only poses are stored in
the graph. These local transformations stored in the edges
are commonly inferred by comparing and matching sensor
readings. This paper investigates the fusion of multi-cue



direct registration with graph-based SLAM.
The main contribution of this paper is a flexible, direct

SLAM pipeline for 3D data. To the best of our knowledge,
our approach is the only open-source SLAM system that
can deal with RGB-D and LiDAR in a unified manner.
We realized a revised version of MPR [4] for computing
the incremental motion of the sensor operating on RGB-
D as well as LiDAR data. We detect loop closures by an
appearance-based algorithm that uses a Binary Search Tree
(BST) structure proposed by Schlegel et al. [24], populated
with binary feature descriptors [23]. All components that
require the solution of an optimization problem rely on the
same framework [8], resulting in a compact implementation.
It is designed for flexibility, hence not optimizing the SLAM
system to a specific sensor. Our system has been tested on
both, RGB-D and LiDAR data, using benchmark datasets.
The accuracy is competitive concerning other sensor-specific
SLAM systems, while it outperforms them if some assump-
tions about the structure of the environment are violated. An
open-source C++ implementation complements this work 1.
Fig. 1 illustrates example maps map built with our system
using RGB-D (top) and LiDAR (bottom).

II. RELATED WORK

3D SLAM has been widely addressed by the computer
vision and robotics community and a large number of valid
SLAM systems are available. Whereas many deserve men-
tion, we can focus only on some seminal works due to limited
space in this section. The available computational resources
limited early approaches to operate offline [20] in fairly
limited environments [34]. After the Kinect sensor became
available about 15 years ago, we observed a revamped inter-
est in RGB-D SLAM. Newcombe et al. [13] were the first
to leverage a dense tracking on a Truncated Signed Distance
Function (TSDF) stored in the GPU while using massively
parallel implementation to render the surface of the local
scene perceived by the sensor. Meanwhile, Segal et al. [26]
proposed a robust variant of Iterative Corresponding Point
(ICP) relying on a point-to-plane metric. These initial meth-
ods addressed the open-loop registration approaches, tracking
the pose of the sensor in a small neighbourhood. The advent
of efficient optimization systems such as iSAM [15] and
g2o [9], made it possible to build an effective full-fledged 3D
SLAM system supporting loop closures and providing an on-
line globally consistent estimate. Novel efficient salient float-
ing point [1] and binary image descriptors [23], paired with
bag-of-words retrieval methods inspired from web search
engines, lead to impressive place recognition approaches [6].
These methods were then employed within visual SLAM
systems, ORB-SLAM by Mur Artal et. al [19] being one
of the most popular ones. The pipeline fully relied on the
stability of features (keypoints), minimizing the reprojection
error of the reconstructed landmarks within the image. In
contrast to these indirect methods, another line of research
aimed at photometric error minimization. Keller et al. [16]

1https://github.com/digiamm/md slam

use projective data matching in a dense model, relying on a
surfel-based map for tracking. Others rely on keyframe-based
technique [17]. As it happened for feature-based approaches,
these works were assembled into full visual SLAM sys-
tems [5]. More recently, BAD-SLAM, a surfel-based direct
Bundle Adjustement (BA) system that combines photometric
and geometric error [25] using feature-based loop closures,
shows that, for well-calibrated data, dense BA outperforms
sparse BA. The accuracy and elegance shown by photometric
approaches lead to further developments such as MPR [4]
aiming at unifying both LiDAR and RGB-D devices into a
unique registration method. Built maps can then be used for
robot navigation [31], even in hazardous environments [29].

In parallel, the community approached LiDAR-based
odometry by seeking alternative representations for the dense
3D point clouds. These include 3D salient features [14], [35],
subsampled clouds [32] or Normal Distributed Transform
(NDT) [28]. Nowadays, LiDAR Odometry and Mapping
(LOAM) is perhaps one of the most popular methods for
LiDAR odometry [35], [36]. It extracts distinct features
corresponding to surfaces and corners, then used to deter-
mine point-to-plane and point-to-line distances to a voxel
grid-based map representation. A ground optimized version
(Lego-LOAM) method has been later proposed [27], as it
leverages the presence of a ground plane in its segmentation
and optimization steps. In contrast to sparse methods, dense
approaches suffer less in a non-structured environment [2].
Compared to RGB-D images, 3D LiDARs offer lower sup-
port for appearance-based place recognition. It is common
for dense LiDAR SLAM systems to attempt a brute force
registration with all neighbourhood clouds to seek loop
closures. Thanks to the typically small drift, this strat-
egy is most successful; however, computational costs grow
significantly in large environments. LiDAR loop closures
have been addressed in different ways compared to RGB-
D. Magnusson et al. proposed an approach suitable for NDT
representations [18]. Röhling et al. [22] investigated the use
of histograms computed directly from the 3D point cloud to
define a measure of the similarity of two scans. Novel types
of descriptors have been investigated, exploiting additional
data gathered by the LiDAR sensor – i.e., light emission of
the beams [3], [10]. However, despite being very attractive,
these descriptors are time-consuming to extract and match,
resulting in a slower system overall. Recent works address
loop-closures detection in a RGB-D fashion, relying on the
visual feature matching extracted from the image obtained
by using the LiDAR intensity channel [7].

Building on top of prior work [4], [7], this paper presents
a flexible and general SLAM approach. It is a direct method
working on RGB-D and 3D LiDAR data alike providing a
unified approach. Our results show that it is competitive with
other sensor-specific systems.

III. BASICS

In this section, we outline some basic concepts used in
multiple modules of our system. The incremental position
tracking (Sec. IV-C), loop closure validation (Sec. IV-D), and



Fig. 2: Illustration of our system. Range Iρ
t and Ii

t images are taken as
input from the system. An optimized trajectory within a map is produced
as output. This system works independently both for RGB-D and LiDAR.

pose-graph solution (Sec. IV-E) build upon Iterative Least-
Squares (ILS). All these modules are built on top of the same
software framework [8]. Our system generalizes on range
sensors by supporting different projective models. In the
remainder, we shortly describe how an ILS solution can be
found and recall projective models for RGB-D and LiDARs.

A. Iterative Optimization

A generic Least Squares problem is captured by the
following equation

x∗ = argmin
x

∑
k

∥ek(xk)∥2Ωk
. (1)

Here ek(xk) is the error of the kth measurement, which
is only influenced by a subset xk ∈ x of the overall state
vector x and ∥ · ∥2Ω represents the squared Mahalonobis
distance. ILS solves the above problem by refining a current
solution x∗. At each iteration they construct a local quadratic
approximation of Eq. (1):∑

k

∥ek(x∗
k +∆xk)∥2Ωk

≃∆xTH∆x+ 2bT∆x+ c. (2)

The quadratic form is obtained by locally linearizing the
vector error term ek(xk) around the current solution, and
assembling the coefficients as follows:

ek(x
∗
k +∆xk) ≃ ek(x

∗
k)︸ ︷︷ ︸

ek

+
∂ek(xk)

∂xk︸ ︷︷ ︸
Jk

∆xk, (3)

b =
∑
k

JT
kΩkek, H =

∑
k

JT
kΩkJk. (4)

The minimum of the quadratic form is then found as the so-
lution ∆x∗ of the linear system H∆x∗ = b. The computed

perturbation is finally applied to the current solution x∗ ←
x∗ +∆x∗. This procedure is iterated until convergence.

Should the state be a smooth manifold X ̸= Rn, the
problem admits a local Euclidean parameterization ∆x on
a chart constructed around X∗. In this case, the Taylor
expansion of Eq. (3) is evaluated at the origin ∆x = 0
of the chart computed around the current estimate X∗. Once
a new perturbation vector ∆x∗ is obtained by solving the
linear system, the estimate is updated through the boxplus
operator X∗ ← X∗ ⊞∆x∗ as reported in [8].

All modules in our system carry on optimization on one or
more variables in SE(3), represented as homogeneous trans-
formation matrices. As perturbation for the optimization, we
use ∆x ∈ R6. This encodes translation and the imaginary
part of the normalized quaternion. We define the ⊞ operator
X′ = X ⊞ ∆x = X · exp(∆x), as a function that applies
the transform obtained from perturbation exp(∆x) to the
transform X. Similarly, we define the operator boxminus ⊟
as the one that calculates the vector perturbation between two
manifold points as ∆x = X′⊟X = log(X′X−1). With exp
and log defining respectively exponential and logarithmic
map at the identity.

B. Projections

A projection is a mapping π : R3 → Γ ⊂ R2 from a
world point p = [x, y, z]T to image coordinates u = [u, v]T .
Knowing the depth or the range ρ of an image point u,
we can calculate the inverse mapping π−1 : Γ × R →
R3, more explicitly p = π−1(u, ρ). We will refer to this
operation as unprojection. In the remainder, we recall the
pinhole projection that models with RGB-D cameras, and
the spherical projection that captures 3D LiDARs.

Pinhole Model: Let K be the camera matrix. Then, the
pinhole projection of a point p is computed as

πp(p) = ϕ(Kp) (5)

K =

fx 0 cx
0 fy cy
0 0 1

 (6)

ϕ(v) =
1

vz

[
vx
vy

]
, (7)

with the intrinsic camera parameters for the focal length fx,
fy and the principle point cx, cy . The function ϕ(v) is the
homogeneous normalization with v = [vx, vy, vz]

T .
Spherical Model: Let K be a camera matrix in the

form of Eq. (6), where fx and fy specify respectively the
resolution of azimuth and elevation and cx and cy their offset
in pixels. The function ψ maps a 3D point to azimuth and
elevation. Thus the spherical projection of a point is given
by

πs(p) = K[1,2]ψ(p) (8)

ψ(v) =

 atan2(vy, vx)

atan2
(
vz,

√
v2x + v2y

)
1

 , (9)



Fig. 3: Cues generated for LiDAR (top) and RGB-D (bottom) images. The
first row/column shows the intensity Ii, the middle shows the range Iρ,
and the last one illustrates the normals encoded by color In. The red pixels
on the intensity cues are invalid measurements (i.e., range not available).

Note that in the spherical model K[1,2] ∈ R2×3, being the
third row in K suppressed.

IV. OUR APPROACH

Our approach relies on a pose-graph to represent the map.
Nodes of the pose-graph store keyframes in the form of
multi-cue image pyramids. Our pipeline takes as input in-
tensity (grayscale) and depth images for RGB-D or intensity
and range images for LiDAR. For compactness, we will
generalize, mentioning only range images. The pyramids are
generated from the inputs images each time a new frame
becomes available. By processing the range information,
our system computes the surface normals and organizes
them into a three-channel image, which is then stacked to
the original input to form a five-channel image. Pyramids
are generated by downscaling this input. This process is
described in Sec. IV-A.

The pyramids are fed to the tracker, which is responsi-
ble for estimating the relative transform between the last
keyframe and the current pyramid through the direct error
minimization strategy summarized in Sec. IV-B. The tracker
is in charge of spawning new keyframes and adding them to
the graph when necessary, as discussed in Sec. IV-C.

Whenever a new keyframe is generated, the loop closure
schema, described in Sec. IV-D, seeks for potential relocal-
ization candidates between the past keyframes by performing
a search in appearance space. Candidate matches are further
pruned by geometric validation and direct refinement. Suc-
cessful loop closures result in the addition of new constraints
in the pose-graph and trigger a complete graph optimization
as detailed in Sec. IV-E.

A. Pyramid Generation

The first step to generate a pyramid from a pair of intensity
I i and range image Iρ consists of extracting the normals.
To calculate the normal at pixel u we unproject the pixels
in the neighborhood U = {u′ : ∥u − u′∥ < τu} whose
radius τu is inversely proportional to the range at the pixel
Iρ(u). The normal nu is the one of the plane that best fits
the unprojected points from the set U . All valid normals are
assembled in a normal image In, so that In(u) = nu.

One level of a pyramid I, therefore, consists of three
images: I i, Iρ and In. Further channels such as curvature
and semantics can easily be embedded into the representation
by adding additional images. In the remainder, we will refer
to one general image in the set I as a cue Ic.

Pyramids are required to extend the basin of convergence
of direct registration methods. This is due to the implicit
data association, which operates only in the neighborhood of
a few pixels. Hence, downscaling the images increases the
convergence basin at the cost of reduced accuracy. However,
the accuracy can be recovered by running the registration
from the coarser to the finest level. Each time a level is
changed, the initial guess of the transformation is set to the
solution of the previous coarser level.

A pyramid P is generated from all the cues I = {Ic}, by
downscaling at user-selected resolutions. In our experiments,
we typically use three scaling levels, each of them half the
resolution of the previous level.

B. Direct Error Minimization

As in direct error minimization approaches, our method
seeks to find the transform X∗ ∈ SE(3) that minimizes the
photometric distance between the two images:

X∗ = argmin
X∈SE(3)

∑
u

∥ Î i(u)− I i

u′︷ ︸︸ ︷(
π
(
Xπ−1 (u, ρ)

))︸ ︷︷ ︸
eu

∥2 (10)

Where eiu denotes the error between corresponding pixels.
The evaluation point u′ of I i is computed by unprojecting
the pixel u, applying the transform X and projecting it back.
To carry out this operation, the range at the pixel ρ = Iρ(u)
needs to be known.

Eq. (10) models classical photometric error minimization
assuming that the cues are not affected by the transform X.
In our case, range and normal are affected by X. Hence,
we need to account for the change in these cues, and we
will do it by introducing a mapping function ζc(X, Îc(u)).
This function calculates the pixel value of the cth cue after
applying the transform X to the original channel value
Îc(u). We can thus rewrite a more general form of Eq. (10)
that accounts for all cues and captures this effect as follows:

X∗ = argmin
X∈SE(3)

∑
c

∑
u

∥ ζc(X, Îc(u))− Ic(u′)︸ ︷︷ ︸
ec
u

∥2Ωc (11)

The squared Mahalanobis distance ∥ · ∥2Ωc is used to weight
the different cues. More details about a general methodology
for direct registration can be found in [4].

While approaching the problem in Eq. (11) with the
ILS method described in Sec. III-A, particular care has to
be taken to the numerical approximations of floating-point
numbers. In particular, since each pixel and cue contribute
to constructing the quadratic form with an independent error
ecu, the summations in Eq. (4) might accumulate millions
of terms. Hence, to lessen the effect of these round-offs,
Eq. (4) has to be computed using a stable algorithm. In
our single-threaded implementation, we use the compensated
summation algoritm [11].



We use multi-cue direct alignment in incremental position
tracking, explained in next section (Sec. IV-C) and in loop
closure refinement and validation (Sec. IV-D).

C. Tracking

This module is in charge of estimating the open-loop
trajectory of the sensor. To this extent, it processes new
pyramids as they become available by determining the rela-
tive transform between the last pyramid Pt, and the current
keyframe Ki. A keyframe stores a global transform Xi, and
a pyramid Pi. The registration algorithm of Sec. IV-B is
used to compute a relative transform Zi,t between the last
two pyramids. Whenever the magnitude of such a transform
exceeds a given threshold or the overlap between Pi and Pt

becomes too small, the tracker spawns a new keyframe Ki+1,
with transform Xi+1 = XiZi,i+1. Furthermore, it adds to the
graph a new constraint between the nodes i and i+ 1, with
transform Zi,i+1, and information matrix Ωi,i+1. The latter is
set to H matrix of the direct registration at the optimum. The
generation of the new keyframe triggers the loop detection
described in the next section. Using keyframes reduces the
drift that would occur when performing subsequent pairwise
registration since the reference frame stays fixed for a longer
time. Potentially, if the sensor hovers at a distance smaller
than the keyframe threshold, all registrations are done against
the same pyramid, and no drift would occur.

D. Loop Detection and Validation

This module is responsible for relocalizing a newly
generated keyframe with respect to previous ones. More
formally, given a query frame Ki, it retrieves a set of
tuples {⟨Kj ,Zi,j ,Ωi,j⟩}, consisting of a past keyframe Kj ,
a transform Zi,j between Ki and Kj and an information
matrix Ωi,j characterizing the uncertainty of the computed
transform. Our system approaches loop closing in multiple
stages. At first, we carry on visual place recognition on
the intensity channels. This approach leverages the results
of previous work [7]. For visual place recognition, we rely
on ORB feature descriptors, extracted from the I i of each
keyframe. Retrieving the most similar frame to the current
one results in looking for the images in the database having
the closest descriptor “close” to the one of the current image.
To efficiently conduct this search, we use a hamming dis-
tance embedding binary search tree (HBST) [24], a tree-like
structure that allows for descriptor search and insertion in
logarithmic time by exploiting particular properties of binary
descriptors. A match from HBST also returns a set of pairs
of corresponding points between the matching keypoints.
Having the depth and unprojecting the points, we can carry
on a straightforward RANSAC registration. Finally, each
candidate match is subject to direct refinement (Sec. IV-B).
This step enhances the accuracy and it provides information
matrices on the same scale as the ones generated by the
tracker. The above strategy is applied independently to RGB-
D or LiDAR data. These surviving pairs {⟨Kj ,Zi,j ,Ωi,j⟩},
constitute potential loop closing constraints to be added
to the graph. However, to handle environments with large

Fig. 4: Qualitative RGB-D reconstructions showing the global consistency
produced by our pipeline. Data has been self-recorded with an Intel
Realsense 455.

sensor aliasing, we introduced a further check to preserve
topological consistency. Whenever a loop closure is found,
we carry on a direct registration between all neighbours that
would result after accepting the closure. If the resulting error
is within certain bounds, the closure is finally added to the
graph, and a global optimization is triggered.

E. Pose-graph Optimization

The goal of this module is to retrieve a configuration of
the keyframes in the space that is maximally consistent with
the incremental constraints introduced by the tracker and the
loop closing constraints by the loop detector. A pose-graph
is a special case of a factor graph [8], [15]. The nodes of
the graph are the keyframe poses X = {Xi}i=1:N , while
the constraints encode the relative transformations between
the connected keyframes, together with their uncertainty
{⟨Zi,j ,Ωi,j⟩}. Optimizing a factor graph consists in solving
the following optimization problem:

X∗ = argmin
X∈SE(3)N

∑
i,j

∥X−1
i Xj ⊟ Zi,j︸ ︷︷ ︸

ei,j

∥2Ωi,j
(12)

Here, the error ei,j is the difference between predicted
displacement X−1

i Xj and result of the direct alignment
Zi,j . The total perturbation vector ∆x ∈ R6N results from
stacking all variable perturbations {∆xi}.

V. EXPERIMENTAL EVALUATION

In this section, we report the results of our pipeline on
different public benchmark datasets. To the best of our
knowledge, our approach is the only open-source SLAM
system that can deal with RGB-D and LiDAR in a unified
manner. Therefore, to evaluate our system, we compare with



Fig. 5: MD-SLAM map on long sequence from Newer College Dataset [21]
aligned with Google Earth.

state-of-the-art SLAM packages developed specifically for
each of these sensor types. For RGB-D we consider DVO-
SLAM [17] and ElasticFusion [33] as direct approaches and
ORB-SLAM2 [19] as indirect representative. For LiDAR we
compare against LeGO-LOAM [27] as feature-based and
SuMA [2] representing the dense category. We specify that
our pipeline is purely photometric namely, not IMU or
odometry source have been used as assistance. To run the
experiments, we used a PC with an Intel Core i7-7700K
CPU @ 4.20GHz and 16GB of RAM. Since this work is
focused on SLAM, we perform our quantitative evaluation
using the RMSE on the absolute trajectory error (ATE) with
SE(3) alignment. The alignment for the metric is computed
by using the Horn method [12], and the timestamps are used
to determine the associations. Then, we calculate the RMSE
of the translational differences between all matched poses.

The tracking module dominates the runtime of our ap-
proach since loop closures are detected and validated asyn-
chronously within another thread. Hence, we report the aver-
age frequency at which the tracker runs for each sensor. At
the core of the tracker, we have the photometric registration
algorithm, whose computation is proportional to the size
of the images. Despite our current implementation of the
registration algorithm being single-threaded, on the PC used
to run the experiments, the tracking system runs at 5 Hz for
the sensor with the highest resolution, while it can operate
online on the sensor with the lowest resolution.

A. RGB-D Results

We conducted several experiments with RGB-D sensor.
Qualitative analysis have been done using self-recorded data
and are shown in Fig. 4. As public benchmarks we used
the TUM-RGB-D [30] and the ETH3D [25]. The TUM
RGB-D dataset contains multiple real datasets captured with
handheld Xbox Kinect. A rolling shutter camera provides
RGB data. Further, the camera’s depth and color streams are
not synchronized. Every sequence accompanies an accurate
groundtruth trajectory obtained with an external motion
capture system. ETH3D benchmark is acquired with global
shutter cameras and accurate active stereo depth. Color and
depth images are synchronized. We select several indoor
sequences for which ground-truth, computed by external

fr1/desk fr1/desk2 fr2/desk

DVO-SLAM 0.021 0.046 0.017
ElasticFusion 0.020 0.048 0.071
ORB-SLAM2 0.016 0.022 0.009
Ours 0.041 0.064 0.057

TABLE I: ATE RMSE [m] results on TUM RGB-D datasets, recorded with
non-synchronous depth using a rolling shutter camera.

table3 table4 table7 cables1 plant2 planar2

DVO-SLAM 0.008 0.018 0.007 0.004 0.002 0.002
ElasticFusion − 0.012 − 0.018 0.017 0.011
ORB-SLAM2 0.007 0.008 0.010 0.007 0.003 0.005
Ours 0.021 0.022 0.036 0.015 0.001 0.001

TABLE II: ATE RMSE [m] on ETH3D, recorded with global shutter camera
and synchronous streams. ElasticFusion fails in table3 and table7.

motion capture, is available.
On these datasets, we compare with DVO-SLAM, Elas-

ticFusion and ORB-SLAM2. These three approaches are
representative of different classes of SLAM algorithms.
Tab. I shows the results on the TUM RGB-D datasets,
while Tab. II presents the outcome on the ETH3D datasets.
DVO SLAM implements a mixed geometry-based and di-
rect registration. Internally the alignment between pairs of
keyframes is obtained by jointly minimizing point-to-plane
and photometric residuals. This is similar to ElasticFusion,
whose estimate consists of a mesh model of the environment
and the current sensor location instead of the trajectory. In
contrast to these two approaches, ORB-SLAM2 implements
a traditional visual SLAM pipeline, where a local map of
landmarks around the RGB-D sensor is constructed from
ORB features. This map is constantly optimized as the
camera moves by performing local BA. Loop closures are
detected through DBoW2 [6] and a global optimization on
a Sim(3) pose-graph to enforce global consistency is used.

The TUM dataset provides images 640×480 pixels, while
ETH3D 740×460 pixels. From these images, we compute a
3 level pyramid with scales 1/2, 1/4, and 1/8. Our system
runs respectively at 5.5 and 5 Hz at these resolutions.

In Tab. I we can see that ORB-SLAM2 clearly outperforms
all other pipelines. DVO-SLAM and ElasticFusion provide
comparable results, and our approach is the worst in terms of
accuracy. Yet, the largest error is 6.4 cm, which results in a
usable map. As stated before, this dataset is subject to rolling
shutter and asynchronous depth effects. ORB-SLAM2, being
feature-based, is less sensitive to these phenomena. DVO-
SLAM and ElasticFusion explicitly model these effects. Our
approach does not attempt to address these issues since it
would render the whole pipeline less consistent between
different sensing modalities.

Tab. II presents the results on the ETH3D benchmark. In
this case, our performances are on par with other methods,
since intensity and depth are synchronous, and the camera
is global shutter.

These results highlight the strength and weaknesses of
a purely direct approach not supported by any geometric



(a) quad-easy (b) stairs

Fig. 6: Some scenes from Newer College dataset reconstructed by our
system.

association. While being compact, it suffers from unmodeled
effects and requires a considerable overlap between subse-
quent frames.

B. 3D LiDAR Results

We conducted different experiments on public Li-
DAR benchmarks to show the performances of our SLAM
implementation. For the LiDAR we use the Newer College
Dataset [21], [37] recorded at 10 Hz with two models of
Ouster LiDARs: OS1 and OS0. We conducted our evaluation
on the long, cloister, quad-easy and stairs sequences. The
OS1 has 64 vertical beams. We selected the long sequence
that lasts approximately 45 minutes. It consists of multiple
loops with viewpoint changes between buildings and a park.

The other three shorter sequences are recorded with the
OS0, which has 128 vertical beams. The LiDAR quad-
easy sequence contains four loops that explore quad, cloister
mixes outdoor and indoor scenes while stairs is purely indoor
and based on vertical motion through different floors.

OS0-128 OS1-64

cloister quad stairs long

LeGO-LOAM 0.20 0.09 3.20 1.30
SuMA 3.34 1.74 0.67 -
Ours 0.36 0.25 0.34 1.74

TABLE III: ATE RMSE [m] results of all benchmarked approaches on the
Newer College Dataset. SuMA fails on long sequence.

Qualitative analysis have been performed to show the
results obtained by our pipeline. Fig. 6 illustrates some re-
constructions obtained with MD-SLAM from Newer College
sequences. Fig. 5 and Fig. 7 show the global consistency of
our estimate on long sequence.

Quantitatively, we compare against LeGO-LOAM and
SuMA. These represent two different classes of LiDAR al-
gorithms, respectively sparse and dense. Tab. III summarizes
the results of the comparison. LeGO-LOAM is currently one
of the most accurate LiDAR SLAM pipelines and represents
a sparse class of LiDAR algorithms. In contrast to our

Fig. 7: Alignment of our estimate with the groundtruth in long sequence of
Newer College. The color bar on the right shows the translational error [m]
over the whole trajectory.

approach, LeGO-LOAM is a pure geometric feature-based
frame-to-model LiDAR SLAM work, where the optimization
on roll, yaw and z-axis (pointing up) is decoupled from
the planar parameters. SuMa constructs a surfel-based map
and estimates the changes in the sensor’s pose by exploiting
the projective data association in a frame-to-model or in a
frame-to-frame fashion. For both the pipelines loop closures
are handled through ICP. Being ground optimized, LeGO-
LOAM shows impressive results mainly in chunks where
ground occupies most of the scene, yet our approach provides
competitive accuracy. The situation becomes challenging for
LeGO-LOAM when its assumptions are violated, such as in
the stairs sequence. In this case, our pipeline is the most
accurate since it does not impose any particular structure on
the environment being mapped. SuMA performances are the
worst in terms of accuracy. We tried this pipeline both in a
frame-to-frame and frame-to-model mode. The one reported
in Tab. III represents SuMA frame-to-frame that always
outperforms the frame-to-model on these datasets.

We use the OS1 to produce images of 64 × 1024 pixels
while the OS0 to produce images of 128×1024 pixels. Since
the horizontal resolution is much larger than the vertical one,
to balance the aspect ratio for direct registration, initially,
we downscale the horizontal resolution by 1/2 for OS0 and
by 1/4 for OS1. Our approach generates a pyramid with
the following scales: 1, 1/2 and 1/4. With these settings,
our system operates at around 10 Hz on the OS0 and at
approximately 20 Hz on the OS1, making it suitable for
online estimation.

VI. CONCLUSION

In this paper, we presented a direct SLAM system that
operates both with RGB-D and LiDAR sensors. These two
heterogeneous sensor modalities are addressed exclusively
by changing the projection models. To the best of our
knowledge, our approach is the only open-source SLAM
system that can deal with RGB-D and LiDAR in a unified
manner. All optimization components in our system are



dealt with a single ILS solver, resulting in highly compact
code. Comparative experiments show that our generic
method can compete with sensor-specific state-of-the-art
approaches. Being purely photometric and without making
any assumption of the environment, our pipeline shows
consistent results on different types of datasets. We release
our software as a C++ open-source package. The current
single-thread implementation can operate online with small
image sizes. Thanks to the inherent data-separation of
direct registration, we envision a GPU implementation
of our approach that seamlessly scales to high resolution
while matching real-time requirements. Furthermore, the
independence of the internal representation from the sensor
source paves the way to SLAM systems that operate jointly
on both RGB-D and LiDAR.
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