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Abstract— The ability to build maps is a key functionality
for the majority of mobile robots. A central ingredient to
most mapping systems is the registration or alignment of the
recorded sensor data. In this paper, we present a general
methodology for photometric registration that can deal with
multiple different cues. We provide examples for registering
RGBD as well as 3D LIDAR data. In contrast to popular
point cloud registration approaches such as ICP our method
does not rely on explicit data association and exploits multiple
modalities such as raw range and image data streams. Color,
depth, and normal information are handled in an uniform
manner and the registration is obtained by minimizing the
pixel-wise difference between two multi-channel images. We
developed a flexible and general framework and implemented
our approach inside that framework. We also released our
implementation as open source C++ code. The experiments
show that our approach allows for an accurate registration of
the sensor data without requiring an explicit data association or
model-specific adaptations to datasets or sensors. Our approach
exploits the different cues in a natural and consistent way and
the registration can be done at framerate for a typical range
or imaging sensor.

I. INTRODUCTION

Most mobile robots need to estimate a map of their sur-
roundings in order to navigate. Thus, the task of registering
the incoming sensor data such as images or point clouds is
an important building block for most autonomous systems.
This functionality is also of key importance for estimating
the relative motion of a robot through incremental match-
ing, often called visual odometry or laser-based odometry,
depending on the used sensing modality.

We investigate the problem of registering data from typical
robotic sensors such as the Kinect camera, a 3D LIDAR such
as a Velodyne laser scanner, or similar in a general way
without requiring special, sensor-specific adaptations. More
concretely our goal is to provide a general methodology to
find the transformation that maximizes the overlap between
two measurements taken from the same scene.

To this extent, ICP is a popular strategy for registering
point clouds. It proceeds by iteratively alternating two steps:
data association and transform estimation. Data association
computes pairs of corresponding points in the two clouds,
while transform estimation calculates an isometry that ap-
plied to one of the two clouds minimizes the distance
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Fig. 1: Our approach realized an effective multi-cue registration
without requiring features nor an explicit data association between
features or 3D points.

between corresponding points. The weakness of ICP lies
in the correspondence search as this step usually relies on
heuristics and may introduce biases or gross errors.

Over time, effective variants of ICP that exploit the struc-
ture of the scene have been proposed [12], [14]. Using the
structure either by relying on a point-to-plane or a plane to
plane metric has been shown to improve the performance of
the algorithm, especially in indoor/structured environments.
Kerl et al. [9] recently proposed Dense Visual Odometry
(DVO), an approach to register RGBD images by minimizing
the photometric distance. The idea is to find the location of
a camera within a scene such that the image captured at
that location is as close as possible to the measured RGBD
image. By exploiting the image gradients, DVO does not



require explicit data association, and it is able to achieve
unprecedented accuracy. The main shortcoming of DVO is
that it is restricted to the use of depth/intensity image pairs. In
its original formulation DVO does not naturally incorporate
additional structural cues such as normals or curvature. The
use of these cues has been shown to substantially enlarge
the basin of convergence and reduce the number of iterations
needed to find a solution.

The main contribution of this paper is a general method-
ology to photometric sensor data registration that works
on cues such as color, depth, and normal information in a
unified way and does not require an explicit data association
between features, 3D points, or surfaces. The approach
is inspired by DVO [9]. It does not require any feature
extraction, and operates directly on the image or image-
like data obtained from a sensor such as the Kinect or a
3D LIDAR. A key property of our approach is an easy-to-
extend, mathematically sound framework for registration that
does not need to make an explicit data association between
sensor readings or the 3D model. In contrast, it solves the
registration problem as a minimization in the color, depth,
and normal data exploiting projections of the sensor data. It
can be seen as a generalization of DVO to handle arbitrary
cues and multiple sensing modalities in a flexible way. An
example of this registration is illustrated in Fig. 1. We
provide an open source C++ implementation that follows the
descriptions in this paper, which is also available at arXiv1,
closely at:

https://gitlab.com/srrg-software/srrg_mpr

In sum, we make the following key claims: Our approach
(i) is a general methodology for photometric registration that
works transparently with different sensor cues and avoids an
explicit point-to-point or point-to-surface data association,
(ii) can accurately register typical sensor cues such as RGBD
Kinect or LIDAR data exploiting the color, depth, and nor-
mal information, (iii) robustly computes the transformation
between view points under realistic disturbances of the initial
guess, and (iv) can be executed fast enough to allow for
online processing of the sensor data without sensor-specific
optimizations. These four claims are backed up through the
experimental evaluation.

II. RELATED WORK

There exist a large number of different registration ap-
proaches. One general way for aligning 3D point clouds
is the ICP algorithm, which has often been used in the
context of range data. Popular approaches use ICP together
with point-to-point or point-to-plane correspondences [5]
and generalized variants such as GICP [12]. There exist
approaches exploiting normal information such as NICP [15]
as well as global approaches [19] that use branch-and-bound
technique coupled with standard ICP formulation. A popular
and effective approach is LOAM [20], [21] by Zhang and
Singh that extracts distinct surface and corner features from

1Note that arXiv papers do not count as prior work as confirmed by the
ICRA 2018 Program Chair Peter Corke.

the point cloud and determine plane-to-point and line-to-
point distances to a voxel-grid representation.

Traditional approaches to visual odometry track sparse
features in monocular images or stereo pair to estimate
the relative orientation of the images [3], [11]. To deal
with outliers in the data association between feature points,
most approaches use RANSAC to identify inlier and outlier
points, combined with a tracking over multiple frames. Other
approaches rely on a prior for the motion estimate, such
as constant motion model. In presence of external sensors,
such as an IMU, the measurements can be filtered with the
achieved motion estimate [1], [22].

Another group of approaches exploits the depth data from
RGBD streams to register scans and build dense models
of the scene. KinectFusion by Newcombe et al. [10], for
example, largely impacted the RGBD SLAM developments
over the last 6 years. Similar to Newcombe et al., the
approach of Keller et al. [6] uses projective data association
for RGBD SLAM in a dense model and relies on a surfel-
based map [18] for tracking. Similar approaches exploit the
RGBD streams by defining signed distance fields where a
direct voxel-based difference is computed to perform the
motion estimation [16], making intense use of both CPU and
GPU parallelization. ICP is a frequently used approach for
RGBD data and special variants for denser depth images have
been proposed [14], [15]. Recently, the team around Daniel
Cremers has proposed semi-dense approaches using image
data [2] to solve the visual odometry and SLAM problem as
well as dense approaches for featureless visual odometry for
RGBD data [7], [8], [9].

In this paper we propose a general and easy-to-implement
methodology for multi-cue photometric registration of 3D
point clouds that can be seen as an extension of DVO.
In contrast to nearly all previous works, our method has
been designed without considering a specific sensor, nor a
particular cue, as we aim to apply the same exact algorithm
in several contexts.

III. APPROACH

Our approach seeks to register either two observations
with respect to each other or an observation against a 3D
model. The sensor observations are assumed to have a 2D
representation I such as an image from a regular camera,
a range image from a depth camera or a 3D LIDAR, or
a similar type of observation. Such a 2D measurement
can be seen as an image, where each pixel in the image
plane contains one or more channels, i.e., I = {Ic} with
the channel index c. Examples of such channels are light
intensity, depth information, or surface normals.

We aim at registering the current observation to a model,
for which 3D information is available in form of a point
cloud. This model can be a given 3D model, or a point
cloud estimated from the previous observation(s). We refer
to it as the model cloud M = {p}. In addition to the 3D
coordinates, each point p ∈M can also store multiple cues
such as light intensity or a surface normal.

https://gitlab.com/srrg-software/srrg_mpr


Fig. 2: Key ingredients of our framework and links to the corresponding subsections.

The following subsections describe the key ingredients of
our approach, see also Fig. 2 for an illustration. Sec. III-
A presents the overall error minimization formulation that
uses three functions, which are sensor and/or cue-specific
and must be implemented by the user when adding a new
cue or a different sensor, everything else is handled by our
framework. These functions are:
• Sec. III-B: Cue-specific mapping function mapc() that

describes if and how a cue is transformed through a
coordinate transformation.

• Sec. III-C: Projection model proj() of the sensor, e.g.,
the pinhole camera model

• Sec. III-E: The corresponding Jacobians

A. Photometric Error Minimization
As in photometric error minimization approaches, our

method seeks to iteratively minimize the pixel-wise dif-
ference between the current image I and the predicted
image Î(M,X). Here, Î(M,X) is a multi-channel image
obtained by projecting the model M onto a virtual camera
located at a pose PX, where X is a transformation matrix
that transforms the points of M from the global into the
local camera coordinate system. More formally, our method
seeks to minimize

X∗ = argmin
X

∑
u,v,c

‖ Î
c

u,v(M,X)− Ic
u,v︸ ︷︷ ︸

ec
u,v(M,X)

‖2Ωc (1)

= argmin
X

∑
u,v,c

ec
u,v(M,X)

>
Ωc ec

u,v(M,X) (2)

where ec
u,v(M,X) denotes an error at a pixel loca-

tion (u v)
T between the predicted value Î

c

u,v(M,X) and
the measured one Ic

u,v for a particular channel index c. The
matrix Ω = diag({Ωc}) is a block diagonal information
matrix used to weight the different channels of the image.

Let Mvis be the subset of points from the model M that
are visible from the image plane of image I. In our current
implementation, we construct this set using the depth buffer
as explained in details in Sec. III-D. Given Mvis, we can
rewrite the sum in Eq. (1) using the points:

X∗ = argmin
X

∑
c,p∈Mvis

∥∥ec
p(X)>

∥∥2

Ωc . (3)

Each point-wise error term ec
p(X)> is the difference between

a predicted and a measured channel evaluated at the pixel
where the point p projects onto given the model of the sensor.
We expand the point-wise error as follows:

ec
p(X) = mapc(X,p)− Ic

proj(X p). (4)

The term proj(X p) = (u v)
T is a function that computes

the image coordinates obtained by projecting the point p
onto a camera located at PX. The function mapc(X,p)

computes the value of channel Î
c
(M,X) evaluated at the

pixel proj(X p). During a first read, that may sound confus-
ing as the default cue light intensity is not affected by the
transformation and are simply copied from the information
in the point p. Other cues, however, such as normals or
depth values are viewpoint-dependent and therefore change
depending on the given camera pose PX.

Our approach minimizes Eq. (3) by using a regularized
least squares optimization procedure. Combining Eq. (3)
with Eq. (4) and adding a per-point regularization weight wp,
we can rewrite Eq. (1) in terms of points as

X∗ = argmin
X

∑
p∈Mvis

wp

∑
c

‖mapc(X,p)−Ic
proj(X p)‖2Ωc , (5)

where the regularization weight wp decreases with the
magnitude of the channel errors ec

p(X) and is used to
reject outliers. The minimization is performed using a local
perturbation:

∆x = (∆tx,∆ty,∆tz︸ ︷︷ ︸
∆t

,∆αx,∆αy,∆αz︸ ︷︷ ︸
∆α

)>, (6)

consisting of a translation vector ∆t and three Euler angles
∆α. The vector ∆x is a minimal representation for the
transformation matrix X and Eq. (3) can be reduced to a
quadratic problem in ∆x by computing the Taylor expansion
of Eq. (4) around a null perturbation as follows:

ec
p(X⊕∆x) ' ec

p(X) +
∂ec

p(X⊕ x)

∂x

∣∣∣∣
x=0

∆x (7)

= ec
p(X)︸ ︷︷ ︸
ĕc
p

+ Jc
p(X)︸ ︷︷ ︸
J̆c
p

∆x = ĕc
p + J̆c

p∆x (8)

The ⊕ operator is the transform composition defined as

X⊕∆x =

[
∆R ∆t
0 1

]
︸ ︷︷ ︸

∆x

[
R t
0 1

]
︸ ︷︷ ︸

X

, (9)

with ∆R obtained by chaining rotations along the three axes:

∆R = Rx(∆αx)Ry(∆αy)Rz(∆αz). (10)

Thus, the quadratic approximation of Eq. (5) becomes

∆x∗ = argmin
∆x

∑
p∈Mvis

wp

∑
c∈C
‖ĕc

p + J̆c
p∆x‖2Ωc , (11)



and ∆x∗ can be found by solving a linear system of the
form H∆x∗ = b with the term H and b given by

H =
∑

p∈Mvis

wp

∑
c∈C

J̆c>
p ΩcJ̆c

p (12)

b =
∑

p∈Mvis

wp

∑
c∈C

J̆c>
p Ωcĕc

p. (13)

To limit the magnitude of the perturbation between itera-
tions and thus enforcing a smoother convergence, we solve
a damped linear system of the form

(H + λI) ∆x∗ = b. (14)

Solving Eq. (14) yields a perturbation ∆x∗ that minimizes
the quadratic problem. A new solution X∗ is found by
applying ∆x∗ to the previous solution X as

X∗ = X⊕∆x∗. (15)

This subsection provided the overall minimization ap-
proach and in the remainder of this section, we describe the
parts of our approach in detail. These details are the cue-
specific mapping function and the projection model. Further-
more, we explain how to use the depth buffer to construct
Mvis and finally discuss the structure of the Jacobians and
a pyramidal approach to the optimization.

B. Cue Mapping Function
In contrast to traditional ICP approaches but similar to

DVO [9], our method does not use an explicit point-to-
point data association procedure. In addition to that, by
abstracting the cues into channels of the image, our method
can be extended to deal with an arbitrary number of cues
and can benefit from all the available information. In our
current implementation, we consider the following cues:
intensity, depth, range and normals. Note that additional cues
or further sensor information can be added easily without
changing the framework.

In this subsection, we present the mapping func-
tions mapc() for the used cues intensity, depth, range, and
normals that depend on X. We will use R and t as defined
in Eq. (9) as the rotation matrix and translation vector of X.

Intensity: The intensity is not a geometric property of
the point and thus it is not affected by the transformation
defined through X, therefore the intensity value of a point
intensity(p) is considered invariant under the map function,
i.e.,

mapintensity(X,p) = intensity(p). (16)

Depth: The depth cue of a point is the z-component of
the point transformed by X, i.e.,

mapdepth(X,p) =
[
0 0 1

]
(Rp + t). (17)

Range: The range cue of a point is the norm of the point
transformed by X, i.e.,

maprange(X,p) = ‖Rp + t‖. (18)

Normals: The normal cue of a point p is the normal vector
specified by n(p) at the point rotated by X, i.e.,

mapnormal(X,p) = R n(p). (19)

C. Projection Models
The projection function maps a 3D point from the model

cloud onto a coordinate in a 2D image. In our implementa-
tion, we provide two projective models, the pinhole and the
spherical model. The pinhole model better captures the char-
acteristics of imaging sensors such as RGBD cameras while
the spherical model is entailed to 3D LIDARs. In the paper,
we describe these two models but note that the framework
easily extends to other types of projection functions such as
the cylindrical model. Only a single function needs to be
overridden.

Pinhole Model: Let K be the camera matrix. Then, the
pinhole projection of a point p is computed as

projpinhole(p) = π(K p) (20)

K =

fx 0 cx
0 fy cy
0 0 1

 (21)

π(v) =
1

vz

[
vx
vy

]
, (22)

with the intrinsic camera parameters for the focal length fx,
fy and the principle point cx, cy . The function π(v) is the
homogeneous normalization.

Spherical Model: Let K be a camera matrix in the
form of Eq. (21), where fx and fy specify respectively the
resolution of azimuth and elevation and cx and cy their offset
in pixels. Then, the spherical projection of a point is given
by

projspherical(p) = K

 atan2(py,px)

atan2
(
pz,
√

p2
x + p2

y

)
1

(23)

D. Computing Visible Points using Depth and Range Buffers
As stated in the beginning of Sec. III, Eq. (1) and Eq. (3)

are equivalent if there are no occlusions or self-occlusions.
This condition can be satisfied by removing all points from
the model M that would be occluded after applying the
projection. At each iteration, the estimated position X of
the cloud with respect to the sensor changes, thus before
computing the projection, we need to transform the model
according to X. Subsequently, we project each transformed
point onto an image and for each pixel in the image, we
preserve only the point that is the closest one to the observer
according to the chosen projective model. The outcome of
the overall procedure is a subset of the transformed points
in the model that are visible from the origin.

The reduced set of non-occluded points can be effectively
computed as follows. Let D be a 2D array of the size of the
image, each cell (u v)

T of D contains a depth or range value
referred to as D(u, v) and a model point p̂ that generated
this depth or range reading. First, all depths D(u, v) are
initialized with ∞. Then, we iterate over all points p ∈ M
and perform the following computations:
• Let p′ = Rp + t be the transformed point and let

(u, v) = proj(p′) be the image coordinates of the point
after the projection.



• If using the pinhole projective model, let d′ = p′z be
the z component of the transformed point. If using the
spherical model, let d′ = ‖p′‖ be its norm.

• We compare the range value D(u, v) previously stored
in D with the range computed for the current point d′. If
the latter is smaller than the former, we replace D(u, v)
with d′ and p̂ with p′.

At the end of the procedure, D contains all points of the
model visible from the origin, i.e. are not occluded. These
points form the Mvis cloud.

E. Structure of the Jacobian

In this section, we highlight a modular structure of the
Jacobian Jc

p(X), which is key for an efficient computation.
By applying the chain rule to the right summand of Eq. (7),
we obtain the following form for the Jacobian Jc

p(X):

J
c
p(X) =

Jc
map︷ ︸︸ ︷

∂mapc(X⊕ x,p)

∂x

∣∣∣∣
x=0

(24)

−
∂Ic

u,v

∂u, v

∣∣∣∣
u,v=proj(Xp)︸ ︷︷ ︸
Jc
img

∂proj(p̆)

∂p̆

∣∣∣∣
p̆=Xp︸ ︷︷ ︸

Jproj

∂(X⊕ x) p

∂x

∣∣∣∣
x=0︸ ︷︷ ︸

Jtf

Thus, the Jacobian can be compactly written as:

Jc
p(X) = Jc

map − Jc
img Jproj Jtf (25)

Note that the multiplicative nature of Eq. (25) in this for-
mulation allows us to easily compute the overall Jacobian
from its individual components Jc

map, Jc
img, Jproj and Jtf .

In particular, Jtf does not depend on the channel, nor on
the projective model. Similarly, Jproj depends only on the
projective model. The image Jacobian Jc

img can be computed
directly from the image through a convolution for obtaining
image gradients. Note that to increase the precision, we
recommend to compute Jc

img with subpixel precision through
bilinear interpolation during the optimization. Only the Ja-
cobian Jc

map of the function map() depends on the specific
cue. For completeness, we report all the Jacobians for all
projective models and all channels in Appendix I.

F. Hierarchical Approach

A central challenge for photometric minimization ap-
proaches is the choice of the resolution in order to optimize
the trade-off between the size of the convergence basin and
the accuracy of the solution. A high image resolution has
a positive effect on the accuracy of the solution given the
initial guess lies in the convergence basin. This is due to the
fact that more measurements are taken into account and the
precision of the typical sensor is exploited in a better way. A
high resolution, however, often comes at the cost of reducing
the convergence basin since the iterative minimization can
get stuck more easily in a local minimum arising from
a high frequency spectral component of the image. Thus,
using lower resolution, the photometric approach exhibits an
increased convergence basin at the cost of a lower precision.

In our implementation, we leverage on these considera-
tions by using a pyramidal approach. The optimization is

performed at different resolutions, starting from low to high
resolutions. After convergence on one level, the optimization
switches to the next level by increasing the resolution. The
optimization on the higher resolution uses the solution from
the lower level as the initial guess. Our termination criterion
for the optimization on each level of this resolution pyramid
analyzes the evolution of the value of the objective function
in Eq. (3), normalized by the number of inliers. We stop
the iterations at one level if this value does not decrease
between two subsequent iterations or if a maximum number
of iterations is reached.

G. Brief Summary

As can be seen from the overall Sec. III, we provide a
general methodology that builds upon photometric registra-
tion and works flexibly with different sensor cues. All that
is needed for integrating a new sensor cue is an implemen-
tation of the mapping function mapc(), the projection func-
tion proj(), and the Jacobians (see Appendix). Furthermore,
our method does not require any explicit point-to-point or
point-to-surface correspondence as the optimization performs
the error minimization exploiting the projections. Thus, the
first of our four claims made in the introduction is backed
up through Sec. III.

IV. EXPERIMENTAL EVALUATION

Our method is a general and efficient framework for multi-
cue sensor data registration. We release a C++ implemen-
tation that closely follows the description in this paper as
open source. We implemented our general methodology for
the RGBD Kinect sensor and 3D laser scanners using the
following cues: intensity, depth, range, and surface normal
and thus the evaluation is done based on these sensors and
cues. Note, that further cues or similar sensors can be added
easily.

The evaluation presented here is designed to support the
remaining three claims made in the introduction. To simplify
comparisons, we conducted our experiments on publicly
available datasets:
• TUM benchmark suite [17], acquired with RGBD sen-

sors in office-like environments.
• S. Gennaro Catacomb dataset [13], recorded with a

RobotEye 3D LIDAR in a catacomb environment.
• KITTI dataset [4], where we used the Velodyne HDL-

64E data recorded in large scale environments.
Furthermore, we provide comparisons to state-of-the art
approaches such as DVO or NICP for each dataset. The
outcomes of these comparisons highlight that our method,
although being general and relatively easy to implement,
yields to an accuracy that is comparable to those achieved
by systems dedicated to specific setups.

A. Registration Performance and Comparison

This section is designed to show that our method can
accurately register typical sensor cues such as RGBD Kinect
or LIDAR data exploiting the color, depth, and normal
information and that it can do so under realistic disturbances



TABLE I: Relative Pose Error on TUM desk sequences.

Approach / setup fr1/desk2 fr1/desk fr2/desk fr2/person
[m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s] [m/s] [deg/s]

DVO (as reported in paper) 0.0687 - 0.0491 - 0.0188 - 0.0345 -
DVO (implementation) 0.0700 5.14 0.0580 3.83 0.0318 1.15 0.0360 0.99
Our approach 0.0920 5.14 0.0614 3.32 0.0365 1.65 0.0481 1.45
DVO (without intensity cue) - - - - - - - -
Our approach (without intensity cue) 0.1073 5.20 0.0788 4.15 0.0382 1.71 0.0479 1.43

of the initial guess. The first experiment is designed to
evaluate the accuracy of our approach. To do that, we rely
on RGBD data and provide a comparison to Dense Visual
Odometry (DVO) [9], which is the current state-of-the-art
method and the one most closely related to this paper. We
used the three available channels, namely the intensity, the
depth and the normals.

We performed the comparison on the four desk sequences
also used in [9] and report the relative pose error (RPE). For
DVO, we used the author’s open source implementation2. For
completeness, we report in Tab. I both, the results presented
in the paper [9] and the ones we obtained with the open
source implementation. All values have been computed using
the evaluation script provided with the TUM benchmark
suite. Our approach provides slightly lower but overall com-
parable performance than DVO yielding a low relative error
both, in terms of translation and rotation, respectively in the
order of 10−2 m/s and 1 deg/s, see Tab. I.

We conducted a second experiment with the TUM dataset,
where we removed the intensity channel, using only the depth
images and the normals derived from the depth image to
perform the registration. By exploiting the normal cue, our
approach provides results consistent to the ones obtained
when using also the intensity, see last two rows on Tab. I. In
contrast to that, DVO was unable to perform the registration
without the intensity channel. This is coherent with the
operating conditions which DVO was designed for and at the
same time supports the general applicability of our method
to different cues.

The third experiment aims at showing the effectiveness
of our algorithm when dealing with dense 3D laser data. We
used a dataset acquired in the S. Gennaro catacomb of Naples
within the EU project ROVINA. The data was recorded with
a Ocular RobotEye RE05 3D laser scanner using a maximum
range of 30 m. Since the dataset does not provide ground
truth, we performed a qualitative comparison with Normal
ICP (NICP) by Serafin et al. [15].

The 3D point clouds have been recorded in a stop and go
fashion at an average distance of about 1.7 m between two
consecutive scans. The robot has tracks and this provides
a rather poor odometry information. This odometry is used
as the initial guess for the optimization and the same guess
was also used for NICP, that is used for comparisons in this
experiment. To perform the registration we use both, range
channel and the normals channel computed on the range
image. There is no intensity information available for this
dataset.

2https://github.com/tum-vision/dvo_slam
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Inconsistency

Fig. 3: S. Gennaro catacombs dataset, recorded with a RobotEye
3D LIDAR. Direct comparison of our approach with Normal ICP
(NICP). The latter shows a registration inconsistency in the middle
of the trajectory, that results in the NICP trajectory to be shorter
than the ground truth.
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Fig. 4: Illustration of the error reduction while registering two
images of the S. Gennaro dataset (best viewed on screen).
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Fig. 5: Ground truth comparison in the sequence 10 of the KITTI
dataset.
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Fig. 6: Illustration of the error before and after registering two
images of the KITTI dataset. The images are obtained by projecting
the Velodyne HDL-64 clouds using a spherical projector (best
viewed on screen).
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Fig. 3 illustrates the two reconstructions of one of the
sequences of the S. Gennaro catacombs, while Fig. 4 shows
the error of a pairwise registration before and after the
alignment. Thanks to the abstraction provided by the map
function and the projective model (see Sec. III-B and III-C),
our method can deal with both RGBD data and 3D scans in
a uniform manner.

To further stress the generality of our method, we con-
ducted an additional experiment using exactly the same
code and parameters using the sequence 10 of the KITTI
dataset [4] where we used the 3D scans obtained with a
Velodyne HDL-64E LIDAR. As in the previous experiment,
the range and normals cues are used. Fig. 6 illustrates the
error reduction after the registration of two scans.

As shown in Fig. 5, our output reflects the ground truth
with an error of the 6.1% of the trajectory length, with
a rotational error of 0.023 deg/m. Albeit reasonable, this
accuracy is still below the one provided by approaches
dedicated to the sparse LIDAR such as LOAM [21]. We
see the reason of this lower performance in the quantization
effects affecting the projections when the clouds are sparse.
We plan to address this aspect in future versions by using
anisotropic projection functions. Moreover, approaches such
as LOAM take advantage from edge and planar surface
features, whose usage particularly helps in cases of structure
lack.

B. Runtime

The next set of experiments is designed to support the
last claim, namely that our approach can be executed fast
enough to allow for online processing of the sensor data
without sensor-specific optimizations. Thus, we report in the
remainder of this section the runtime statistics. We performed
all the presented experiments on two different computers
running Ubuntu 16.04. One is a laptop equipped with a i7-
3630MQ CPU with 2.40 GHz and the second one is a desktop
computer equipped with a i7-7700K CPU with 4.20 GHz.
Our software runs on a single core and in a single thread.

Tab. II summarizes the runtime results for the different
configurations presented above. We provide the average
results obtained in the four TUM desk sequences for the
Kinect RGBD and depth-only configurations, as well as for
the two LIDAR setups. As listed in the table, our method can
be executed fast and in an online fashion. On a mobile i7
CPU, we achieve average frame rates of 20 Hz with Kinect
RGBD sensor and 14 Hz with the Velodyne HDL-64E data,
while we achieve average of 30 Hz and 23 Hz on an i7
desktop computer for the same configurations. Furthermore
note, that our approach has a small memory footprint. For the
whole registration procedure of the three datasets, we always
required less than 200 MB (Kinect: 178 MB; RobotEye:
140 MB; HDL-64E: 198 MB).

Note that recording a single RobotEye point clouds takes
around 30 s, i.e. the robot stops, records, and then restarts.
Thus, this setup may not be considered for real-time usage.
In contrast, the Velodyne clouds of the KITTI dataset have

TABLE II: Average image processing runtime with std. deviation

Sensor laptop computer desktop computer
i7-3630MQ 2.4 GHz i7-7700K 4.2 GHz

Kinect 49 ms ± 0.8 ms ≈ 20.1 Hz 28 ms ± 0.2 ms ≈ 35.5 Hz
RobotEye 324 ms ± 1.5 ms ≈ 3.1 Hz 189 ms ± 0.9 ms ≈ 5.2 Hz
HDL-64E 67 ms ± 0.3 ms ≈ 14.8 Hz 39 ms ± 0.1 ms ≈ 25.2 Hz

been recorded at an average frame rate of 10 Hz and the data
can be processed online.

In summary, our evaluation suggests that our method
provides competitive results in several different scenarios
compared to approaches dedicated to a specific setup. At the
same time, our method is fast enough for online processing
and has small memory demands, proportional to the number
of channels in use. Thus, we conclude that we supported all
our four claims made in the introduction.

V. CONCLUSION

In this paper, we presented a general framework for
registering sensor data such as RGBD or 3D LIDAR data.
Our approach extends dense visual odometry and operates
on the different available cues such as color image, depth,
and normal information. Our method avoids an explicit data
association and operates by direct error minimization using
projections of the sensor data or model. This allows us to
successfully register data effectively without tricky, sensor-
specific adaptations. We implemented and evaluated our
approach on different datasets and provided comparisons to
other existing techniques and supported all claims made in
this paper. The experiments suggest that we can accurately
register RGBD and 3D data under realistic configurations and
that the computations can be executed at the sensor framerate
on a regular notebook computer using a single core.

APPENDIX I
JACOBIANS

In this section, we focus in more detail on each part of
the Jacobian in Eq. (25) and specify all terms used of this
equation.

A. Jacobian of Transformation
We are using the v2t(·) operator to denote the conversion

between X and ∆x as defined in Eq. (6). By applying the
v2t(·) operator, we obtain the standard Jacobian:

Jtf =
∂v2t(x) p̆

∂x

∣∣∣∣
x=0

=
[
I −p̆×

]
(26)

where I is a 3× 3 identity matrix and p̆× denotes the skew-
symmetric matrix formed from p̆.

B. Map Function Jacobian
The map function Jacobian Jc

map differs for each of the
considered channels c. In this work, we use the following
channels: intensity, depth, range and normals. In the follow-
ing we present the Jacobian derivation of each of these cues.

Intensity: The map function does not affect the intensity,
thus we have:

∂mapintensity(X⊕ x,p)

∂x

∣∣∣∣
x=0

= 0 (27)



Depth: We have already computed the derivative of the
transformation function Jtf in Eq. (26). For RGBD sensors,
the depth is computed as the z coordinate of the transformed
point p. Thus, the map Jacobian for the depth channel is the
third row of Jtf

∂mapdepth(X⊕ x,p)

∂x

∣∣∣∣
x=0

=
[
0 0 1

]
· Jtf (28)

Range: When using a 3D LIDAR, the range r = ‖p‖
replaces the depth. Thus, the Jacobian Jrange

map is computed as

Jrange
map =

∂maprange(X⊕ x,p)

∂x

∣∣∣∣
x=0

=
∂range(v2t(x) Xp)

∂x

∣∣∣∣
x=0

=
∂range(p̆)

∂p̆

∣∣∣∣
p̆=Xp

∂v2t(x) Xp

∂x

∣∣∣∣
x=0

=
∂range(p̆)

∂p̆

∣∣∣∣
p̆=Xp

Jtf

=
1

norm(p)

[
px py pz

]
· Jtf (29)

Normals: The mapping function applied to the normals
cue depends on the rotational part of X and the Jacobian is
given by

∂mapnormal(X⊕ x,p)

∂x

∣∣∣∣
x=0

=
[
0 −[R n(p)]×

]
, (30)

where R denotes a rotation matrix, n(p) the normal defined
for the point p, and [R n(p)]× the skew-symmetric matrix.

C. Image Jacobian

The Image Jacobian Jc
img is numerically computed for

each channel c with pixel-wise derivation:

∂Ic
u,v

∂u
=

1

2

(
Ic
u+1,v − Ic

u−1,v

)
∂Ic

u,v

∂v
=

1

2

(
Ic
u,v+1 − Ic

u,v−1

)
(31)

D. Jacobian of Projection

The Jacobian of the projection depends directly on the
projection function Jproj = ∂proj(p)

∂p . In the following, we
provide details for the two models given in Sec. III-C.

Pinhole Model: We derive the projection Jacobian for a
pinhole camera from Eq. (22):

∂proj(p)

∂p
=

∂π(p′)

∂p′

∣∣∣∣
p′=K p

∂K p

∂p
(32)

=
1

z2

[
z 0 −x
0 z −y

] ∣∣∣∣
(x,y,z)=K p

K

Spherical Model: The projection function for the range
sensors is defined in Eq. (23). We make use of the substitu-
tion a2 =

√
p2
x + p2

y , and define the Jacobian as follows:

∂proj(p)

∂p
=


1
a2

2

[
−py px 0

]
1

a2
2+p2

z

[
−px pz

a2
−py pz

a2
a2

][
0 0 0

]
 K (33)
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