
Zero-Shot Semantic Segmentation for Robots in Agriculture

Yue Linn Chong Lucas Nunes Federico Magistri Xingguang Zhong Jens Behley Cyrill Stachniss

Fig. 1: Our approach can segment crop plants and weeds without labels. We leverage foundation models SAM [17] and BioCLIP [34] to
build a bag of features representing crop plants. During inference, we extract plant features and compare them with the bag of features.
Plant features with low similarity to the bag of features are inferred as weeds.

Abstract— Conventional crop production, which is essential
for providing food, feed, fuel, and fiber for our society, relies
heavily on harmful herbicides to control weeds. Instead, agri-
cultural robots could remove weeds more sustainably. However,
these robots require a generalizable perception system that can
locate weeds, enabling automatic removal of weeds. Specifically,
they need to perform crop-weed semantic segmentation, which
locates and distinguishes between the crop and the weed
plants with pixel-level resolution. However, most existing crop-
weed semantic segmentation methods are fully supervised and
require expensive and labor-intensive pixel-wise labeling of the
training data. To avoid the costly labeling process, we address
the problem of unsupervised crop-weed segmentation in this
paper. Unlike previous approaches, we leverage the idea that
weeds are “weird” plants that occur less frequently and are
highly variable in appearance, and reframe the problem as an
anomaly segmentation problem. We propose an approach to
segment weeds as anomalous plants by categorizing plants in the
feature space of a pretrained foundation model. Our approach
curates a bag-of-features representation of crop features and
models the manifold of crop plants as hyperspheres. During
inference, it classifies vegetation segments of the image with
features within this manifold as crop plants and all other plants
as weeds. Our experiments show that our zero-shot anomaly
segmentation method can perform crop-weed segmentation on
several datasets from real crop fields.

All authors are with the Center for Robotics, University of Bonn,
Germany. Cyrill Stachniss is additionally with the Lamarr Institute for
Machine Learning and Artificial Intelligence, Germany.

This work has partially been funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy, EXC-2070 – 390732324 – PhenoRob.

I. INTRODUCTION

Current agricultural practices uniformly spray herbicides
on the field to combat weeds. This non-targeted application
of herbicides harms our environment and its biodiversity.
Precision farming robots can reduce herbicide usage without
compromising yield by applying herbicides only to selected
areas or specific individual weed plants or with mechanical
weeding [7], [24]. The first step towards automated weeding
with agricultural robots is to locate plants and distinguish
between crops and weeds in RGB images captured of the
field. To estimate the amount of required herbicide and
precise application, we require the localization of the weeds
to be at pixel-level, i.e., semantic segmentation of weed and
crop. While fully-supervised methods [20], [39] can per-
form crop-weed segmentation well, they require in-domain
labels for training. Obtaining these labels can be very costly
since pixel-wise manual labeling is time-consuming [39].
Additionally, agricultural applications encompass diverse do-
mains, with diverse soil and lighting conditions, different
robot platforms, i.e., unmanned aerial vehicles (UAVs) and
unmanned ground vehicles (UGVs), and various crop appear-
ances, and domain shifts degrade models’ performance [36].
Scaling manual labeling to cover the diverse agricultural
domains is not cost-effective. Thus, in this paper, we aim
to avoid relying on fully supervised methods for automatic
weeding and move towards a zero-shot setting, thereby
eliminating the need for additional labeling requirements.



The main contribution of this paper is twofold: firstly,
we propose a zero-shot approach for crop-weed semantic
segmentation by identifying the crops as the most com-
monly occurring plant and the weeds as “weird”-looking
plants. Secondly, our approach is also able to perform
zero-shot vegetation segmentation that generalizes well
across multiple datasets, by leveraging the segment anything
model (SAM) [17]. Fig. 1 shows the overview of our
approach. Our code is available at https://github.
com/PRBonn/WeedsAreWeird.

In summary, we make these key claims: Our approach
is able to (i) perform crop-weed semantic segmentation on
real-world UAV and UGV datasets without additional labels,
and (ii) perform vegetation segmentation using our novel
prompting method, which generalizes well across multiple
UAV and UGV datasets. These claims are backed up by our
experimental evaluation in Sec. IV.

II. RELATED WORK

A. Semantic Segmentation

For crop-weed semantic segmentation, fully supervised
approaches using convolutional neural networks (CNNs)
perform well [20], [39] and are the de facto standard
solution for most robotic vision tasks in crop fields [42],
[43]. However, these fully supervised methods require pixel-
wise annotation, which is labor-intensive to acquire. Several
works proposed different approaches to reduce the amount
of labeling effort required. Some works leverage the use
of geometric heuristics, specifically utilizing the crop-row
structure to automatically identify crops [20], [38]. However,
these geometric structures are not necessarily present in all
scenarios and are particularly lacking where the camera field
of view is small [2]. Moreover, some weeds grow within
crop rows, which breaks this heuristic. Different research
directions involve the use of unsupervised domain adapta-
tion approaches [6], [10], [22] or training networks with
only partial labels [37], but these directions, albeit showing
promising results, still require labeled images. In contrast,
our approach does not require any in-domain labeling and
instead leverages pretrained foundation models. In line with
existing methods that leverage foundation models [19], [29],
we refer to our approach as a zero-shot method.

Similar to prior work by Fawakherji et al. [12], our
modular approach performs intermediate vegetation segmen-
tation by classifying each pixel as plant or soil. There are
many heuristic vegetation segmentation algorithms [4], [13],
[16], [21], [23], [25], [26], [35], [40]. While segmenting
plants may sound trivial, vegetation segmentation can be
challenging due to the diversity of plants and environmental
conditions such as lighting and soil texture. At the very
least, it requires tuning new hyperparameters for each do-
main, which causes most work to fail in previously unseen
domains.

In our work, we present a domain-generalized zero-shot
method leveraging SAM [17]. Unlike the work by Carraro et
al. [8], which also utilizes SAM for vegetation annotation,
we employ a different sampling and filtering method to

overcome the over-segmentation of soil. Moreover, our zero-
shot semantic segmentation approach differs from existing
work [29], which also leverages SAM [17] and CLIP [28].
In particular, existing work Grounded SAM [29] relies on
text prompting, but text prompts are ill-defined in the crop-
weed segmentation task. Instead, our approach leverages
information from the dataset in its entirety to define common
plants as crops and weird plants as weeds.

B. Unsupervised Anomaly Segmentation

Our work is closely related to approaches used for un-
supervised anomaly detection and segmentation, typical of
agriculture inspection [1], [9], industrial inspection [11], and
medical imaging [5], [41]. However, these use cases have few
examples of anomalies but many examples of normal data,
i.e., data without anomalies present. The anomalies are also
diverse and may differ greatly in visual appearance. These
two conditions are similar to our use case for crop-weed
segmentation. Normalities are synonymous with our crops,
and the weeds are the anomalies that are visually diverse
and fewer in number. While the paradigm is considered
unsupervised, such methods are actually weakly supervised
since a set of images had to be classified as normal for
training.

There are two broad categories of unsupervised anomaly
segmentation methods: (1) feature-based filtering, (2) genera-
tive modeling, and (3) semantic segmentation-adjacent meth-
ods. Methods from the first category, such as PaDiM [11],
maintain a bag of features from normal images, with features
obtained using a pre-trained encoder. During testing, we de-
tect the anomalies by identifying features that are dissimilar
to the known normal bag of features. Our approach falls into
this category.

Methods from the second category [3], [5], [41] learn the
distribution of the normal data using a generative model to
conditionally generate normal data. At test time, regions with
high reconstruction error are predicted as anomalous regions
since the methods were not trained to generate anomalies.

While there are many similarities between our work and
unsupervised anomaly segmentation approaches, there are
two key differences. Firstly, weeds are present in the dataset,
and we cannot easily curate a dataset without weeds. We
propose that these weeds are noise in the training data. There
are a few unsupervised anomaly segmentation works that
account for noisy training data. SoftPatch [15] addresses
noisy anomaly segmentation training data by weighing down
anomalous features in the training data. Secondly, data from
the agriculture domain is more complex than other anomaly
segmentation datasets because of the relatively uncontrolled
real-world crop field, and the location of the plants occurring
anywhere in the image.

We propose our method with these differences in mind.
Similar to SoftPatch [15], we first extract features from
all images in the noisy dataset. However, unlike SoftPatch,
we remove anomalies (or weeds) by choosing the most
commonly occurring features (of the crop plants) instead
of eliminating uncommon features. Finding the crop plant
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Fig. 2: Overview of how we extract features, fi, i = {0, 1, . . . , n}, from an image, I . We identify point prompts, pi, using ExG. With
each pi, we obtain segment si using SAM. We input the cropped patches, Îi, of si to BioCLIP to obtain the patch feature fi.

features this way is easier for our use case since there are
more anomalies (i.e., weeds) in our dataset compared to that
of SoftPatch. Note that SoftPatch was developed for anomaly
detection in the structured scenario of manufacturing defects,
whereas our method focuses on crop-weed semantic segmen-
tation.

III. OUR APPROACH

We perform zero-shot crop-weed semantic segmentation
by leveraging the foundation models SAM [17] and Bio-
CLIP [34]. Fig. 1 provides the overview of our approach,
called Weeds are Weird (WaW). Our approach has two steps.
The first is to curate a bag of features B representing the
crop plants, as explained in Sec. III-A. The second step is
to perform inference using B, as elaborated in Sec. III-B.

A. Curating the Bag of Features

Fig. 2 shows an overview of how we obtain features from
a given RGB image I . From I , we create a set of point
prompts P to prompt SAM [17], resulting in vegetation
segments S . With the bounding boxes of segments s ∈ S,
we crop I to obtain cropped patches Î . The patches Î are
input to BioCLIP [34] to obtain patch features fi ∈ R512, i =
1, 2, . . . , |Î|. We repeat this process with all images in the
training set to form a set of features F . From F , we use the
popularity voting algorithm, formalized in Alg. 1, to obtain
the bag of features B representing the crop features used later
to identify weeds.

1) Vegetation Segments: We begin by predicting the vege-
tation segments S in image I . At this stage, we aim to locate
the plants in I without needing to distinguish between crop
plants and weeds. The segments do not necessarily need to
be complete plant instances (where the instance comprises
all the pixels representing an individual plant) and can be
segments representing partial instances.

We obtain the segments using SAM [17] with point
prompts p ∈ P , where p ∈ R2. For generating the point
prompts P , we subdivide the image into N × N grid cells
and generate for each grid cell a point prompt p for the pixel

Algorithm 1 Popularity Voting Algorithm
Input: F
Output: B
for iteration=1,2,. . . ,M do
F̂candidate ← sample Ncandidate features from F
F̂population ← sample Npopulation features from F
for fcand,i ∈ F̂candidate do

for fpop,j ∈ F̂population do
wi,j ← wsize(sizei, sizej)
simi,j ← wi,jcos sim(fcand,i, fpop,j)

i← argmax
i

(simj)

B ← B ∪ f̂cand,i

F ← F − f̂cand,i

return B

location, (x, y), with the highest excess green vegetation
index (ExG) [40] score, if ExG(x, y) > λexg . We use
each p ∈ P individually to prompt SAM without multi-
masks to return a single segment si with score ŝi per
prompt, p, i.e.,

S ′ = {(si, ŝi) = SAM(p) | p ∈ P} . (1)

First, we remove all segments (si, ŝi) ∈ S ′, where most
of the points are most likely soil components, i.e., if:

|{(x, y) ∈ si | ExGR(x, y) > λexgr}|
|si|

< λpercent, (2)

where, |si| corresponds to the number of pixels in seg-
ment si, and ExGR(x, y) returns the excess green minus
excess red (ExGR) index [26] at pixel location (x, y).

We refine S ′ using a non-maximum suppression, where
the confidence ci of the segment (si, ŝi) ∈ S ′ is given by:

ci = ŝi
|{(x, y) ∈ si | ExG(x, y) > λexg}|

|si|
, (3)

where ExG(x, y) returns the ExG vegetation index at pixel
location (x, y). If segments si ∈ S ′ and sj ∈ S ′ have an



intersection-over-union (IoU) of at least λNMS , we only keep
the segment si with the higher confidence ci, which results
in the final set of vegetation segments S.

2) Feature Encoding: We used the pre-trained Bio-
CLIP [34] to extract features for each segment si ∈ S
to obtain fi ∈ R512 since our task requires the distinction
between plant species and BioCLIP is trained for fine-grained
biodiversity classification.

For each vegetation segment si ∈ S , we crop out a
patch Îi given by the square bounding box of si from im-
age I , where Îi is the crop patch with side length max(w, h)
given the bounding box of si of width w and height h. We
input Îi to BioCLIP to obtain the patch features fi, i.e.,

fi = BioCLIP(resize(Î)), (4)

where resize(·) bilinearly rescales an image to 224× 224 px.
We perform feature encoding on all vegetation segments
from training images and obtain a pool of features F ,
containing features of crop plants and weeds. We select the
crop features only using our popularity voting algorithm,
shown in Alg. 1, where cos sim(·, ·) is the cosine similarity
between two input vectors. The key idea is that crop plant
features have a high occurrence frequency and, therefore,
have the highest similarity to most of the other features.

In each iteration, we form a subset F̂candidate ⊂ F , where
|F̂candidate| = Ncandidate, as candidate crop plant features. As
the number of features in F is large, we randomly sub-
sample features into a smaller representative set, F̂population,
where |F̂population| = Npopulation. We evaluate the similarity
score simi of each f̂cand,i as the sum of the cosine similarity
between f̂cand,i and each feature in f̂pop,j, j = 1, . . . , λpopulation.
The similarity score is weighted with wsize(sizei, sizej),
given by:

wsize(sizei, sizej) = cos sim(g(sizei), g(sizej)), (5)

with

g(x) = N (0.0, 0.7) ∗ (I(x, 0), . . . , I(x,K − 1)), (6)

where ∗ is the convolution operation, and

I(x, i) =
{

1 , ⌊(x− sizemin)/δsize⌋ = i
0 , otherwise . (7)

Here, K is the number of size categories, sizemin is the
smallest patch size category, sizemax is the largest patch size
category, sizei is the size of patch Îi, δsize is the step size
for the class patch size, where

δsize = (sizemax − sizemin)/K, (8)

and N (µ, σ) is a 1-dimension Gaussian kernel with mean µ
and standard deviation σ. The weighting wsize(sizei, sizej)
increases when Îi and Îj are similar in size and gradually
reduces to zero when Îi and Îj grow increasingly dissimilar
in size. This weighting is required because we resized all
patches to the same size in preprocessing for BioCLIP.
Each f̂pop,j can only vote for f̂cand,i. We add the candidate
feature with the highest total of voting scores to B. We repeat
the voting procedure M times to form the bag of features B.

TABLE I: Hyperparameters used for each dataset.

Dataset k M

PhenoBench [39] 10 500
SB20 [2] 200 1000
CropAndWeed-SugarBeet [33] 20 500
CropAndWeed-Maize [33] 50 500

B. Inference

To perform inference, we repeat the vegetation segmenta-
tion and feature encoding as shown in Fig. 2 to collect a set
of features Finfer of the input image. For each feature finfer ∈
Finfer, we check if finfer is within the manifold of B. We
model the manifold by the union of hyperspheres, similar
to that used by Kynkäänniemi et al. [18]. Specifically, we
model the manifold of crop plants using hyperspheres hi

with centers at features f̂i ∈ B. The radius of hi is equivalent
to the Euclidean distance of f̂i to its k-th nearest neighbor.
If finfer is within the manifold of B, we classify pixels in sinfer
as a crop plant. Otherwise, we classify all pixels in sinfer as
weed. Since some segments, si, overlap, we take the average
of each si for the final classification. Finally, we classify all
the remaining pixels as soil.

IV. EXPERIMENTS AND DISCUSSIONS

The main focus of this work is an approach for zero-shot
crop-weed semantic segmentation for agricultural robots,
without additional labels, by framing weeds as anomalies.
To show the capabilities of our approach, we conduct exper-
iments for two main applications in the agricultural domain:
crop-weed segmentation and vegetation segmentation. The
experiments show that our method can adapt to various
environmental conditions.

A. Experimental Setup

Datasets. We selected multiple datasets providing annota-
tions for crops and weeds that cover different domains and
crops: PhenoBench [39], SB20 [2], and CropAndWeed [33].
PhenoBench [39] is a labeled dataset of high-resolution
UAV images of a sugar beet field, and SB20 [2] comprises
labeled images from a UGV of a sugar beet field. The
CropAndWeed [33] dataset comprises images from multiple
fields of various crops. We split the CropAndWeed dataset
into separate single-crop datasets to avoid identifying volun-
teer crops as crops, and used the data for sugar beets and
maize only. While the datasets are labeled, our approach and
baselines do not use the labels for training.

For variation in crop cultivar, we included a dataset with
maize crops from the CropAndWeeds dataset [33], whereas
the other datasets are of sugar beet crops. For the selection of
datasets, we also considered the number of available images,
as our baselines, AnoDDPM [41] and THOR [5], require
training diffusion models, which likely perform better with
a larger number of images. For our approach, we populate
the bag of features B with images from the training split,
and for SB20, we also used the provided unlabeled images.

Implementation Details. For all our experiments, we
used N = 48, λexg = 0.0, λexgr = 0.0, λNMS = 0.7,



TABLE II: IoU Performance on test sets %. Bold indicates the best performance.

Method PhenoBench [39] SB20 [2] CropAndWeed-SugarBeets [33] CropAndWeed-Maize [33] Mean Std.

soil crop weed mIoU soil crop weed mIoU soil crop weed mIoU soil crop weed mIoU weed IoU

ERFNet [30] 99.3 94.3 64.4 86.0 98.4 79.0 72.3 83.3 99.3 88.6 54.8 80.9 99.2 77.1 59.2 78.5 62.7 7.5

AnoDDPM [41] 99.1 86.0 3.9 63.0 97.1 34.2 7.0 46.1 98.0 26.6 9.6 44.8 97.5 36.6 7.9 47.3 7.1 2.4
THOR [5] 99.1 88.4 4.0 63.8 97.1 50.3 0.4 49.2 98.0 57.1 1.2 52.1 97.5 55.0 1.3 51.3 1.7 1.6
WaW (Ours) 98.9 74.3 11.1 61.4 96.6 29.5 17.1 47.7 98.6 52.7 9.9 53.7 99.0 46.2 10.2 51.8 12.1 3.4

λpercent = 0.2, K = 5, sizemin = 0, sizemax = 200,
Npopulation = 100, and Ncandidate = 100. We qualitatively
tuned the hyperparameters k and M for each dataset, as
these hyperparameters depend on |S|. See Tab. I for the
dataset-specific values. On average, our inference runtime on
an NVIDIA RTX A6000 GPU with batch size one is 5.6 s.

Metrics. We calculate the intersection-over-union (IoU)
for each class (i.e., soil, crop, and weed) and also compute
the mean over all classes to obtain the mIoU, similar to
previous crop-weed semantic segmentation works [39].

B. Performance on Crop-Weed Semantic Segmentation

The first experiment evaluates the performance of our
approach in crop-weed semantic segmentation with no ad-
ditional manual labels. Since our approach falls under the
paradigm of unsupervised anomaly segmentation, we adapted
approaches from this field for comparison. We compare our
approach with other unsupervised baselines: AnoDDPM [41]
and THOR [5]. We trained the diffusion model used in
both baselines for 255,000 steps for all datasets. Since these
methods only output anomaly segments, we convert the
anomaly masks to crop-weed semantic segmentation using
the ExG [40] vegetation mask. We classify pixels that are
vegetation and anomalies as weeds, and pixels that are
vegetation but not anomalies as crops. For an upper-bound
comparison, we also report the performance of the fully
supervised method ERFNet [30], which shows promising
results in crop-weed segmentation [39].

Tab. II shows the performance of our method and the
baselines and Fig. 3 illustrates the qualitative results of our
approach. The results show that the unsupervised anomaly
segmentation methods have the potential to perform zero-
shot crop-weed semantic segmentation. Since our down-
stream task involves automatic weeding, we focus on the
IoU of weeds, which is also more challenging to segment
compared to crops, as indicated by the consistently lower IoU
of weeds compared to that of crops. Our zero-shot method
outperforms baseline methods in all datasets, despite requir-
ing no additional training, whereas the baselines require long
training times typical of diffusion models.

Unsurprisingly, our method performs poorly compared to
the supervised ERFNet [30] across all metrics and datasets.
This performance is to be expected, as ERFNet has access
to labels, whereas our approach does not. Based on the
crops and weed IoU, we see that all the unsupervised
methods, including ours, have further room for improvement.
Interestingly, for the IoU of the soil class, the unsupervised
baselines and our approach have similar performance to that
of ERFNet. The IoU of soil is constantly highest among the

three classes, which indicates that the separation of soil from
vegetation is simpler than that of crops and weeds. The large
volume of soil pixels also further increases the average soil
IoU score in general.

As shown in the qualitative results, our approach is unable
to distinguish between crops and weeds in certain situa-
tions. Particularly, weeds that overlap with crops may be
incorrectly classified as crops, as shown in Fig. 3(a), likely
due to the patch extraction for these segments, which also
includes neighboring crop plants when patched into squares
for feature extraction with BioCLIP.

Since we rely on the ExG [40] index for prompting the
segmentation of S, we wrongly classify weeds that are
reddish and resemble the soil color, since these reddish weeds
have low vegetation index scores, as shown in Fig. 3(b).

C. Performance for Vegetation Segmentation

Our second experiment evaluates the performance of
extracting vegetation masks obtained from our approach.
Specifically, we evaluate the performance of our vegetation
segmentation method as a semantic segmentation task with
only two classes: soil and vegetation. We compare our
approach with existing work on vegetation masking, where
we tuned the thresholds of baselines using a subsample
of training data from PhenoBench [39] and used the same
threshold across all datasets.

Tab. III shows the quantitative results of our approach
and baselines for the vegetation segmentation task on the
validation split of each dataset. Our approach outperforms
the baselines in most datasets, demonstrating the benefits
of leveraging segments instead of per-pixel thresholding,
as used by the baseline methods. Notably, our SAM-based
method has the highest vegetation IoU, which supports its use
for subsequent crop-weed segmentation. Across the baseline
methods, we see that some methods generalize better across
different datasets. Notably, ExGR [26] and ExG [40] perform
relatively well among other baselines, which supports the
adaptation of these vegetation indices into our approach.

V. ABLATIONS AND HYPERPARAMETER SEARCH

We performed ablation studies on the prompting mecha-
nism and feature encoder, as well as hyperparameter search
for the hyperparameters used in our approach. For all studies
in this section, we evaluated on a subset of 500 images from
the validation split of PhenoBench [39].

A. Prompting SAM

This section discusses the impact of our proposed prompt-
ing mechanism used with SAM [17], as shown in Tab. IV. We
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Fig. 3: Qualitative results on different datasets. The top row shows the input image, the second row shows the ground truth, and the third
row shows our performance.

TABLE III: IoU of vegetation on validation split.

Method PhenoBench [39] SB20 [2] CropAndWeed-SugarBeets [33] CropAndWeed-Maize [33] Mean Std.

soil vegetation mIoU soil vegetation mIoU soil vegetation mIoU soil vegetation mIoU mIoU mIoU

ExG [40] 98.3 78.5 88.4 96.2 48.2 72.2 97.1 49.2 73.2 97.8 49.5 73.7 76.9 7.7
ExR [25] 97.8 63.9 80.8 5.7 7.3 6.5 4.4 5.4 4.9 8.9 2.7 5.8 24.5 37.6
ExGR [26] 98.4 72.3 85.4 96.2 49.0 72.6 98.1 53.9 76.0 98.9 54.5 76.7 77.6 5.4
GRVI [35] 98.3 68.2 83.2 44.3 11.3 27.8 22.5 6.7 14.6 30.8 5.8 18.3 36.0 32.0
MGRVI [4] 98.3 69.0 83.6 30.1 9.4 19.8 11.5 5.7 8.6 19.9 4.0 11.9 31.0 35.4
GLI [21] 98.5 78.9 88.7 95.5 38.2 66.8 97.9 51.6 74.8 98.5 52.4 75.5 76.4 9.0
RGBVI [4] 95.7 55.0 75.3 93.9 13.7 53.8 97.8 40.4 69.1 98.2 38.9 68.6 66.7 9.1
WaW (Ours) 98.8 83.7 91.3 95.7 61.6 78.7 98.5 72.1 85.3 99.1 70.1 84.6 85.0 5.1

TABLE IV: IoU for ablations on vegetation segment method. Bold
indicates the best performance.

Method Prompting
Mechanism

Segment
Filter Soil IoU Vegetation IoU mIoU

SAM [17] ✗ ✗ 89.4 38.5 63.9
WaW w/ grid ✗ ✓ 98.0 77.4 87.7
WaW (Ours) ✓ ✓ 98.9 84.4 91.7

compare our prompting mechanism with the out-of-the-box
grid prompting used in SAM, ignoring the largest segment as
soil. SAM performs poorly on both the soil and vegetation
IoU, mostly because SAM over-segments the rocks in the
soil. We also tested using a combination of the out-of-the-box

TABLE V: IoU for ablations on feature encoding methods. Bold
indicates best performance.

Feature Encoder Soil IoU Crop IoU Weed IoU mIoU

ResNet-152 [14] 98.9 81.3 1.6 60.6
CLIP [27] 98.9 77.3 9.1 61.8
BioCLIP [34] (Ours) 98.9 73.5 12.8 61.7

SAM with just our segment filtering post-processing. This
combination yielded a lower IoU, indicating the importance
of the proposed prompting method for improving vegetation
segmentation performance.



TABLE VI: IoU performance with varying values of k. Bold
indicates best performance.

k Soil IoU Crop IoU Weed IoU mIoU

1 98.9 49.8 7.9 52.2
5 98.9 69.0 11.5 59.8

10 98.9 73.5 12.8 61.7
100 98.9 82.0 7.4 62.8
500 98.9 81.7 0.1 60.2

B. Importance of BioCLIP

We tested different feature encoders, replacing Bio-
CLIP [34] used in our proposed approach with a pre-
trained ResNet [14], similar to previous work [31] and the
same CLIP [27] architecture, but with weights trained on
a different generic (not biodiversity-specific) dataset [32].
Tab. V shows the IoU performance of these two ablations and
our proposed approach. Notably, the method using ResNet
features performs much worse for the weeds. While the
performance when using CLIP versus BioCLIP is compa-
rable for crop plants, the performance on the weeds is better
when using BioCLIP, which supports our decision to use
BioCLIP [34] in our proposed approach.

C. Hyperparameter Analysis

In this section, we discuss the impact of changing the
hyperparameter values. Firstly, we investigate how changing
the neighborhood size k, affects the semantic segmentation
performance. Tab. VI shows the IoU performance for varying
k values. We show that the highest IoU for weeds is
at k = 10, which is the value we used in our approach.
Reducing k leads to poorer performance, likely because the
hyperspheres are too small, so only the features with low
distance from the bag of features are predicted as crops.
If k is too large, too many false positives are identified as
crops, as the hyperspheres are too large, resulting in poorer
semantic segmentation performance.

Secondly, we study how varying the grid size N used
in our prompting mechanism affects the performance of
vegetation segmentation. Tab. VII shows the results with
varying values of N . Increasing N will increase the number
of prompts, which leads to fewer plants not being seg-
mented. Thus, this would increase the IoU across both soil
and vegetation classes. However, increasing the number of
prompts also increases the computational resources required
to run the method. Hence, we chose a moderate value of
N = 48, which corresponds to where the performance begins
to plateau. Note that halving the value to N = 24 results in
a decrease of less than 1 percentage point, which can be
attributed to the prompting mechanism. With the prompting
mechanism, the prompt will always land on the plant if
one is present in the grid cell. Thus, fewer plants are left
unprompted and therefore segmented. However, since each
grid cell can contribute only one prompt, if the grid cells
are too sparse, many plants remain unprompted, negatively
affecting performance.

Finally, we study the impact of varying the size M of
the bag of features B. If the bag-of-features has too few
features, the approach will not be able to capture the full

TABLE VII: IoU performance with varying values of N . Bold
indicates best performance.

N Soil IoU Vegetation IoU mIoU

12 98.0 77.9 87.9
24 98.7 83.1 90.9
48 98.9 84.4 91.7
56 98.9 84.5 91.7
96 99.0 84.8 91.9

TABLE VIII: IoU performance with varying values of M . Bold
indicates best performance.

M Soil IoU Crop IoU Weed IoU mIoU

100 98.9 74.7 10.4 61.4
250 98.9 67.9 11.5 59.4
500 98.9 73.5 12.8 61.7

variety of crop features. As shown in Tab. VIII, the larger
M is, the better the performance, but the more computation
and memory are required to perform inference, so this trade-
off has to be balanced.

VI. CONCLUSION

We presented a novel approach for zero-shot crop-weed
semantic segmentation without requiring additional labels.
We base our approach on the idea that crop plant features are
the most commonly occurring features, while weed features
are less common. Our method exploits foundation models
SAM [17] and BioCLIP [34] to perform inference without
any additional labels or retraining. We implemented and eval-
uated our approach on a diverse choice of several datasets.
Our experiments demonstrate that our unsupervised anomaly
detection method is a viable approach for performing crop-
weed semantic segmentation without labels.

Our approach leverages the idea that crop plants are the
most commonly occurring plants in the field, which leads
to a limitation in the case of a weed infestation where
specific weed varieties overwhelm the fields. In such cases,
our current approach will not be as effective. In our future
work, we aim to overcome these limitations by incorporating
a small number of weak labels to improve our performance.
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