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Unsupervised Generation of Labeled Training Images for Crop-Weed
Segmentation in New Fields and on Different Robotic Platforms

Yue Linn Chong Jan Weyler Philipp Lottes Jens Behley Cyrill Stachniss

Abstract—Agricultural robots have the potential to improve
the efficiency and sustainability of existing agricultural practices.
Most autonomous agricultural robots rely on machine vision
systems. Such systems, however, often perform worse in new
fields or when the robotic platforms change. While we can
alleviate the performance degradation by manually labeling more
data obtained in the new setup, this procedure is labor and
cost-intensive. Therefore, we propose an approach to improve
the performance of machine vision systems for new fields and
different robotic platforms without additional manual labeling.
In an unsupervised manner, our approach can generate images
and corresponding labels to train machine vision systems. We use
StyleGAN2 to generate images that appear like they are from
desired new field or robotic platform. Additionally, we propose a
label refinement method to generate labels corresponding to the
generated images. We show that our approach can improve the
performance of the crop-weed segmentation task in new fields
and on different robotic platforms without additional manual
labeling.

Index Terms—Robotics and Automation in Agriculture and
Forestry, Deep Learning for Visual Perception, Object Detection,
Segmentation and Categorization

I. INTRODUCTION

AUTONOMOUS agricultural robots have the potential to
improve the efficiency and sustainability of existing agri-

cultural practices [9], [35]. However, autonomous agricultural
robots’ perception systems suffer performance degradation
when domain shifts occur due to varying field conditions
(e.g., weather, topsoil, or plant species) or changes to the
robotic platform (e.g., sensor resolution, lighting, or sensor
noise) [12].

Existing practices manually label images from the new do-
main to reduce performance degradation. However, constantly
labeling new images is costly, time-consuming, and hard to
scale. Thus, it can hinder real-world deployment. We aim to
reduce labeling efforts by leveraging existing labeled images,
referred to as the source images, to generate image-label
pairs that are independent and identically distributed to the
conditions the agricultural robots will operate in, referred to as
the target domain, in an unsupervised manner. The generated
image-label pairs replace the manually labeled images to train
a new target domain network.
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Fig. 1: We indicate image-labels pairs by overlaying the image
with the labels, with crops as green and weeds as red. Using our
unsupervised image-label pair generation approach, we are able to
generate labeled images in the target domain by leveraging labeled
source domain images and unlabeled target domain images.

One task affected by domain shifts is the crop-weed segmen-
tation task, where we aim to distinguish between the crops,
weeds, and non-vegetation for each pixel. Machine learning
methods are used to perform crop-weed segmentation [23].
Several autonomous agricultural robots applications require
the crop-weed segmentation such as automatic weeding [1],
[40], phenotypic trait monitoring [25], [32], [39], and robot
localisation [3]. Related segmentation tasks also occur in
fruit picking [8]. We are interested in achieving this without
requiring time-consuming manual labeling. Fig. 1 shows our
overarching motivation for crop-weed segmentation.

Our unsupervised generation of image-label pairs in the
target domain has two goals. First, we must generate images
with the same quality and diversity as the target domain. Since
the target domain can be arbitrary, our approach has to be
agnostic to the field conditions or robots used in the source
and the target domain. Our approach differs from existing
methods [12] that assume similarity of the image resolution
between the source and target domain. Second, we must
ensure that the generated labels fit the corresponding images
well. One can achieve a good fit by conditioning the image
generation to fit a known label [12]. However, this is restrictive
since the plant shapes may not be the same in the source and
target domain. Therefore, we propose a weaker conditioning
during image generation and refine the labels afterwards.
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The main contribution of this paper is a novel approach
for generating crop-weed segmentation labels for images
taken in agricultural fields, which fit the target domain in
an unsupervised manner, i.e., without additional manual la-
beling. Our approach is applicable regardless of differences
in image resolution, capture conditions, or field conditions
between the source and target domain and improves the seg-
mentation performance. While existing state-of-the-art meth-
ods focus mainly on the style transfer of the images, we
also refine the generated labels to better match the gen-
erated images. We apply our approach and back up our
claims with experiments using real-world agricultural data.
Our data, code, and pre-trained weights are available at
https://github.com/PRBonn/StyleGenForLabels.

II. RELATED WORK

Existing work [2], [12], [22] has shown that unsupervised
domain adaptation can improve the performance of several
vision-based image interpretation tasks in a previously un-
seen target domain. In the paradigm of unsupervised domain
adaptation, the target domain data is not labeled, so methods
that perform data augmentation, e.g., the method proposed by
Fawakherji et al. [10], is not applicable. Generally, unsuper-
vised domain adaptation approaches aim to adapt the weights
of a machine learning model trained on the source domain data
to perform better on the target domain data without manually
labeling the target domain data. While some works [36]
propose novel mechanisms to adapt the weights, there are
also frameworks [6], [12], [14] where they use data generated
from variations of generative adversarial networks (GANs) to
fine-tune the weights during training. For these works, the
central idea is to use GANs to transfer data from the labeled
source domain to the target domain so that the labels remain
unchanged.

Rather than directly adapting the model weights to perform
better in the target domain, our approach aims to generate
image-label pairs that belong to the target domain. With the
generated target domain image-label pairs, we can train for
the downstream task network in a supervised manner. The
advantage of this method is that it can train the downstream
task network with any supervised training scheme, and there
is no restriction on the architecture or size of the network.
Moreover, we only need to generate the image-label pairs
once, and we can reuse the same generated data if the target
domain network architecture changes.

Several methods [6], [12], [14] use CycleGAN [43] to
perform the unpaired style transfer between source and tar-
get data, and improve the downstream task performance in
unlabeled target domains. Style transfer refers to transferring
all visual aspects from the target image to the source image
while maintaining the characteristics defined by the label of the
source image. For example, in our use case, the style transfer
would change the visual aspects such as lighting, soil texture,
and colors while maintaining the original crop and weed
positions in the generated target image. However, CycleGAN
requires balancing four networks during training, which is
difficult to achieve (each GAN has two networks: a generator

network and a discriminator network). While there also exists
methods that utilizes fewer networks, such as Label2Image-
DA [21], which trains three networks simultaneously (i.e., two
networks for the GAN and one downstream task network),
theses approaches all share some limitations. Specifically,
these methods use existing source domain labels to condition
the generation of image-label pairs, which limits the diversity
of the image-label pairs they can generate.

Our approach aims to perform unsupervised domain adap-
tation, which is agnostic to parameters such as the image
resolution, or more pertinently, the ground sampling distance
(GSD)1 of the source and target domain.

Thus, our problem statement differs from that of super-
resolution, such as the method proposed by Wang et al. [37]
or Xu et al. [42], which only had image resolution or camera
degradation as the domain gap. Our work aims to solve the
similar problem to that of SRDA-Net [41], which adapts
different domains of aerial images of different resolutions.
However, in SRDA-Net, the difference in visual appearance
between the domains is less drastic than in our use case,
featuring different lighting and field conditions.

Beyond the paradigm of unsupervised domain adaptation,
GANs can perform both, style transfer and resolution adapta-
tion respectively. Specifically, methods built on StyleGAN [17]
and StyleGAN2 [18] can perform style transfer via style
mixing and super-resolution [5], [7], [15], [28], [34]. However,
methods such as StyleRig [34] and StyleFusion [15] require
known semantics of the target image, either by labels or a
pre-trained auxiliary network. However, these semantics are
unknown in unsupervised domain adaptation, and unsuper-
vised domain adaptation aims to obtain these semantics for the
target domain. Thus, it is not possible to adapt these methods
directly. We also do not have access to additional information
such as 3D data that SofGAN [5] uses to train a semantic
segmentation model.

Our approach follows the idea of performing style transfer
from images in the source domain to images in the target
domain while maintaining the condition of the original source
label [6], [12], [14]. Unlike existing work, we focus on the
specific use case where the source and target domain have
different field conditions and GSDs. In contrast to existing
methods such as Label2Image-DA [21] and other CycleGAN-
based methods [6], [12], [14], our method trains the GAN
networks and the downstream task network separately. We also
exploit StyeGAN2’s style mixing to perform the style transfer
to handle the difference in GSD between the source and target
domain.

III. OUR APPROACH

Fig. 2 shows the workflow of our proposed approach. It aims
to generate pairs of images and generated labels belonging
to the target domain, which we can use to supervise the
training of a machine learning model and improve the model’s

1We refer to GSD as the distance between the center of each pixel when
projected onto the ground plane, which is calculated as the ratio of the height
of ground plane to the distance of the center with respect to the projection
center of the camera sensor [11].

https://github.com/PRBonn/StyleGenForLabels
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Fig. 2: Overall workflow of our approach. We indicate the inputs in green and outputs of our approach in magenta. Firstly, we estimate
the distribution of the latent space W representing the source domain WS and target domain WT . Secondly, we sample latent variables
ŵS ∼ WS and ŵT ∼ WT and perform style mixing to obtain ŵS→T . Finally, we generate the output image, ÎS→T , and its labels, ŶS→T .

performance in the target domain. To generate an image, we
must first obtain the mixed latent variable corresponding to
the generated image using style mixing. To generate the label,
we perform label refinement on the label of the corresponding
source image.

In the following, we denote variables belonging to the
source domain with a subscript “S” and variables in the
target domain, i.e., the domain we want to operate in, with
a subscript “T”. We denote an image from the source domain
dataset with M images as IS,i and its label as YS,i, where
i ∈ {1, 2, . . . ,M}. We denote images from the target dataset
containing N images as IT,j , where j ∈ {1, 2, . . . , N}.

Our approach has three parts: (a) source and target do-
main latent space estimation, (b) latent variable mixing, and
(c) paired image and label generation, as illustrated in Fig. 2.

In the first part (a), we estimate two distributions in the
latent space, which represent the source domainWS and target
domainWT . In the second part (b), we sample latent variables
ŵS ∼ WS and ŵT ∼ WT and perform style mixing to
obtain ŵS→T . In the final part (c), we generate the output
image, ÎS→T , from ŵS→T and its corresponding generated
label, ŶS→T with the label refinement process.

A. Source and Target Domain Latent Space Estimation

The goal of the first part of our approach is to estimate
the distribution in the latent space W of the source domain,
WS , and that of the target domain, WT , which are in the
latent space of StyleGAN2 [18]. StyleGAN2 is a generative
adversarial network [13], which aims to generate images from
the same distribution as the training images. As shown in
Fig. 3, StyleGAN2 consists of two networks: the mapping
network and the synthesis network. The mapping network
maps a variable z ∼ N (0, I) to a latent variable w ∈ W .
The synthesis network uses the latent variable w to generate
an RGB image. We train StyleGAN2 to generate images from
the source and target domains and freeze the weights of the

mapping and the synthesis networks. Thus, we map W to the
source and target domain images via the synthesis network.

We choose StyleGAN2 because training is relatively stable
and it does not suffer mode collapse. StyleGAN2 is also able
to generate diverse images of plants at different GSDs, growth
stages, soil textures, and environmental conditions while gen-
erating photorealistic images with visually convincing textures.
Moreover, we would like to take advantage of the disentangled
latent space of StyleGAN2, which enables intuitive latent
variable mixing, so-called style mixing [17].

To estimateWS andWT , we first train an encoder network,
FEN , to perform style inversion, i.e., to map a given RGB
image to the latent space as shown in Fig. 3. Similar to
StyleRig [34], we train FEN using the StyleGAN2 outputs.
We generate the desired output, w, of FEN , using the mapping
network from the sampled input z. The input to FEN is an
image generated with the synthesis network from w. We train
FEN to minimize the L2 distance between the predicted latent
variable ŵ and desired output w. In our implementation, we
use pSp [28] for the encoder FEN . Note that, unlike in pSp,
our training method allows us to train the encoder without
input-output image pairs.

With FEN , we map each image IS,i to a corresponding
latent variable, wS,i, for i = {1, 2, . . . ,M}. We estimate WS

by parameterizing WS as a Gaussian mixture model (GMM)
with k components. We repeat the process for the target
domain where we map IT,j to the latent variable wT,j for
j = {1, 2, . . . , N} and estimate WT as a GMM with k
components.

B. Latent Variable Mixing

The objective of the latent variable mixing is to obtain the
latent variable ŵS→T , which corresponds to an image ÎS→T .
There are two conditions we want ÎS→T to follow. First, we
want ÎS→T to be from the target domain. Second, ÎS→T should
have crops and weeds in the same locations as in ÎS , such
that ŶS is similar to ŶS→T . Ideally, we would like ŶS→T to
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Fig. 3: We train the encoder, FEN , to perform style inversion by
first sampling a variable z as input for the mapping network, which
maps z to latent space W . With the latent variable w, we generate
the corresponding image with the synthesis network and input the
generated image to FEN . We use the original w as the ground truth
of the output of FEN and train FEN with an L2 loss.

be equal to ŶS so that we can transform ŶS into ŶS→T , in
the label refinement process. We explain the label refinement
process in the following Sec. III-C. We can obtain ŵS→T that
encodes ÎS→T that follows this two conditions by style mixing
latent variables ŵS and ŵT , which encodes all the information
required to generate ÎS and ÎT .

In StyleGAN2, each latent variable w comprises mul-
tiple components and each component encodes differ-
ent aspects of the generated image. In our implemen-
tation of StyleGAN2, each latent variable has 16 com-
ponents, where ŵS = [0ŵS ,

1ŵS , . . . ,
15ŵS ] and similarly

ŵT = [0ŵT ,
1ŵT , . . . ,

15ŵT ]. Based on the architecture of
StyleGAN2, we categorize the features into coarse-, medium-,
and fine-grained feature components. The coarse- and
medium-grained feature components encode the content of
the generated image, such as the position and type of ob-
jects present. The fine-grained feature components encode
fine features of the generated image, such as the overall
visual aesthetic of the image, e.g., lighting condition or
colors. In our approach, the fine-grained components are
the 7th to the 15th components of the latent variable. To
perform the style mixing [17], we take the components
corresponding to the coarse- and medium-grained features
from the latent variable representing the desired image con-
tent and that of the fine-grained features from the de-
sired image visual aesthetic. Specifically, we swap the 7th

to the 15th components of ŵS with that of ŵT to ob-
tain ŵS→T = [0ŵS ,

1ŵS , . . . ,
5ŵS ,

7ŵT ,
8ŵT , . . . ,

15ŵT ].
With this, our approach can condition the generation of

images by StyleGAN2, even though we do not have source-
target paired data.

C. Paired Image and Label Generation

In the final part, we aim to finally generate the output
image, ÎS→T , and generated label, ŶS→T , using the outputs
from the previous parts. To generate ÎS→T , we use the
synthesis network to map ŵS→T to the RGB image space.

To generate ŶS→T , we perform the following steps. First,
we train the supervised downstream task network FS using
images IS and labels YS . Second, we obtain ÎS from the
synthesis network using ŵS . Third, we obtain the predicted
label ŶS using FS on ÎS . Since we condition the latent
variable mixing such that ÎS→T has the same content as ÎS ,

Vegetation
detection

pixel-wise
AND

connected
components

with majority
voting

Fig. 4: We refine the label ŶS to obtain the label ŶS→T . We correct
the plant boundaries in ŶS using the vegetation mask of ÎS→T .

ŶS should be equal to ŶS→T . However, we found that ÎS→T

may not fit ŶS well, particularly near the plant boundaries.
The discrepancy may be due to the differences in GSD and,
consequently, the plant sizes in the source and target domains.
Additionally, we also noticed that the shape of the leaves may
also vary between domains which further worsens the fit of
ŶS for ÎS→T . Therefore, we perform an additional step of
label refinement to obtain ȲS→T , which improves ŶS to better
correspond to ÎS→T .

The goal of the label refinement, shown in Fig. 4, is to cor-
rect the boundaries of the predicted label, ȲS , to better fit the
plants in ÎS→T . To this end, we, first, separate the foreground
(i.e., crops and weeds) and background (i.e., non-vegetation)
in ÎS→T . The separation can be done using a Convolutional
Neural Network vegetation classifier [24] or heuristics. In
our approach, we perform the separation heuristically using
a hue filter by thresholding out green pixels as vegetation
followed by a morphological closing. We label pixels in ŶS→T

as crops only if the same pixels are also crops in ŶS and
also marked as vegetation with the hue thresholding of ÎS→T .
Then, we perform a connected component analysis on ŶS→T .
For components with multiple labels, we use majority voting
to obtain the final ŶS→T .

IV. EXPERIMENTAL EVALUATION

The main focus of this work is an unsupervised method
to generate crop-weed segmentation labels for images in
the target domain using labeled source domain images and
unlabeled target domain images. The source domain can have
different image GSDs, capture conditions, and field conditions
than the target domain. The experiments support our claim
that our approach improves the performance of crop-weed
segmentation methods on the target domain despite differences
in the source and target domain.

A. Experimental Setup and Parameters

For all experiments, we used a StyleGAN2 implemented
in PyTorch [27] pre-trained on over 117k unmanned ground
vehicle (UGV) images from the SugarBeets dataset [4]. The
StyleGAN2 was then fine-tuned on the source and target
images for 460k steps with batch size 32. We resize all images
to 512×512 pixel.

As the source domain, we use low-resolution aerial vehi-
cle (UAV) images with a GSD of 1 mm

pixel . The dataset has 379
labeled images, of which we use 255 images for training, 61
for validation, and 63 for testing. We reduce the difference
in the source and target labels by upsampling 3× the source
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(a) Input image (b) Ground truth (c) Source (d) CycleGAN [43] (e) Gogoll et al. [12] (f) Ours

Fig. 5: Qualitative results of crop-weed segmentation. We indicate image-label pairs by overlaying the image with crops for green and weeds
for red. We darken the pixels segmented as non-vegetation. We show the qualitative results for the semantic segmentation network trained
on the source image-label pairs only in (c). In columns (d) and (e), we show the results when the semantic segmentation network trained
on image-label pairs using CycleGAN [43] and Gogoll et al. [12]. Finally, we show the results of our method in column (f).

images and labels using Lanczos interpolation [20]. The up-
sampled source images do not need to have the same GSD
as the target images, as we perform the label refinement step.
The synthesis network can also generate different GSDs for
the source and target domains.

The target domain consists of UGV images collected at a
different time of the year. The GSD of the images ranged from
0.3 mm

pixel to 0.8 mm
pixel . In total, there are 926 images, of which we

use 140 for testing for all scenarios, 647 for training, and 139
for validation. We used k = 100 components for the GMM
to model the latent spaces. For the label refinement, we use
a closing kernel of 5 pixels, and we threshold the hue in the
range 40 to 140. We sample Q = 15k latents from WS and
WT , respectively.

B. Crop-Weed Segmentation Performance

The first experiment evaluates the performance of our ap-
proach on the downstream task of crop-weed segmentation
to differentiate sugar beet crops from weeds. The experiment
supports our claim that our approach improves the perfor-
mance of a crop-weed segmentation network in the target
domain, despite the differences in GSD, image capture, and
field conditions of the source and target domains.

Specifically, we use images captured using an aerial vehicle,
i.e., UAV as the source domain, and images collected using a
ground vehicle, i.e., UGV as the target domain (see Sec. IV-A).
We chose these domains because their images have different
GSDs due to the difference in the cameras used and the
distance of the camera from the crops. Furthermore, the UGV
has artificial lighting, resulting in darker images than UAV
images with natural lighting.

To perform the downstream task, we adopt the semantic
segmentation network ERFNet [30] as FS . ERFNet is an
efficient and accurate architecture frequently used and achieves
competitive performance in the agricultural domain [29], [38].
We repeat the training of ERFNet three times and report
the average performance. For our approach, we train ERFNet
from scratch since fine-tuning from the weights trained on the
source domain does not improve the network’s performance.

To show the performance without a domain gap, we report
the performance of ERFNet when trained and tested on UAV
captured images. We also report the performance of ERFNet
trained and tested on UGV captured images showing the per-
formance in the so-called “oracle case” where manual labels
are available. These two cases’ performance is the upper bound
since manual labels are available. To show the performance
degradation caused by the domain gap between the UAV
and UGV, we report the performance of ERFNet trained on
UAV captured images but tested on UGV captured images.
For comparison, we also report the performance of Gogoll et
al. [12] and CycleGAN [43]. For both these approaches, we
tuned the learning rate to 5 · 10−6 with a linearly decreasing
scheduler after the first 100 epochs. We weigh the classes
with 1, 2, and 4 for soil, crop, and weed, respectively, to
account for the unbalanced number of pixels representing each
class. We ran the training for 400 epochs. Finally, we report
the performance of our method, where we train ERFNet on
generated images and generated labels.

Tab. I shows the results of the crop-weed segmentation
task. We use the mean intersection over union (mIoU) to
show the performance of each approach. We also present the
corresponding qualitative results in Fig. 5.
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TABLE I: Performance of crop-weed segmentation. The UAV domain
is the source domain, and the UGV domain is the target domain. Our
approach has best performance with the highest average mIoU for the
domain adaptation cases.

Training
dataset

Test
dataset

mIoU / %

non-
vegetation crop weed average

UAV UAV 98.6 91.9 70.2 86.9
UGV UGV 99.5 86.4 65.5 83.8

UAV UGV 89.2 14.6 8.99 37.6
CycleGAN [43] UGV 96.0 47.7 12.2 52.0

Gogoll et al. [12] UGV 98.2 55.6 30.1 61.3
Ours UGV 99.3 61.7 25.9 62.3

TABLE II: Performance of StyleGAN2 [18] and baseline in gen-
erating in-domain images. Higher values mean better performance.
Improved precision and density indicate the fidelity of generated im-
ages. Improved recall and coverage indicate the diversity of generated
images. The UGV domain is the target domain.

Method Improved
precision

Improved
recall Density Coverage

Gogoll et al. [12] 0.0711 0.158 0.0158 0.0227
Ours 0.0609 0.271 0.0210 0.125

Our results show that ERFNet performs well when the
training and test images are both from UAV captured images
or UGV captured images, with an average mIoU of 86.9 %
and 83.8 %, respectively. There is a drop in mIoU when the
training and test images have a domain gap, as shown by our
results where we train ERFNet on UAV captured images and
test on UGV captured images compared to when we test on
UAV captured images, from the 86.9 % to 37.6 %.

Compared to where we only train using UAV images, our
proposed method improves the performance of the crop-weed
segmentation task on UGV images. We also show that we
perform better than the method of Gogoll et al. [12] and
CycleGAN [43] in the average mIoU and the non-vegetation
and crop classes. As visible in the qualitative results in Fig. 5,
our approach performs better at the segmentation of crops,
especially at the plant borders. However, the method by
Gogoll et al. [12] outperforms our method for the weed class.
The performance of the weed class is more sensitive to errors
since there are fewer weed instances in the dataset than in
the other classes. The poor performance in the weed class of
our proposed method is probably due to the misclassification
of younger growth stage crops as weeds, as shown in Fig. 5.
One possible reason why the ERFNet trained with our method
performs worse when the crops are at an earlier growth stage
is that we train StyleGAN2 on fewer images of earlier growth
stage and is less likely to generate images with earlier growth
stage crops.

In summary, our approach improves the performance of
ERFNet without additional manual labels.

C. Generative Performance

The second experiment evaluates the generative perfor-
mance and illustrates that our approach can generate labels
that match the generated images from the target domain.
We hypothesize that the better the generated images are

(a) UGV images (b) Gogoll et al. [12] (c) Ours

Fig. 6: Qualitative results of generated images. Our generated images
are able to replicate the size and color of the crops better than that
of Gogoll et al.

representative of the UGV domain, the better the performance
of the downstream tasks trained with the generated images.

We compare our approach to the CycleGAN-based method
by Gogoll et al. [12] for generating images from the UGV
domain. From the three runs used in Sec. IV-B, we report the
evaluation on the images that yielded the best mIoU.

We measure how representative our images are to the UGV
domain using metrics commonly used to evaluate generated
image quality in methods such as GANs. Specifically, we
evaluated our approach using the StudioGAN’s [16] imple-
mentation of improved precision and recall [19], and density
and coverage [26] metrics. The newer metrics of density
and coverage are more representative of the performance of
generating images compared to the older methods [26], so we
will discuss the performance of our method based on these
metrics. However, we also report the improved precision and
improved recall of all approaches for completeness.

To briefly summarize the intuition behind the metrics,
improved precision and recall are, respectively, a pair of values
that represent different aspects. Density and improved preci-
sion represent the quality or fidelity of the generated images,
while coverage and improved recall represent the diversity or
variation of the images generated. We evaluate these metrics
using InceptionV3 [33] weights trained on ImageNet [31],
which may not be ideal in our agricultural use case. Tab. II
shows the performance of our approach, and that of Gogoll et
al. [12]. Fig. 6 shows the generated images alongside the UAV
images for qualitative comparison. While our approach and
Gogoll’s approach are able to replicate the soil of the UGV
images, Gogoll’s approach is not able to correctly generate
plants of the correct size or color. In contrast, our approach is
able to generate plants of similar size and color to that of the
UGV images.

Our approach shows superior density and coverage metrics
performance compared to Gogoll et al. [12]. While it is pos-
sible to increase the improved precision score of StyleGAN2
methods using the “truncation trick” [18], we did not perform
any truncation to avoid corrupting the style transfer.

The qualitative results show that the approach by Gogoll et
al. [12] has difficulties in the coloration or texture of the
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TABLE III: Ablation study for performance of crop-weed seg-
mentation on target domain (UGV domain). Best and second best
performances are in bold and underlined respectively.

Training dataset mIoU / %

non-
vegetation crop weed average

style inversion only 99.3 61.8 15.0 58.7
manual classification 99.2 59.6 28.3 62.4

sampled style inversion
(Ours) 99.3 61.7 25.9 62.3

TABLE IV: mIoU of generated labels against manual labels. With
label refinement, we report a higher average mIoU.

Training dataset mIoU / %

non-
vegetation crop weed average

Without label refinement 83.7 15.3 30.9 43.3
With label refinement

(Ours) 98.1 44.8 21.8 54.9

crops, while our approach does not suffer from such artifacts.
Moreover, since the approach proposed by Gogoll et al. [12]
conditions the contents of the generated image to be the same
as that of the UAV image, the variety in the UAV images
constrains the diversity of the images generated. Meanwhile,
since we sample the latent space distribution to generate our
images, we can generate a more diverse set of images matching
the appearance of the target domain.

In summary, our approach generates images which is rep-
resentative of the target domain.

D. Ablation Study

As an ablation study, we report the performance of our
approach with different variations. To show the impact of
sampling of the latent space during the generation of images,
we report the results of two alternative approaches on the
downstream task described in Sec. IV-B. We report the per-
formance of the approach where we directly use the outputs
of FEN , wS and wT , i.e., the results of the style inversion, for
style mixing. We also report the performance of the approach
where we manually separate UAV and UGV images from
images generated by randomly sampling the latent space.
Tab. III shows the results of these approaches.

Our results show that the approach with manual classifica-
tion performs the best on average over all classes. The better
performance may be attributed to the higher diversity of gener-
ated images since we sample the entire latent space. However,
this approach requires human intervention. In contrast, the
approach with style inversion only performs poorly on weeds.
While this approach is relatively straightforward compared to
the other approaches, we find that the diversity of the UAV
dataset constrains the diversity of the generated images, which
may explain the poorer performance for the weed class. We
choose the sampling of the latent space approach because it
does not need manual effort and performs comparably with
the manual classification approach.

To show the effect of the label refinement, we report how
well the generated labels fit the generated images with and

(a) ÎS→T manually
labeled

(b) ŶS on ÎS (c) ŶS→T on ÎS→T

(Ours)

Fig. 7: Qualitative results of label fitting. We indicate labeled images
by overlaying the image with crops for green and weeds for red. We
refined ŶS to ŶS→T , which better matches ÎS→T .

without label refinement in Tab. IV. To evaluate this, we
manually label a subset of 10 generated images as ground
truth and calculate the mIoU of the generated labels.

We show qualitative comparison in Fig. 7. Overall, our label
refinement improves the mIoU of the generated labels. Fig. 7
supports the quantitative results, where our label refinement
better follows the boundaries of the crops. However, our
label refinement does decrease the mIoU of weeds, where our
approach mislabels crops as weeds.

V. CONCLUSION

In this paper, we presented a novel approach to improve
the performance of a crop-weed segmentation network for
agricultural robots in the target domain with a new field
and on a different robotic platform. Our approach exploits
StyleGAN2’s style mixing properties to generate diverse target
domain images in an unsupervised manner. We also proposed
an unsupervised method that generates target domain image-
label pairs for training the crop-weed segmentation network,
thereby improving the network’s performance in the target
domain. We implemented and evaluated our approach on UAV
and UGV image datasets and provided comparisons to existing
techniques. The experiments suggest that our approach is
suitable for improving the performance of the crop-weed
segmentation network on new fields with a UGV, given labeled
UAV images from an old field.

Despite the encouraging results, there is space for future
improvement. We will explore the adaptability of our approach
for larger domain gaps, e.g., between different crop types. In
this paper, we assumed that sufficient amount of unlabeled
target domain data is available to train our GAN, but in the
future we will look into scenarios with limited amount of data.

Our approach reduces the performance degradation in new
domains without the need for extra manually labeled data.
This is a step towards improving the feasibility of deploying
machine learning for robotics in the agricultural industry for
more efficient and sustainable solutions in the near future.
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