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Zusammenfassung

Eine der grundlegenden Bausteine, die es mobilen Systemen ermögli-
chen, autonom zu agieren, ist das Verständnis für die das System um-
gebenden Welt. Hierfür ist ein komplexer Verarbeitungsprozess nötig,
der ausgehend von den auf dem System verbauten Sensoren deren Da-

ten aufnimmt, analysiert, verarbeitet uns schließlich eine Interpretation der u. U.
dynamischen Szene liefert. Laserscanning-Sensoren, kurz LiDAR für “light detec-
tion and ranging sensors”, sind eine der am häufigsten benutzten Sensoren, da
sie robust gegenüber Beleuchtungsänderungen sind und hochgenaue Distanzmes-
sungen erlauben. Basierend auf LiDAR-Systemen können autonome Fahrzeuge
komplexe Aufgaben erfüllen, indem sie die Position und Art der Objekte in der
Szene verstehen, und daraus Handlungsalternativen entwickeln und schließlich
ausführen. Zwei wichtige dieser komplexen Aufgaben sind die Lokalisierung in
einer gegebenen Karte und simultane Kartenerzeugung und Lokalisierung, kurz
SLAM. Die Position des Systems in einer Karte ist die Vorraussetzung für viele
andere Aufgaben. Für eine Innenraum-Umgebung mit der Annahme einer stati-
schen Szene können traditionelle, auf LiDAR basierende Methoden für die globale
Lokalisierung oder SLAM-Algorithmen genaue Posenschätzungen zur Verfügung
stellen. Sollen sich allerdings selbstfahrende Fahrzeuge im Außenbereich in dyna-
misch verändernden Szenen bewegen, ist eine rein-geometrische Information für
eine sichere Lokalisierung und Kartierung nicht ausreichend. Ein Verstehen der
Szene auf einem höheren Abstraktionsniveau, das insbesondere die semantische
Information über die Welt beinhaltet, wird zum robusten und sicheren Einsatz
von selbstfahrenden Fahrzeugen in komplexen Umgebungen benötigt.

Der Hauptbeitrag dieser Doktorarbeit sind neue Methoden für die LiDAR-basierte
globale Lokalisierung und SLAM, die die Vorteile der semantischen Objektinfor-
mation ausnutzen. Die Arbeit gliedert sich in drei Teile: Der erste Teil behandelt
die Frage, wie SLAM und Lokalisierung durch semantische Information verbessert
werden kann. Es wird eine semantik-basierte LiDAR-SLAM Methode vorgestellt.
Diese benutzt die Ergebnisse eines semantischen neuronalen Netzes, um die Po-
sengenauigkeit zu verbessern und konsistente semantische Karten der Umgebung
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zu erstellen. Weiterhin schlagen wir ein neues neuronales Netz vor, das die Ähn-
lichkeit zwischen zwei LiDAR-Scans unter Ausnutzung von geometrischen und
semantischen Informationen ermitteln kann. Basierend auf diesem Ähnlichkeits-
maß kann unser Netzwerk erfolgreich Kandidaten für einen Schleifenschluss in
einem SLAM System finden. Außerdem ist es damit möglich, globale Lokalise-
rung auch bei Daten aus unterschiedlichen Jahreszeiten zu erreichen.

Der zweite Teil der Arbeit untersucht, welche semantischen Klassen für speziel-
le Aufgaben nützlich sind. In diesem Kontext schlagen wir für SLAM eine neue
Methode für die Segmentierung sich bewegender Objekte vor. Die Methode unter-
scheidet fahrende Fahrzeuge von statischen Objekten wie parkenden Fahrzeugen,
Gebäuden, etc. Mit Hilfe der speziellen semantischen Klassen “statisch” und “sich
bewegend” erhält man mit SLAM ein besseres Ergebnis als unter Verwendung von
einer allgmeinen semantischen Segmentierung. Für die Lokalisierung schlagen wir
vor, auf Stangen montierte Objekte wie Verkehrsschilder, Straßenlampen etc. zu
verwenden. Diese sind zeitlich stabil und lassen sich einfach von der Umgebung in
den Sensordaten unterscheiden. Mit Hilfe der Extraktion solcher Objekte aus den
Sensordaten erreichen wir zuverlässige und genaue Lokalisierung des Fahrzeugs
über lange Zeiträume hinweg.

Deep-learning basierte Ansätze können genaue punktweise semantische Ergeb-
nisse liefern. Die Qualität hängt allerdings stark von der Menge und Diversität
der verwendeten semantisch annotierten Trainingsdaten ab. Daher fokussieren
wir uns im dritten Teil der Arbeit auf Verfahren zur automatischen Annotation
für das Training von neuronalen Netzwerken. Für unsere speziellen Fragestel-
lungen profitieren wir hier von der Vereinfachung der semantischen Klassen von
einem Multi-Klassen-Problem hin zu einem Zwei-Klassen-Problem. Das macht
eine vollautomatische Annotation möglich. Mit unserem Ansatz verringern wir
die Äbhängigkeit von manuell durch den Menschen erzeugten Labels, sodass wir
für die Netzwerke vom überwachten zum sebstüberwachten (“self-supervised”)
Training wechseln können. Unsere Methoden können einfach auch mit anderen
Umgebungsdaten und anderen LiDAR Sensoren verwendet werden.

Alle hier in dieser Arbeit vorgeschlagenen Ansätze sind in begutachteten Kon-
ferenzbeiträgen und Zeitschriftenartikeln erschienen. Unser neuronales Netzwerk
“OverlapNet” für LiDAR-basierten Schleifenschluss und Lokalisierung ist für den
besten Artikel im Bereich Systeme auf der Konferenz “RSS: Robotics: Science and
Systems” 2020 nominiert worden. Unsere Methode zur Segmentierung von beweg-
ten Objekten wurde für eine Präsentation auf dem “Robotics Science and Systems
Pioneers event” 2021 ausgewählt. Um zukünftige Forschung in den behandelten
Themenfeldern zu erleichtern und zu fördern, stellen wir darüber hinaus für alle
hier beschriebenen Methoden open-source Code zur Verfügung.
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Abstract

Scene understanding is one of the fundamental building blocks that en-
able mobile systems to achieve autonomy. It is the process of perceiving,
analyzing, and elaborating an interpretation of a 3D dynamic scene ob-
served through the onboard sensors equipped on autonomous vehicles.

The light detection and ranging sensors, in short LiDAR, are one of the popular
sensors for autonomous vehicles to sense their surroundings, because they are ro-
bust to light changes and provide high-accurate range measurements. Based on
LiDAR sensors, autonomous vehicles can explore environments, understand the
locations and types of objects therein, and then make plans and execute actions
to fulfill complex tasks. Among them, key capabilities are localization within a
given map as well as simultaneous localization and mapping (SLAM), which pro-
vide the robot’s location, the necessary prerequisite for other downstream tasks.
Traditional LiDAR-based global localization and SLAM methods can provide ac-
curate pose estimates in indoor environments with the static world assumption.
However, as the demand for autonomous driving in dynamic outdoor environ-
ments grew, using only geometric and appearance information is not enough to
provide reliable localization and mapping results for autonomous systems. A
high-level understanding of the world, which includes the estimation of semantic
information, is required for robust and safe deployments of autonomous vehicles
in dynamic and complex real-world scenarios.

The main contributions of this thesis are novel approaches that exploit se-
mantic information to improve the performance of LiDAR perception tasks such
as SLAM and global localization for autonomous vehicles. This thesis consists
of three parts. The first part focuses on how to apply semantic information for
SLAM and localization. We present a semantic-based LiDAR SLAM method,
which exploits semantic predictions from an off-the-shelf semantic segmentation
network to improve the pose estimation accuracy and generate consistent seman-
tic maps of the environments. We furthermore propose a novel neural network
exploiting both geometric and semantic information to estimate the similarities
between pairs of LiDAR scans. Based on these similarity estimates, our network
can better find loop closure candidates for SLAM and achieve global localization
in outdoor environments across seasons.
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The second part investigates which type of semantics are useful for specific
tasks. In this context, we propose a novel moving object segmentation method
for SLAM. It aims at separating the actually moving objects such as driving
cars from static or non-moving objects such as buildings, parked cars, etc. With
more specific moving/non-moving semantics, we get a better SLAM performance
compared to setups using general semantics. For localization, we propose to use
pole-like objects such as traffic signs, poles, lamps, etc., due to their local dis-
tinctiveness and long-term stability. As a result, we obtain reliable and accurate
localization results over comparably long periods of time.

Deep learning-based approaches can provide accurate point-wise semantic pre-
dictions. They, however, strongly rely on the diversity and amount of labeled
training data that may be costly to obtain. In the third part, we therefore propose
approaches that can automatically generate labels for training neural networks.
Benefiting from specifying and simplifying the semantics for specific tasks, we
turn the comparably challenging multiclass semantic segmentation problem into
more manageable binary classification tasks, which makes automatic label gener-
ation feasible. Using our proposed automatic labeling approach, we alleviate the
reliance on expensive human labeling for supervised training of neural networks
and enable our method to work in a self-supervised way. Therefore, our pro-
posed task-specific semantic-based methods can be easily transferred to different
environments with different LiDAR sensors.

All our proposed approaches presented in this thesis have been published in
peer-reviewed conference papers and journal articles. Our proposed OverlapNet
for LiDAR-based loop closing and localization was nominated for the Best System
Paper at the Robotics: Science and Systems (RSS) conference in 2020. Our
proposed moving object segmentation method was selected to be presented at
the Robotics Science and Systems Pioneers event in 2021. Additionally, we have
made implementations of all our methods presented in this thesis open-source to
facilitate further research.
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Chapter 1

Introduction

The prospect of truly autonomous systems captured many people’s
imaginations with tremendous advances in artificial intelligence and
the emergence of deep learning in physical systems: rescue robots can
help with urban searching and rescuing; assistive healthcare robots are

contributing to just-in-time delivery tasks and the automation of hospital bioas-
say sample flow; agriculture ground-aerial collaborative robots are dedicated to
sustainable crop production; self-driving cars are expected to improve road safety
and efficiency. Autonomous mobile systems deployed in different complex envi-
ronments need to understand the surroundings via online perception to operate
safely and reliably. Most existing systems deployed today make relatively little
use of explicit high-level semantic information and typically only consider geo-
metric or appearance information of environments. Based on such information,
classical methods are inadequate for providing the needed level of safety assur-
ances, especially for safety-critical applications such as autonomous driving. A
richer and high-level understanding of the world, namely semantic information,
is required for robust and safe deployments of autonomous vehicles in dynamic
and complex real-world scenarios.

Multiple critical components are required for most autonomous mobile sys-
tems to achieve full autonomy. Simultaneous localization and mapping (SLAM)
and global localization within given maps are among the longest-running research
areas, as they are one of the first perception steps for mobile systems to operate
in real-world scenarios. Both, SLAM and global localization aim to understand
how the environment looks like and estimate the location of the robot in the
environment. The difference between them is that localization often calculates
the robot’s location, assuming a given map of the environment. In contrast, for
SLAM, the robot needs to build the map online and localize itself within the map
simultaneously.

1



One popular way to compute the robot’s location is to find reliable land-
marks in the map. Most existing methods work well by exploiting geometric and
appearance information in the indoor environment with the static world assump-
tion, which means that the world remains unchanged as the robot moves through
it, and the landmarks are all static. This assumption typically holds for short-
term indoor applications, but it does not hold for real-world autonomous driving,
where the application scenarios are highly dynamic, and long-term reliability is
essential. A high-level understanding of the environments, such as semantic in-
formation, is undoubtedly required to better deal with dynamic environments
and improve the robustness of SLAM and localization.

Semantic scene understanding has grown rapidly in the past decade with the
advent of deep learning techniques and neural networks. For autonomous driving,
semantic segmentation is one of the popular ways to obtain semantic information
about the environment. It exploits the online perception data and assigns a class
label to each data point in the input modality. One of the popular sensor modal-
ities for autonomous vehicles in outdoor environments is the light detection and
ranging (LiDAR) scanner. Due to their highly-accurate range measurements and
robustness to light condition changes, there are multiple LiDAR-based semantic
segmentation approaches [38, 101, 120] available for autonomous driving appli-
cations. Most of them operate online and provide accurate point-wise semantic
predictions.

Despite good semantic segmentation results that have been achieved, how to
use such semantics for autonomous driving downstream tasks, such as SLAM and
localization, is still under research. One of the open questions is about explicitly
or implicitly using semantics: should we design algorithms to explicitly exploit the
represented semantic information, or do we enable an algorithm to implicitly learn
task-relevant semantic concepts? Another question is which types of semantic
classes are more useful for specific tasks since certain semantic categories in the
scene can be more helpful than the others depending on the underlying application
scenarios. The training data problem is also frequently discussed since most
learning-based methods currently need a large number of manual labels, which is
very costly and labor-intensive. In summary, the key questions in the context of
using semantics for online perception tasks of autonomous vehicles are:

• How to use semantic segmentation results for downstream perception tasks?

• Which types of semantics are useful for specific perception tasks?

• How to generate semantic labels for training networks to learn semantics?

This thesis aims to give answers to these key questions and is divided into
three parts. In Part I, we exploit the semantic information provided by existing

2



1. Introduction

Raw point cloud Semantically annotated cloud Task-specific semantics

Figure 1.1: Semantic understanding of the environment. The left figure shows the
raw LiDAR point cloud. The figure in the middle illustrates the point cloud after
assigning semantic information to every point. The right figure illustrates different
task-specific semantics, including moving objects in red for SLAM and pole-like objects
for localization in green.

semantic segmentation networks and tackle the first question. We provide exam-
ples of using semantics both explicitly for 3D LiDAR SLAM and implicitly for
loop closing and global localization. In Part II, we address the second question.
We further provide examples of using task-specific semantics to improve the per-
formance of SLAM and localization. Finally, in Part III, we present our methods
that automatically generate labels for training segmentation networks to answer
the third question.

1.1 Main Contributions
The main contributions of this thesis are novel approaches that exploit seman-
tic information to improve the performance of LiDAR perception tasks such as
SLAM and localization for autonomous vehicles. These methods use the semantic
information from segmentation networks operating online on LiDAR data. We
first provide brief introductions to existing basic techniques used in this thesis
in Chapter 2, including LiDAR data processing, geometric-based LiDAR SLAM,
classical Monte Carlo localization (MCL), and existing semantic segmentation
networks. Those techniques are the foundation of our approaches, and a basic
understanding of them is key to understanding our contributions.

To answer three key questions about how to use semantic information to
improve the performance of LiDAR perception tasks, we divide the thesis into
three parts.

Part I provides examples that exploit the multiclass semantic information
provided by the existing semantic segmentation networks as shown in the mid-
dle of Figure 1.1 to improve the performance of LiDAR-based perception tasks.
Chapter 3 presents a novel semantic-based LiDAR SLAM approach for building
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semantic maps of the environments. It explicitly checks the semantic consistencies
between scans and the map to filter out dynamic objects and provide high-level
constraints during the pose estimation process. The proposed semantic-enhanced
SLAM generates more consistent maps with semantic information and more ac-
curate poses than the geometric-based method.

Instead of explicitly using the consistency of semantic classes, Chapter 4 pro-
poses a novel neural network that implicitly exploits different types of information
generated from LiDAR scans to provide similarity estimates between pairs of 3D
LiDAR scans. The proposed network uses both geometric and semantic informa-
tion of pairs of LiDAR scans as input and estimates the similarity between them
in an end-to-end fashion. We integrate the network into downstream tasks, like
loop closure detection and global localization, and improve their performance.

Instead of exploiting general semantic information from existing segmenta-
tion networks, Part II aims to answer the questions of which types of semantics
are more useful for different tasks. In Chapter 5, we introduce an example of
using moving/non-moving semantics for the SLAM task. Instead of detecting
all potentially movable objects such as vehicles or humans, the proposed method
aims at separating the actually moving objects such as driving cars from static
or non-moving objects such as buildings, parked cars, etc. As shown in the right
part of Figure 1.1, the red points represent moving objects, and the rest are
static points. It exploits sequential and temporal information to achieve an effec-
tive moving object segmentation (MOS), which is then used to improve the pose
estimation and mapping results of SLAM.

Unlike SLAM estimating the vehicle’s poses with respect to the on-the-fly
map, localization aims to localize the robot within a given map. Thus, for local-
ization, pole-like objects, such as traffic signs, poles, lamps, etc., are frequently
used landmarks in urban environments due to their local distinctiveness and long-
term stability, as highlighted in green in the right part of Figure 1.1. Chapter 6
presents a novel, accurate, and fast pole extraction approach that runs online
and has little computational demands, which can be used for a localization sys-
tem. It proposes to use pole-like objects as landmarks for MCL and achieve good
localization results.

One of the bottlenecks in supervised learning approaches is the necessary
amount of labeled data. Labeling training data for such approaches is a labo-
rious task and thus expensive. In Part III, we present two examples to auto-
matically generate labels for LiDAR-MOS and pole segmentation, which enable
us to train segmentation networks in a self-supervised way and further improve
the performance and generalization of SLAM and localization. By specifying and
simplifying the categories of semantics into moving and non-moving, we turn
the challenging multiclass semantic segmentation problem into an easier binary
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classification task, which makes automatic label generation for LiDAR-MOS fea-
sible. In Chapter 7, we propose a method that can exploit the temporal-spatial
dependence of the recorded sequential data and automatically generate labels for
LiDAR-MOS. Based on such automatically generated labels, we can train seg-
mentation networks in a self-supervised way to alleviate the lack of labeled data
and improve the performance of LiDAR-MOS.

Similarly, in Chapter 8, we directly use our geometric-based pole extractor
presented in Chapter 6 to automatically generate pseudo pole labels on LiDAR
point clouds. Then, we train a learning-based pole segmentation network in a
self-supervised fashion. This saves the costly human labeling effort and improves
the generalization of the learning-based network by providing training data from
different environments. In the end, we integrate our pole segmentation network
into MCL to achieve LiDAR-based localization in different environments.

In Chapter 9, we discuss and compare existing approaches in the field of
perception for autonomous vehicles related to this thesis. In Chapter 10, we
finally present our conclusion and provide outlooks on potential future works for
the perception tasks of autonomous vehicles.

Overall, this thesis presents novel approaches to exploit semantic information
to improve the performance of LiDAR perception tasks such as SLAM and local-
ization for autonomous vehicles. It provides studies of how to use semantics and
which types of semantics to use for SLAM and localization. We have made im-
plementations of all the methods presented in this thesis open-source to facilitate
further research. The links to each implementation are listed in Section 10.1.
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Chapter 2

Basic Techniques

We motivated in Chapter 1 why it is key for autonomous vehicles
to have semantic scene understanding capabilities. We also dis-
cussed different types of semantics that can be used for different
perception tasks of autonomous vehicles. To be more specific, in

this thesis, we exploit semantic information that can be estimated from LiDAR
data by semantic segmentation networks to improve LiDAR perception tasks such
as SLAM and localization. Therefore, a basic understanding of them is key to un-
derstanding our contributions. In this chapter, we focus on introducing the basic
techniques that are related to the development of this thesis, including LiDAR
data processing in Section 2.1, Monte Carlo localization in Section 2.2, Surfel-
based LiDAR SLAM in Section 2.3, and LiDAR-based semantic segmentation
in Section 2.4.

2.1 LiDAR Data Processing
The light detection and ranging (LiDAR) sensor, has become a commonly used
sensor component for most robotics applications over the past two decades. Laser
beams inside the LiDAR unit emit pulsed light waves into the surrounding envi-
ronment and use the time for each pulse to return to calculate the distance each
pulse travels. Repeating this process millions of times per second creates precise,
real-time 3D measurements of an environment.

There are mainly two types of LiDAR sensors in the market for robotics appli-
cations, mechanically rotating LiDAR and solid-state LiDAR. This thesis focuses
on mechanically rotating LiDAR as it is the more common type of LiDAR for
autonomous vehicles to this date. Therefore, from now on, we refer to mechani-
cally rotating LiDAR as LiDAR. We consider the data generated by one turn of
such LiDAR sensors as one LiDAR scan containing measurements during a full
360-degree sweep of an environment.
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Point cloud view Bird-eye view

Range-image view

Figure 2.1: Different representations for LiDAR data. The red, green, and blue arrows
represent the x-axis, y-axis, and z-axis. The red dash lines show the corresponding
zero-yaw view angles between the point cloud view, bird-eye view, and range-image
view. Colors in the range-image view varying from purple to yellow correspond to the
range of each measurement. In the bird-eye view, the colors present different heights
of the measurements.

There are multiple ways to represent one LiDAR scan for subsequent process-
ing. The most popular three representations are point cloud view, bird-eye view,
and range image view, as illustrated in Figure 2.1.

The point cloud is the most typical data product of most LiDAR instruments.
The raw format of the measurements from a LiDAR is just a collection of range
measurements and sensor orientation parameters. After initial processing, the
range and orientation for each laser shot are converted into a position in the local
3D coordinate system of the LiDAR sensor as follows:

x = r cos (α) sin (θ) ,

y = r cos (α) cos (θ) , (2.1)
z = r sin (α) ,

where (x, y, z)⊤ is the 3D coordinates of a LiDAR point, r is the corresponding
range measurement, and θ, α are azimuth and inclination orientation angles as
shown in Figure 2.2. This leads to a cloud of points, which is the base sub-
sequent processing and analysis. However, a typical rotating 3D LiDAR sen-
sor usually generates hundreds of thousand points in one frame, which is very
resource-consuming to process. Moreover, due to the distance-dependent spar-
sity and unordered feature of the raw point cloud, it is usually difficult to be
directly exploited by the downstream tasks. Especially for the methods exploit-
ing neural networks, processing 3D point cloud is still very challenging and not
available for applications in outdoor large-scale such as autonomous driving.
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Figure 2.2: Illustrating the generation of a range image from a point cloud. This figure
is adapted from the work by Fan et al. [59].

The bird-eye view is a 2D representation of a LiDAR scan, which projects
the point cloud into a grid map in the x-y plane, where each grid stores the
height information of the corresponding point. Since the bird-eye view is very
lightweight and provides a top-down overview of the environment, it is frequently
used for object detection [96], motion planning [121], and tracking [205]. However,
it introduces quantization error when dividing the space into voxels or pillars,
which may remove the distant objects that only have a few points. Furthermore,
the bird-eye view also results in the loss of points of vertical objects such as
buildings, trees, poles, etc., when projected from 3D space to the 2D x-y plane.

The range image view is a natural representation of the scan from a rotating
3D LiDAR such as a Velodyne or Ouster sensor. It can be seen as an intermediate
representation in the process of converting LiDAR raw measurements into a point
cloud. During the rotating scanning, the LiDAR sensor can generate a 2D matrix
given the elevation and azimuth resolutions, where each element in this 2D matrix
is a range measure, thus obtaining the so-called range image R. For a LiDAR
with h beams and w times shooting in one round of LiDAR scanning, it generates
range images with the height of h and width of w as illustrated in Figure 2.2.

For each pixel in range image with a certain pair of elevation and azimuth
angles, we can then calculate the 3D coordinates of the corresponding beam-end
point using Equation (2.1). The other way around, given a point cloud, there is
also a projection transformation to re-generate a range image. Specifically, we
convert each LiDAR point p = (x, y, z)⊤ via a mapping Π : R3 7→ R2 to spherical
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coordinates, and finally to image coordinates, as defined by(
u

v

)
=

(
1
2
[1− arctan(y, x) π−1] w

[1− (arcsin(z r−1) + fup) f−1] h

)
, (2.2)

where (u, v)⊤ are image coordinates, h and w are the height and width of the
desired range image representation, f = fup + fdown is the vertical field-of-view of
the sensor, and r = ‖pi‖2 is the range of each point. This procedure results in a
list of (u, v)⊤ tuples containing a pair of image coordinates for each point pi.

In this thesis, we use a range projection-based representation to process the
LiDAR point cloud data so that we can exploit well-studied 2D convolutional
neural networks, which have been widely used for image-based tasks. Further-
more, processing such lightweight and compact range images is more efficient
compared to processing point clouds directly, while not losing any raw data in-
formation compared to using 2D bird-eye views. Another benefit of using range
images together with neural networks is that we can exploit different types of
information obtained by LiDAR sensors altogether in an easy way. Using the
image indices, we extract for each pi, its range r, its x, y, and z coordinates, and
its remission e, and store them channel-wise in the image. Thus, each pixel in this
representation stores more than only a range. Consequently, we can easily exploit
extra information and add this as extra channels. Therefore, we can directly feed
this information to existing networks without changing the architectures, which
boosts the performance of our methods and, at the same time, makes our method
easily transferable to other new architectures.

2.2 Monte Carlo Localization
Monte-Carlo localization or MCL is a localization algorithm based on the particle
filter proposed by Dellaert et al. [44]. As used multiple times in this thesis, we
briefly illustrate the most important parts of MCL in this section.

A particle filter is a nonparametric implementation of the Bayes filter [178]
and is frequently used to estimate the state of a dynamic system. The key idea
is to represent a posterior by a set of hypotheses H with different importance
weights, which can be represented as:

H =
{(

xi, wi
)
| i = 1, . . . , N

}
, (2.3)

where x is the state vector of the dynamic system, w is the corresponding im-
portance weight, and N is the number of particles.

In localization scenario, we use each particle to represent a hypothesis for the
robot’s or autonomous vehicle’s 2D pose xt = (x, y, θ)⊤t at time t. Therefore, the
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Algorithm 1: The Monte Carlo localization.
Input: Particle set Ht−1, control input ut and observation zt

Output: Updated particle set Ht

1 H′
t = ∅ // intermediate set of particle proposals

2 foreach i ∈ {1, . . . , N} do
3 sample x̂i

t ∼ p(xt | xi
t−1,ut)

4 ŵi
t = η · p(zt | x̂i

t) // where η is a normalizer
5 H′

t = H′
t ∪ {

(
x̂i
t, ŵ

i
t

)
}

6 end
7 Ht = ∅
8 foreach j ∈ {1, . . . , N} do
9 resample the j-th particle of H′

t with probability wj
t

10 Ht = Ht ∪ {
(
xj
t , w

j
t

)
}

11 end

particle filter algorithm allows us to track multiple hypotheses of the robot’s pose
by recursively estimating the particle set Ht based on the estimate Ht−1 of the
previous time step. As shown in Algorithm 1, it also takes the control command
ut and the current observation zt as input, and the MCL can be summarized
with the following three steps: sampling by motion model, importance weighting
by observation model, and resampling the particles. In the first step, the pose
of each particle is updated with a prediction based on a motion model with the
control input ut, which can be formulated as sampling from the motion model
density p(xt | xi

t−1,ut) shown in line 3. Secondly, the expected observation from
the predicted pose of each particle is then compared to the actual observation zt

acquired by the robot to update the particle’s weight based on the observation
model shown in line 4. In doing so, it creates the next generation H′

t of parti-
cles based on the previous set Ht−1 of samples shown in line 5. In the end, the
resampling selects N samples from the set H′

t with higher probability samples.
The new set Ht is given by the drawn particles according to their weight distri-
bution in line 9. In the real application, the resampling is triggered whenever the
effective number Neff of particles drops below 50% of the sample size for the sake
of efficiency and avoiding particle depletion. Neff can be calculated adaptively:

Neff =
1∑N

i=1(w̄
i)2

, (2.4)

where w̄i refers to the normalized weight of particle i. Using Neff to trigger
the resampling, MCL can approximate the target distribution with low variance.
See [70] for details.

In brief, MCL realizes a recursive Bayesian filtering scheme. The key idea of
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Figure 2.3: An example of the Monte Carlo localization results from initialization
to achieving global localization. This figure is adapted from the original MCL paper
by Dellaert et al. [44]. The original data was recorded over 20 years ago at the University
of Bonn.

this approach is to maintain a probability density p(xt | z1:t,u1:t) of the pose xt

at time t given all observations z1:t up to time t and motion control inputs u1:t

up to time t. This posterior is updated as follows:

p(xt | z1:t,u1:t) = η p(zt | xt)

∫
p(xt | ut,xt−1) p(xt−1 | z1:t−1,u1:t−1) dxt−1,

(2.5)

where η is the normalization constant resulting from Bayes rule, p(xt | ut,xt−1) is
the motion model, and p(zt | xt) is the observation model.

As shown in Figure 2.3, MCL uses a set of weighted particles and can represent
arbitrary distributions. The particles are drawn from a proposal distribution.
After determining the importance weights, which account for the fact that the
target distribution is different from the proposal distribution, the resampling
step replaces low-weight particles with high-weight ones. These three steps are
repeated recursively, and the particles are likely to converge around the true pose
after several iterations of this recursive procedure.

2.3 Surfel-Based LiDAR SLAM
Simultaneous localization and mapping (SLAM) is also regarded as one of the
most important problems in building real autonomous mobile robots and is the
other main application that this thesis focuses on. Here, we briefly introduce
the surfel-based LiDAR SLAM (SuMa) originally proposed by Behley and Stach-
niss [15], which is used as the basic SLAM pipeline of this thesis.

Different from localization, where a map of an environment is usually given,
SLAM tackles the problem of acquiring a spatial map of an environment while
simultaneously localizing the robot within this map. There have been significant
advances in SLAM based on camera images [57, 125] and RGB-D data [41, 195]
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Figure 2.4: Visualization of maps from SuMa. The left figure shows the raw point
clouds, and the right one shows the surfel-based map generated by SuMa. The blue
car represents the current position of the vehicle and the purple line is the trajectory.

over the past few years. However, outdoor LiDAR-based SLAM is still challenging
due to the sparsity of LiDAR data and dynamic environments. Instead of using
feature-based solutions [69, 212], in this thesis, we choose SuMa as the baseline
SLAM method to build a dense map of the environment and, at the same time,
estimate the pose of the autonomous vehicle, as shown in Figure 2.4. The left
figure shows the aggregated raw point clouds, and the right figure visualizes the
surfel-based map generated by SuMa. As can be seen, surfels are small oriented
disks or surface elements, which maintain dense, detailed geometric information
of the point clouds. A surfel mapM is an unordered set of surfels s, where each
surfel is defined by a position vs ∈ R3, a normal ns ∈ R3, a radius rs ∈ R, and
also a stability log odds ratio ls maintained with a binary Bayes filter [178] to
determine if a surfel is stable or not.

In the following, we briefly introduce key components of SuMa. To make the
notations clear, we denote the transformation of a point pa in LiDAR scan Ca to
a point pb in LiDAR scan Cb by T ba ∈ R4×4, such that pb = T ba pa. We denote
Rba ∈ SO(3) and tba ∈ R3 as the corresponding rotational and translational
part of transformation T ba. This transformation can be equivalently expressed
by first applying a rotation Rba ∈ SO(3) and then a translation tba ∈ R3, i.e.,
pb = T ba pa = Rba pa + tba. We call the currently observed LiDAR scan Ct

at timestep t and a rendered world frame Cm from our map representation at
a given coordinate frame, where m ∈ {0, . . . , t}. The goal is to find a global
transformation TWCt ∈ R4×4 to associate the currently observed point cloud in
frame Ct to the world coordinate frame W . To this end, we calculate the global
transformation by applying recursively the pose changes TCmCt given the rendered
model at TWCt−1 , i.e.,

TWCt = TWC0TC0C1 · · ·TCt−2Ct−1TCmCt ,

= TWC0TC0C1 · · ·TCt−1Ct , (2.6)

where we assume TWC0 to be the identity Id ∈ R4×4.
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Figure 2.5: Overview of SuMa. There are four main modules in SuMa, including
(1) preprocessing, (2) odometry, (3) mapping, and (4) loop closing. This figure is
adapted from the original SuMa paper by Behley and Stachniss [15].

The overview of SuMa is shown in Figure 2.5. SuMa has four main modules,
including preprocessing, odometry, mapping, and loop closing. For each input
point cloud P = {p ∈ R3}, it estimates the pose TWCt at timestep t for the
LiDAR scan Ct and at the same time update the map using the new observation
obtained by frame Ct.

In the preprocessing module, SuMa uses the projection function Π : R3 7→ R2

as introduced in the previous section Equation (2.2) to generate a range image-
like vertex image VD : R2 7→ R3 mapping a 2D image coordinate (u, v)⊤ ∈ R2

to a point (x, y, z)⊤ ∈ R3. Each pixel in VD contains the 3D coordinates of
the corresponding LiDAR point. Given the vertex image VD, the preprocessing
module also computes for each coordinate (u, v)⊤ a corresponding normal in the
normal image ND using cross products over forward differences:

ND((u, v)) = (VD((u+ 1, v))− VD((u, v)))
× (VD((u, v + 1))− VD((u, v))) . (2.7)

Note that, we convert points p ∈ R3 and normals n ∈ R3 to corresponding
homogeneous coordinates before application of the affine transformation. For
the sake of simplicity, we do not show this operation explicitly in the following
derivations.

To estimate the odometry, i.e., the transformation TCt−1Ct , SuMa also renders
a pair of vertex image VM and normal image NM at the last pose estimate TWCt−1

from the current active surfel mapMactive. Mactive contains the last ∆active point
clouds up to timestep t − 1 i.e., tu ≥ t−∆active, which consists of only recently
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updated surfels to speed up the rendering. It then aligns the current observation
VD with the rendered map vertex image VM by incrementally minimize the point-
to-plane error:

E(VD,VM ,NM) =
∑
u∈VD

(
n⊤

u

(
T (k)

Ct−1Ct
u− vu

))2
, (2.8)

where each vertex u ∈ VD is projectively associated to a reference vertex vu ∈ VM
and its normal nu ∈ NM via

vu = VM
(
Π
(

T (k)
Ct−1Ct

u
))

, (2.9)

nu = NM

(
Π
(

T (k)
Ct−1Ct

u
))

. (2.10)

Here, T (k)
Ct−1Ct

corresponds to the current pose estimate of the frame-to-model
iterative closest point (ICP) algorithm [19, 80, 148, 195] at iteration k. The
classical ICP algorithm [19, 148] has been widely used for point clouds registra-
tion. Instead of registering the currently observed LiDAR scan to the previous
one, SuMa borrows the ideas from other modern SLAM methods [80, 195] to
register the current scan to the map representation, i.e., frame-to-model ICP, to
obtain better odometry estimates. For outlier rejection, SuMa filters out cor-
respondences exceeding a distance of δICP or having an angle difference larger
than θICP between nu and the corresponding normal of u in ND. It initializes
the ICP pose T (0)

Ct−1Ct
= TCt−2Ct−1 with the last pose increment to warm start the

optimization. The yielded TCt−1Ct is then used to update the global pose TWCt

via Equation (2.6).
With the current pose TWCt , SuMa updates its surfel map Mactive by ini-

tializing surfels for previously unseen areas, but also refining surfels of already
covered areas. It starts by computing the radius rs of potential new surfel s for
each vs ∈ VD and corresponding normal ns ∈ ND with the aim to cover roughly
the corresponding pixel of the vertex map:

rs =

√
2 ‖vs‖2 p

clamp(−v⊤
s ns ‖vs‖−1

2 , 0.5, 1.0)
, (2.11)

where p = max(w f−1
horiz, h f

−1
vert) corresponds to the pixel size and clamp(x, l, u) =

min(u,max(x, l)) to the clamping operation. Then, it renders VM , NM , and an
index map IM containing the indices of the nearest surfels in respect to the sensor
origin with the final estimated pose TWCt to determine visible model surfels and
their indices for updating. Each measurement point vs is projected to IM using
Equation (2.2) to find the corresponding model surfel s′. For updating the surfel
map, SuMa first determines if the data surfel s is compatible with the associated
surfel s′, i.e., it holds |n⊤

s′(vs− vs′)| < δM and ‖ns × ns′‖2< sin(θM). If the data
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2.3. Surfel-Based LiDAR SLAM

surfel is compatible, SuMa increases the stability of the associated model surfel.
If the measurement is more precise, i.e., rs < rs′ , SuMa updates the model surfel
using an exponential moving average:

v
(t)
s′ = (1− γ)vs + γ v

(t−1)
s′ , (2.12)

n
(t)
s′ = (1− γ)ns + γ n

(t−1)
s′ , (2.13)

r
(t)
s′ = rs . (2.14)

Otherwise, it decreases the stability of the associated model surfel s′ and initializes
a new surfel. If a measurement cannot be assigned to any existing surfel, it
initializes a new surfel.

For loop closing, SuMa searches for a potential loop closure in the inactive
map Minactive and tries to align the current measurements with the map. From
all frames inMinactive, TWC0 , . . . ,TWCt−∆Active

, SuMa considers only one candidate
in a radius δloop of the current pose, i.e., j∗ = arg minj∈0,...,t−∆Active‖tWCt− tWCj

‖2.
For a candidate j∗, it tries to align the current point cloud to the rendered
view at the corresponding pose TWCj∗ using the frame-to-model ICP. Since ICP
heavily depends on the initialization, it checks multiple initializations T (0)

Cj∗Ct

with respect to the old pose to compensate for rotational and translational drift.
Given the transformation between the current point cloud and the potential loop
closure, it transforms both into a common coordinate frame and generates a
composed vertex map VC and normal map NC . First, the vertex and normal
maps are filled by rendering the inactive map at the candidate position. From
the current vertex VD and normal map VD, it adds entries to the composed maps
if the point in VD is closer than the existing point in VC . It then computes
E(VD,VC ,NC), which is called map residual Emap, in respect to the composed
vertex set VC and NC . Only if this composed view is consistent with the current
measurements, SuMa considers the candidate as a valid loop closure candidate. A
possible alignment is consistent if the relative error between the residuals of that
composed map Emap and the residual in respect to the active map Eodom is small,
i.e., Emap < ϵresidual Eodom, and if there are enough inliers and valid points in the
rendered composed view. Once a loop closure candidate at timestep t is found,
SuMa then tries to verify it in the subsequent timesteps t+ 1, . . . , t+∆verification,
which ensures that it only adds consistent loop closures to the pose graph. In a
separate thread, a pose graph is optimized consisting of the relative poses of the
odometry and the loop closures. The optimized poses are then used for updating
the surfel map denoted as Moptimized.
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Online Segmentation Network

LiDAR Range Image Semantic Range Image

(1)

Semantic Point CloudPoint Cloud Data

(2) (3)

(4)

Figure 2.6: Illustrating the LiDAR range image-based semantic segmentation frame-
work. It first projects a point cloud into a LiDAR range image. Then, it uses a neural
network to estimate the semantic label for each pixel in the range image. In the end, it
assigns the semantic label to the corresponding point via back-projection or pixel-point
association. This figure is adapted from the original RangeNet++ paper by Milioto et
al. [120].

2.4 LiDAR-Based Semantic Segmentation

Scene understanding is a key building block of autonomous vehicles operating
in dynamic environments. One of the important tasks in scene understanding
is semantic segmentation, which assigns a class label to each data point in the
input modality, i.e., a 3D point obtained by a LiDAR sensor. This section intro-
duces the basic LiDAR-based semantic segmentation framework frequently used
in developing different perception tasks in this thesis.

Most state-of-the-art methods currently available for semantic segmentation
on point cloud data either do not have enough representational capacity to tackle
the task, or are computationally too expensive to operate at frame rate on a
mobile GPU. This makes them not suitable for supporting autonomous vehicles,
since offline processing is not possible for most tasks pertaining to autonomous
vehicles, such as affordance analysis of the scene, localization, obstacle avoidance,
etc. In this thesis, we, therefore, choose range-image-based methods [38, 101, 120]
to conduct semantic segmentation on point cloud data for online autonomous
vehicle applications.

The state-of-the-art methods for semantic segmentation are based on deep
convolutional neural networks (CNNs). There are usually four main modules
in range-image-based semantic segmentation networks, as shown in Figure 2.6,
(1) projecting the input point cloud into a range image representation, (2) feeding
range image into a deep-learning-based semantic segmentation neural network,
(3) semantically segmenting the range image, and (4) back-projecting the seman-
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2.4. LiDAR-Based Semantic Segmentation

tic labels from the semantic range image to the point cloud yielding the point-wise
semantic labels.

In the following, we briefly introduce each step of a typical range-image-based
semantic segmentation method. As introduced in Section 2.1, the range image
representation is a natural representation of the scan from a rotating 3D LiDAR
such as a Velodyne or Ouster sensor. It can be seen as an intermediate represen-
tation in the process of converting LiDAR raw measurements into a point cloud.
Therefore, a range image pixel is one-to-one corresponds to point cloud point via
the projection function as introduced in Equation (2.2). Benefiting from the 2D
image-like representation, we can exploit well-studied image-base CNNs, which
can be computed fast on a GPU.

There are several existing CNNs that aim at range image-based semantic seg-
mentation [38, 101, 120]. Most of them use an encoder-decoder hour-glass-shaped
architecture, which is depicted in the middle of Figure 2.6. These deep hour-glass-
shaped segmentation networks have an encoder with significant downsampling,
which allows the higher abstraction deep kernels to encode context information
while running faster than their non-downsampling counterparts. In this thesis,
we focus more on how to use the semantic information obtained by such range-
image-based CNNs instead of changing their architecture. Thus, the methods
introduced in this thesis are not bound to a specific semantic segmentation net-
work, and we test three off-the-shelf range-image-based semantic segmentation
networks, as proposed by Milioto et al. [120], Cortinhal et al. [38], and Li et
al. [101]. Milioto et al. [120] propose RangeNet++, which uses the Darknet [140]
backbone architecture designed for image classification and object detection tasks
and is very descriptive, achieving the state-of-the-art performance on these tasks.
RangeNet makes it usable for range images and trains it with semantic labels
provided by the SemanticKITTI dataset [12] to achieve semantic segmentation
for LiDAR range images. Cortinhal et al. [38] propose SalsaNext using another
encoder-decoder backbone, SalsaNet [1]. SalsaNext gains a better performance
by exploiting a Bayesian treatment and the prediction of uncertainty for seman-
tic segmentation. In contrast to them, MINet proposed by Li et al. [101] focuses
more on the runtime performance and operates much faster than its counterparts
on the embedded platforms, which can be deployed for real autonomous driving
applications. To achieve this, it uses a multi-scale backbone [145] together with
additional dense interactions between different scales avoiding redundant compu-
tations. For more details about the network architectures, we refer to the original
papers [38, 101, 120].

The output of such image-based CNNs is pixel-wise semantic predictions.
To obtain the final point-wise semantic results, such range-image-based methods
usually use the back-projection. Since the encoder-decoder CNNs usually pro-
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vide blurry outputs during inference, it leads to many wrong predictions during
the back-projection to the point cloud, especially on the borders of objects. To
eliminate such artifacts, most range-image-based methods use a GPU-enabled,
k-nearest neighbor (kNN) search operating directly in the input point cloud and
use the neighborhood voting to filter out the wrong predictions.

The whole procedure results in semantic labels for each point present in the
entire input scan in a lossless way. We will then use such semantic information
to improve the performance of perception tasks, such as LiDAR SLAM and lo-
calization. We will give detailed information on our proposed approaches and
contributions in the following chapters.
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Chapter 3

Semantic LiDAR Odometry and
Mapping

Accurate localization and reliable mapping of unknown environments
are fundamental for most autonomous mobile systems. Such sys-
tems often operate in highly dynamic environments, which makes the
generation of consistent maps more difficult in real-world scenarios.

Semantics provide a richer source of information and a high-level understanding
of the mapped area, which is needed to enable intelligent navigation behavior.
For example, a self-driving car must be able to reliably find a location to legally
park, or pull over in places where a safe exit of the passengers is possible – even
at locations that were never seen, and thus not accurately mapped before.

In this chapter, we focus on the problem of how to build an accurate map of
the dynamic environment, and at the same time, localize an autonomous vehicle
within the map reliably and accurately. We introduce a semantic-based approach
to simultaneous localization and mapping using only LiDAR data. We build
our approach based on SuMa, a 3D LiDAR SLAM method (see Section 2.3),
and incorporate semantic information obtained from a semantic segmentation
generated by a fully convolutional neural network, RangeNet++ (see Section 2.4).
This allows us to generate high-quality semantic maps, while at the same time
improve the geometry of the map and the quality of the odometry in outdoor
dynamic environments.

For the purpose of building an online semantic SLAM method, we perform
highly efficient processing on the LiDAR range image, which is a spherical pro-
jection of the point cloud as introduced in Section 2.4. We first use the semantic
segmentation neural network to estimate the semantic class labels for each point
of the LiDAR scan. Such semantic segmentation results on the 2D spherical pro-
jection are then back-projected to the three-dimensional point cloud. However,
the back-projection introduces artifacts, especially on the board of objects, which
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Figure 3.1: Semantic map of the KITTI dataset generated with our approach using only
LiDAR scans. The map is represented by surfels that have a class label indicated by the
respective color. Overall, our semantic SLAM pipeline is able to provide high-quality
semantic maps with a high metric accuracy.
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3. Semantic LiDAR Odometry and Mapping

leads to inconsistent semantic mapping results. We propose to reduce the arti-
facts by a two-step process which uses first an erosion and then recovers with
depth-based flood-fill of the semantic labels. The semantic labels are then inte-
grated into the surfel-based map representation, and exploited to better register
new observations to the already built map. We furthermore use the semantics to
filter moving objects by checking semantic consistency between the new observa-
tion and the world model when updating the map. In this way, we reduce the
risk of integrating dynamic objects into the map. Figure 3.1 shows an example
of our semantic map representation.

The main contribution of this chapter is an approach to integrate semantics
into a surfel-based map representation and a method to filter dynamic objects ex-
ploiting these semantic labels. In sum, we claim that we are (i) able to accurately
map an environment, especially in situations with a large number of moving ob-
jects, and we are (ii) able to achieve a better performance than the same mapping
system by simply removing possibly moving objects in general environments, in-
cluding urban, countryside, and highway scenes. We experimentally evaluated
our approach on challenging sequences of the KITTI [67] dataset. The evaluation
results show the superior performance of our semantic surfel-mapping approach,
which we call SuMa++, compared to purely geometric surfel-based mapping and
the mapping results by removing all potentially moving objects based on class
labels.

3.1 Semantic Surfel-Based SLAM
As illustrated in Figure 3.2, we build our semantic SLAM approach based on
SuMa [15] pipeline. We extend it by integrating semantic information provided
by a semantic segmentation neural network, named RangeNet++ [120], using
spherical projections of the point clouds. This information is then used to filter
dynamic objects and to add semantic constraints to the scan registration, which
improves the robustness and accuracy of the pose estimation by SuMa.

3.1.1 Surfel-Based Mapping

We have introduced SuMa [15] in Section 2.3. Here we only briefly recap the
main concepts relevant to our semantic-based approach.

Following SuMa, we denote the transformation of a point in a point cloud
pA ∈ PA in coordinate frame A to a point pB ∈ PB in coordinate frame B by
TBA ∈ R4×4, such that pB = TBApA. Let RBA ∈ SO(3) and tBA ∈ R3 denote
the corresponding rotational and translational part of transformation TBA. We
call the coordinate frame at timestep t as Ct. Each variable in coordinate frame
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Figure 3.2: Pipeline overview of our proposed approach. We integrate semantic pre-
dictions into the SuMa pipeline in a compact way: (1) The input is only the LiDAR
scan P. (2) Before processing the raw point clouds P, we first use a semantic segmen-
tation from RangeNet++ to predict the semantic label for each point and generate a
raw semantic image Sraw. (3) Given the raw image, we generate a refined semantic
image SD in the preprocessing module using multiclass flood-fill. (4) During the map
updating process, we add a dynamic detection and removal module which checks the
semantic consistency between the new observation SD and the world model SM and
remove the outliers. (5) Meanwhile, we add extra semantic constraints into the ICP
process to make it more robust to outliers.

Ct is associated to the world frame W by a pose TWCt ∈ R4×4, transforming
the observed point cloud into the world coordinate frame. SuMa first generates
a spherical projection of the point cloud P = {p ∈ R3} at timestep t, the so-
called vertex image VD, which contains a group of vertices VD = {u ∈ R3}.
Each vertex u stores the 3D coordinates (x, y, z)⊤ of the corresponding LiDAR
point p. The vertex image is then used to generate a corresponding normal image
ND = {n ∈ R3}. Given this information, SuMa determines via projective ICP in
a rendered map view VM and NM at timestep t− 1 the pose update TCt−1Ct and
consequently TWCt by chaining all pose increments.

The map is represented by surfels, where each surfel is defined by a position
vs ∈ R3, a normal ns ∈ R3, and a radius rs ∈ R. Each surfel additionally carries
two timestamps: the creation timestamp tc and the timestamp tu of its last update
by a measurement. Furthermore, a stability log odds ratio ls is maintained using
a binary Bayes filter [178] to determine if a surfel is considered stable or unstable.

3.1.2 Semantic Segmentation
For each frame, we use RangeNet++ [120] to predict a semantic label for each
point and generate a semantic image SD. As described in Section 2.4, RangeNet++
semantically segments a range image generated by a spherical projection of each
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Algorithm 2: Flood-fill for refining SD.

Input: semantic image Sraw and the corresponding vertex image VD
Output: refined image SD

1 Let Ns be the set of neighbors of a pixel in a semantic image s ∈ S
within a filter kernel of size d. ϵrej is the rejection threshold. 0

represents an empty pixel with label 0.
2 foreach su ∈ Sraw do
3 Let Seroded

raw (u) = su
4 foreach n ∈ Nsu do
5 if ysu 6= yn then
6 Let Seroded

raw (u) = 0

7 break
8 end
9 end

10 end
11 foreach su ∈ Seroded

raw do
12 Let SD(u) = su
13 foreach n ∈ Nsu do
14 if ‖u− un‖2< ϵrej ‖u‖2 then
15 Let SD(u) = n if ysu = 0

16 break
17 end
18 end
19 end

laser scan. The availability of point-wise labels in the field of view of the sensor
makes it also possible to integrate the semantic information into the map. To
this end, we assign each surfel the inferred semantic label yu of the correspond-
ing vertex u and the confidence P (yu | u) of that label given by the semantic
segmentation network.

3.1.3 Refined Semantic Map
Due to the projective input and the blob-like outputs produced as a by-product
of in-network down-sampling of RangeNet++, we have to deal with errors of the
semantic labels, when the labels are re-projected to the map. To reduce these
errors, we use a flood-fill algorithm, summarized in Algorithm 2. It is inside the
preprocessing module, which uses depth information from the vertex image VD
to refine the semantic image SD.
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(e) Zoom in

(a) Colored raw image

(b) Eroded image

(c) Filled-in image

(d) Corresponding range image from

Figure 3.3: Visualization for each step of the proposed flood-fill algorithm. Given the
(a) raw semantic image Sraw, we first use an erosion to remove boundary labels and
small areas of wrong labels resulting in (b) the eroded image Serodedraw . (c) We then
finally fill-in eroded labels with neighboring labels to get a more consistent result SD.
Black points represent empty pixels with label 0. (d) Shows the depth and (e) the
details inside the areas with the dashed borders.

The input to the flood-fill is the raw semantic image Sraw generated by the
RangeNet++ and the corresponding vertex image VD. The value of each pixel in
the image Sraw is a semantic label. The corresponding pixel in the vertex image
contains the 3D coordinates of the nearest 3D point in the LiDAR coordinate
system. The output of the approach is the refined semantic image SD.

Considering that the prediction uncertainty of object boundaries is higher
than that of the center of an object [102], we use the following two steps in the
flood-fill. The first step is an erosion that removes pixels where the neighbors
within a kernel of size d show at least one different semantic label resulting in
the eroded image Seroded

raw . Combining this image with the depth information
generated from the vertex image VD, we then fill-in the eroded image. To this
end, we set the label of an empty boundary pixel to the neighboring labeled
pixels if the distances of the corresponding points are consistent, i.e., less than a
threshold ϵrej.

Figure 3.3 shows the intermediate steps of this algorithm. Note that the
filtered semantic map does contain less artifacts compared to the raw predictions.
For instance, the wrong labels on the wall of the building are mostly corrected,
which is illustrated in Figure 3.3(e).
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3.1.4 Filtering Dynamics Using Semantics
Most existing SLAM systems rely on geometric information to represent the en-
vironment and associate observations to the map. They work well under the
assumption that the environment is mostly static. However, the world is usu-
ally dynamic, especially when considering driving scenarios, and several of the
traditional approaches fail to account for dynamic scene changes caused by mov-
ing objects. Therefore, moving objects can cause wrong associations between
observations and the map in such situations, which must be treated carefully.
Commonly, SLAM approaches use some kind of outlier rejection, either by di-
rectly filtering the observation or by building map representations that filter out
changes caused by moving objects.

In our approach, we exploit the labels provided by the semantic segmenta-
tion to handle moving objects. More specifically, we filter dynamics by checking
semantic consistency between the new observation SD and the world model SM ,
when we update the map. If the labels are inconsistent, we assume those surfels
belong to an object that moved between the scans. Therefore, we add a penalty
term to the computation of the stability term in the recursive Bayes filter. After
several observations, we can remove the unstable surfels. In this way, we achieve
a detection of dynamics and finally a removal.

More precisely, we penalize that surfel by giving a penalty odds(ppenalty) to its
stability log odds ratio ls, which will be updated as follows:

l(t)s = l(t−1)
s

+ odds
(
pstable exp

(
−α2

σ2
α

)
exp

(
−d2

σ2
d

))
− odds(pprior)− odds(ppenalty), (3.1)

where odds(p) = log(p (1 − p)−1), pstable and pprior are probabilities for a stable
surfel given a compatible measurement and the prior probability, respectively.
The terms exp(−x2σ−2) are used to account for noisy measurements, where α is
the angle between the surfel’s normal ns and the normal of the measurement to be
integrated, and d is the distance of the measurement in respect to the associated
surfel. The measurement normal is taken from ND and the correspondences from
the frame-to-model ICP as introduced in Section 2.3.

Instead of using semantic information, Pomerleau et al. [138] propose a method
to infer the dominant motion patterns within the map by storing the time history
of velocities. In contrast to our approach, their method requires a given global
map to estimate the velocities of points in the current scan. Furthermore, their
robot pose estimate is assumed to be rather accurate.

In Figure 3.4, we illustrate the effect of our filtering method compared to
naively removing all surfels from classes corresponding to movable objects. When
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(a) SuMa (b) SuMa++ (c) SuMa_nomovable

Figure 3.4: Effect of the proposed filtering of dynamics. For all figures, we show
the color of the corresponding label, but note that SuMa does not use the semantic
information. (a) Surfels generated by SuMa; (b) our method; (c) remove all potentially
moving objects.

utilizing the naive method, surfels on parked cars are removed, even though
these might be valuable features for the incremental pose estimation. With the
proposed filtering, we can effectively remove the dynamic outliers and obtain
a cleaner semantic world model, while keeping surfels from static objects, e.g.,
parked cars. These static objects are valuable information for the ICP scan
registration and simply removing them can lead to failures in scan registration
due to missing correspondences.

3.1.5 Semantic ICP
To further improve the pose estimation using the frame-to-model ICP, we also
add semantic constraints to the optimization problem, which helps to reduce the
influence of outliers. Our error function to minimize for ICP is given by:

E(VD,VM ,NM) =
∑
u∈VD

wu

(
n⊤

u

(
T (k)

Ct−1Ct
u− vu

))2
︸ ︷︷ ︸

ru

, (3.2)

where ru and wu are the corresponding residual and weight, respectively. Each
vertex u ∈ VD is projectively associated to a reference vertex vu ∈ VM and its
normal nu ∈ NM via

vu = VM
(
Π
(

T (k)
Ct−1Ct

u
))

, (3.3)

nu = NM

(
Π
(

T (k)
Ct−1Ct

u
))

. (3.4)

For the minimization, we use Gauss-Newton and determine increments δ by
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(a) Semantic image of current observation SD

(b) Semantic image of world model SM

(c) Visualized weights image

Figure 3.5: Visualization of semantic ICP. (a) semantic image SD for the current laser
scan, (b) corresponding semantic image SM rendered from the model, (c) the weights
image during the ICP. The darker the pixel, the lower the weight of the corresponding
pixel.

iteratively computing:

δ =
(
J⊤WJ

)−1 J⊤Wr, (3.5)

where W ∈ Rn×n is a diagonal matrix containing weights wu for each residual
ru, r ∈ Rn is the stacked residual vector, and J ∈ Rn×6 the Jacobian of r with
respect to the increment δ. Besides the hard association and weighting by a Huber
norm, we add extra constraints from higher level semantic scene understanding
to weight the residuals. In this way, we can combine semantics with geometric
information to make the ICP process more robust to outliers.

Within ICP, we compute the weight w(k)
u for the residual r(k)u in iteration k as

follows:

w(k)
u = ρHuber

(
r(k)u

)
Csemantic(SD(u),SM(u)) I

{
l(k)s ≥ lstable

}
, (3.6)

where ρHuber(r) corresponds to the Huber norm, given by:

ρHuber(r) =

{
1 , if |r| < δ

δ|r|−1 , otherwise.
. (3.7)

For each vertex u, the corresponding semantic image stores both the seman-
tic class yu and the estimated probability of that label P (yu | u), leading to
SD(u) = (yu, P (yu | u)). The same holds for the rendered semantic image of the
map. The semantic compatibility Csemantic

(
(yu, P (yu | u)), (yvu , P (yvu | vu))

)
is

defined as:

Csemantic(·, ·) =

{
P (yu | u) , if yu = yvu

1− P (yu | u) , otherwise.
, (3.8)
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which is using the probability of the predicted label to weight the residual. By
I{a}, we denote the indicator function that is 1 if the argument a is true, and 0

otherwise.
Figure 3.5 shows the weighting for a highway scene with two moving cars

visible in the scan, see Figure 3.5(a). Note that our filtering of dynamics using
the semantics, as described in Section 3.1.4, removed the moving cars from the
map, see Figure 3.5(b). Therefore, we can also see a low weight corresponding to
lower intensity in Figure 3.5(c), since the classes of the observation and the map
disagree.

3.2 Experimental Evaluation

Our experimental evaluation supports our main claims that we are (i) able to
accurately map even in situations with a considerable amount of moving objects
and we are (ii) able to achieve better performance than simply removing possi-
bly moving objects in general environments, including urban, countryside, and
highway scenes.

To this end, we evaluate our approach using data from the KITTI Vision
Benchmark [67], where we use the provided point clouds generated by a Velo-
dyne HDL-64E S2 recorded at a rate of 10Hz. To evaluate the performance of
odometry, the dataset proposes to compute relative errors with respect to trans-
lation and rotation averaged over different distances between poses and averaging
it. The ground truth poses are generated using pose information from an inertial
navigation system with an RTK-GPS.

In the following, we compare our proposed approach denoted by SuMa++
against the original surfel-based mapping denoted by SuMa, and SuMa with the
naive approach of removing all movable classes (cars, buses, trucks, bicycles, mo-
torcycles, other vehicles, persons, bicyclists, motorcyclist) given by the semantic
segmentation denoted by SuMa_nomovable.

The RangeNet++ for the semantic segmentation was trained using point-
wise annotations [13] using all training sequences from the KITTI Odometry
Benchmark, which are the labels available for training purposes. This includes
sequences 00 to 10, except for sequence 08 which is left out for validation.

We tested our approach on an Intel Xeon(R) W-2123 with 8 cores @3.60
GHz with 16 GB RAM, and an Nvidia Quadro P4000 with 8 GB RAM. The
RangeNet++ needs on average 75ms to generate point-wise labels for each scan
and the surfel-mapping needs on average 48ms, but we need at most 190ms to
integrate loop closures in some situations (on sequence 00 of the training set with
multiple loop closures).
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Table 3.1: Odometry results on KITTI Road dataset

Sequence Environment
Approach

SuMa SuMa_nomovable SuMa++

30 country 0.38/0.96 0.39/0.97 0.38/0.90
31 country 1.54/2.02 1.66/2.13 1.19/2.02
32 country 1.38/1.70 1.63/1.76 1.00/1.57
33 highway 1.61/1.79 1.72/1.80 1.67/1.87
34 highway 0.79/1.17 0.70/1.14 0.60/1.09
35 highway 5.11/26.8 3.20/1.22 2.90/1.11
36 highway 0.93/1.31 0.95/1.30 0.93/1.40
37 country 0.65/1.51 0.62/1.36 0.60/1.48
38 highway 1.07/1.66 1.04/1.46 0.89/1.42
39 country 0.46/1.04 0.47/0.98 0.44/1.05
40 country 1.09/18.0 0.79/1.92 0.75/1.95
41 highway 1.24/15.6 0.92/1.46 1.14/1.67

Average 1.35/6.13 1.17/1.46 1.04/1.46

Relative errors averaged over trajectories of 5 to 400m length: relative rotational er-
ror in deg per 100m / relative translational error in %. Bold numbers indicate top
performance for laser-based approaches. We rename the KITTI road raw dataset:
‘2011_09_26_drive_0015_sync’-‘2011_10_03_drive_0047_sync’ into sequences 30-41.

3.2.1 KITTI Road Sequences

The first experiment is designed to show that our approach is able to generate
consistent maps even in situations with many moving objects. We show results on
sequences from the road category of the raw data of the KITTI Vision Benchmark.
Note that these sequences are not part of the odometry benchmark, and therefore
no labels are provided for the semantic segmentation, meaning that our network
learned to infer the semantic classes of road driving scenes, and it is not simply
memorizing. These sequences, especially the highway sequences, are challenging
for SLAM methods, since here most of the objects are moving cars. Moreover,
there are only sparse distinct features on the side of the road, like traffic signs
or poles. Building corners or other more distinctive features are not available
to guide the registration process. In such situations, wrong correspondences on
consistently moving outliers (like cars in a traffic jam) often lead to wrongly
estimated pose changes and consequently inconsistencies in the generated map.

Figure 3.6 shows an example generated with SuMa and the proposed SuMa++.
In the case of the purely geometric approach, we clearly see that the pose cannot
be correctly estimated, since the highlighted traffic signs show up at different
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(d) Relative translation error plot for each time step

Figure 3.6: Qualitative results. (a) SuMa without semantics fails to correctly esti-
mate the motion of the sensor due to the consistent movement of cars in the vicinity
of the sensor. The frame-to-model ICP locks to consistently moving cars leading to
the map inconsistencies, highlighted by rectangles. (b) By incorporating semantics, we
are able to correctly estimate the sensor’s movement and therefore get a more consis-
tent map of the environment and a better estimate of sensor pose via ICP. The color
of the 3D points refers to the timestamp when the point has been recorded for the
first time. (c) Corresponding front-view camera image, where we highlight the traffic
signs. (d) Corresponding relative translation error plot for each time step. The dots
are the calculated relative translational errors at each timestamp, and the curves are
polynomial fitting results of those dots for better visualization and comparison.
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SuMa SuMa++SuMa_nomovableGround Truth

(a) Sequence 32 (b) Sequence 35

(c) Sequence 40 (d) Sequence 41

Figure 3.7: Trajectories of different methods test on KITTI road dataset.

locations leading to large inconsistencies. With our proposed approach, where
we are able to correctly filter the moving cars, we instead generate a consis-
tent map as evident by the highlighted consistently mapped traffic signs. We
also plot the relative translational errors of odometry results of both SuMa and
SuMa++ in this example. The dots represent the relative translational errors in
each timestamp and the curves are polynomial fitting results given the dots. It
shows that SuMa++ achieves more accurate pose estimates in such a challenging
environment with many outliers caused by moving objects.

Table 3.1 shows the relative translational and relative rotational error and
Figure 3.7 shows the corresponding trajectories for different methods tested on
this part of the dataset. Generally, we see that our proposed approach, SuMa++,
generates more consistent trajectories and achieves in most cases a lower transla-
tional error than SuMa. Compared to the baseline of just removing all possibly
moving objects, SuMa_nomovable, we see very similar performance compared
to SuMa++. This confirms that the major reason for the worse performance
of SuMa in such cases is the inconsistencies caused by actually moving objects.
However, we will show in the next experiments that removing all potentially mov-
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Table 3.2: Odometry results on KITTI odometry benchmark (training set)

Sequence Environment
Approach

SuMa SuMa_nomovable SuMa++

00* urban 0.23/0.68 22.0/58.0 0.22/0.64
01 highway 0.54/1.70 0.57/1.70 0.46/1.60
02* urban 0.48/1.20 25.0/63.0 0.37/1.00
03 country 0.50/0.74 0.45/0.67 0.46/0.67
04 country 0.27/0.44 0.26/0.37 0.26/0.37
05* country 0.20/0.43 14.0/36.0 0.20/0.40
06* urban 0.30/0.54 0.22/0.47 0.21/0.46
07* urban 0.54/0.74 0.21/0.34 0.19/0.34
08* urban 0.38/1.20 13.0/32.0 0.35/1.10
09* urban 0.22/0.62 13.0/45.0 0.23/0.47
10 country 0.32/0.72 12.0/19.0 0.28/0.66

Average 0.36/0.83 9.24/23.3 0.29/0.70

Relative errors averaged over trajectories of 100 to 800m length: relative rotational
error in deg per 100m / relative translational error in %. Sequences marked with an
asterisk contain loop closures. Bold numbers indicate best performance in terms of
translational error.

ing objects can also have negative effects on the pose estimation performance in
urban environments.

3.2.2 KITTI Odometry Benchmark
The second experiment is designed to show that our method performs superior
compared to simply removing certain semantic classes from the observations.
This evaluation is performed on the KITTI Odometry Benchmark1.

Table 3.2 shows the relative translational and relative rotational errors. In
most sequences, we can see a similar performance of SuMa++ outperforming
its geometric and simply removing certain semantic classes counterparts. More
interestingly, the baseline method SuMa_nomovable diverges, particularly in ur-
ban scenes. This might be counter-intuitive since these environments contain a
considerable amount of man-made structures and other more distinctive features.
But there are two reasons contributing to this worse performance that become
clear when one looks at the results and the configuration of the scenes where
mapping errors occur. First, even though we try to improve the results of the
semantic segmentation, there are wrong predictions that lead to a removal of

1KITTI Odometry: http://www.cvlibs.net/datasets/kitti/eval_odometry.php.
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surfels in the map that are actually static. Second, the removal of parked cars is
problematic as these are good and distinctive features for aligning scans. Both
effects contribute to making the surfel map sparser. This is even more critical as
parked cars are the only distinctive or reliable features. In conclusion, the simple
removal of certain classes is at least in our situation sub-optimal and can lead to
worse performance.

To evaluate the performance of our approach in unseen trajectories, we up-
loaded our results for server-side evaluation on unknown KITTI test sequences so
that no parameter tuning on the test set is possible. Thus, this serves as a good
proxy for the real-world performance of our approach. In the test set, we achieved
an average rotational error of 0.0032 deg/m and an average translational error of
1.06%, which is an improvement in terms of translational error, when compared
to 0.0032 deg/m and 1.39% of the original SuMa.

3.3 Conclusion
In this chapter, we presented a novel approach for building semantic maps for
autonomous driving enabled by a LiDAR-based semantic segmentation of the
point cloud which does not require any other types of sensor data. We exploit
this information to improve pose estimation accuracy in otherwise ambiguous
and challenging situations. In particular, our method exploits semantic con-
sistency between scans and the map to filter out dynamic objects and provide
high-level constraints during the ICP process. This allows us to successfully
combine semantic and geometric information based solely on 3D LiDAR range
scans to achieve considerably better pose estimation accuracy than the purely
geometric approach. We evaluated our approach first on the KITTI road dataset
showing that our approach is able to generate consistent maps even in situations
with many moving objects. We also provide the evaluation on the KITTI Vision
Benchmark dataset showing the advantages of our approach in comparison to
purely geometric approaches and methods that simply remove certain semantic
classes from the observations.
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Chapter 4

Deep Learning-Based LiDAR
Loop Closing and Localization

In the previous chapter, we introduced a semantic-based LiDAR SLAM sys-
tem to build semantic maps for autonomous driving in dynamic environ-
ments. Despite encouraging results achieved by our method, there are
several avenues for further exploiting semantic information for SLAM and

localization. For example, in this chapter, we design a novel neural network that
uses multiple information generated from LiDAR as input, including semantics,
to better find the loop closures for SLAM and also localize the vehicle in a given
map.

Nowadays, LiDAR sensors are key components of the sensor suite of au-
tonomous vehicles that allows them to perceive and navigate the world. Especially
mapping and localization systems can leverage the range information provided
by LiDAR sensors covering the 360 deg surroundings of the vehicle. As discussed
in the previous chapter, accurate odometry estimation enhanced with semantic
information allows us to build locally consistent maps. However, the estimated
poses evidently drift over time due to the incremental estimation process and
sensor noises. A reliable loop closure detection enables SLAM systems to correct
accumulated drift and to build globally consistent maps. These globally consis-
tent maps can then be used to localize the vehicle. Both tasks, the loop closure
detection and localization, need to determine the similarity between pairs of laser
range scans. The similarity of laser range scans of the same scene should be high
regardless of the sensor locations used to capture them, but should be low if the
sensor observes different parts of the environment.

In this chapter, we propose a general approach, which exploits a neural net-
work to estimate the similarity between laser range scans produced by a rotating
3D LiDAR sensor mounted on an autonomous vehicle. It can be used to tackle
loop closing and global localization tasks for autonomous driving as shown in Fig-
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Figure 4.1: Overview: We use a siamese network with two LiDAR scans as input. The
result of OverlapNet consisting of the overlap percentage and yaw angle offset can be
used for loop closing and/or global localization.
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ure 4.1. The proposed network predicts both, a so-called overlap defined on range
images corresponding to the similarity between the 3D LiDAR scans and a yaw
angle offset between the two scans.

The concept of overlap is used in photogrammetry to describe the configura-
tion of image blocks, e.g., of aerial surveys, and we extend this to LiDAR range
images. It is a useful tool for estimating the similarity between pairs of LiDAR
scans, which can be used to find loop closure candidates and estimate the like-
lihood of an observation given the sensor position. The yaw estimate can serve
as an initial guess for a subsequent application of the iterative closest point al-
gorithm [19] to determine the precise relative pose between scans to derive loop
closures constraints for pose graph-based optimization in SLAM. During local-
ization, the yaw estimate can be used to estimate the heading likelihood of the
current observation.

The main contribution of this chapter is a deep neural network, Overlap-
Net, that exploits different types of information generated from LiDAR scans
to provide overlap and relative yaw angle estimates between pairs of 3D scans.
This information includes depth, normals, and intensity/remission values. We
additionally exploit a probability distribution over semantic classes, which can
be computed by a semantic segmentation network for each laser beam. Our ap-
proach relies on a spherical projection of LiDAR scans rather than the raw point
clouds, which makes the proposed OverlapNet lightweight. We furthermore test
our method in different applications for autonomous vehicles. We integrate our
OverlapNet into our SLAM system for loop closure detection and evaluate its per-
formance also with respect to generalization to different environments. We also
integrate our OverlapNet as the observation model in a Monte-Carlo localization
approach for updating the importance weights of the particles.

We thoroughly evaluate our method for different LiDAR perception tasks for
autonomous vehicles. To test LiDAR-based loop closing, we train the proposed
OverlapNet on parts of the KITTI odometry dataset [67] and evaluate it on un-
seen data. We thoroughly evaluate our approach, provide ablation studies using
different modalities, and test the integrated SLAM system in an online manner.
Furthermore, we provide results for the Ford campus dataset [130], which was
recorded using a different sensor setup in a different country and a differently
structured environment. The experimental results suggest that our method out-
performs state-of-the-art baseline methods and is able to generalize well to unseen
environments. To test LiDAR-based global localization, a dataset has been col-
lected in different seasons with multiple sequences repeatedly exploring the same
crowded urban area using our own car setup. Based on our novel observation
model, MCL achieves global localization using 3D LiDAR scans over different
seasons with a comparably small number of particles.
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Figure 4.2: Overlap of two scans (scan A and B) at an intersection but computed with
different relative transformations. The overlap depends on the relative transformation
and larger overlap values often correspond to better alignment between the point clouds.
Our approach can predict the overlap without knowing the relative transformation
between the scans.

In sum, our approach is able to (i) predict the overlap and relative yaw angle
between pairs of LiDAR scans by exploiting multiple cues without using relative
poses, (ii) combine odometry information with overlap predictions to detect cor-
rect loop closure candidates, (iii) improve the overall pose estimation results in a
state-of-the-art SLAM system yielding more globally consistent maps, (iv) initial-
ize ICP using the OverlapNet predictions yielding correct scan matching results,
(v) build a novel observation model and achieve global localization.

4.1 OverlapNet
The idea of overlap that we are using here has its originates from the photogram-
metry and computer vision community [79]. To successfully match two images
and to calculate their relative orientation, the images must overlap. This can be
quantified by defining the overlap value as the percentage of pixels in the first
image, which can successfully be projected back into the second image without
occlusion. Note that this measure is not symmetric. If there is a large scale dif-
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ference of the image pair, e.g., one image shows a wall and the other shows many
buildings around that wall, the overlap percentage for the first to the second
image can be large and from the second to the first image low.

In this chapter, we use the idea of overlap for range images generated from
LiDAR scans. As illustrated in Figure 4.2, when the vehicle drives back to an in-
tersection from the opposite direction, different relative transformations between
two scans lead to different overlap values. Larger overlap values often correspond
to better alignment between the point clouds. We propose a novel neural net-
work called OverlapNet that can predict the overlap without knowing the relative
transformation between the scans, which can quantify the quality of matches and
is a useful tool for LiDAR-based loop closure detection and localization.

4.1.1 Definition of the Overlap Between LiDAR Scans
We use spherical projections of LiDAR scans as input data as presented in Sec-
tion 2.1, which is often used to speed up computations [15, 20, 35]. We project
the point cloud P = {pi}, i ∈ {1, . . . , N} to a so-called vertex image V , where
each pixel stores to the nearest 3D point. Each point pi = (x, y, z)⊤ is con-
verted via the function Π : R3 7→ R2 to spherical coordinates and finally to image
coordinates (u, v)⊤ by Equation (2.2) resulting in the vertex image V .

For the LiDAR scans P1 and P2, we generate the corresponding vertex im-
ages V1 and V2. We denote the sensor-centered coordinate frame at time step t

as Ct. Each pixel in coordinate frame Ct is associated with the world frame W by
a pose TWCt ∈ R4×4. Given the poses TWC1 and TWC2 , we can reproject scan P1

into the other’s vertex image V2 and generate a reprojected vertex image V ′
1:

V ′
1 = Π

(
T−1

WC1
TWC2P1

)
. (4.1)

We calculate the absolute difference of all corresponding vertices in V ′
1 and V2,

considering only those pixels that correspond to valid range readings in both range
images. The overlap is then calculated as the percentage of all differences in a
certain distance ϵoverlap relative to all valid entries, i.e., the overlap OC1C2 of two
LiDAR scans C1, C2 is defined as:

OC1C2 =

∑
(u,v) I

{
‖V ′

1(u, v)− V2(u, v)‖2≤ ϵoverlap

}
min (valid(V ′

1), valid(V2))
, (4.2)

where I{a} = 1 if a is true and 0 otherwise. The function valid(V) refers to
the number of valid pixels in V , since not all pixels might have a valid LiDAR
measurement associated after the projection.

We use Equation (4.2) only for creating training data, i.e., only positive ex-
amples of correct loop closures get a non-zero overlap assigned using the relative
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Figure 4.3: Overlap estimations of one scan to all others. (a) The red arrow points out
the position of the query scan. (b) We directly use Eq. (4.2) to estimate the overlap
between two LiDAR scans without knowing the accurate relative poses. Therefore, we
apply different orientations, e.g., every 30deg rotation around the vertical axis, and use
the maximum as the final estimate. It is hard to decide which pairs of scans are true
loop closures, since most estimations of Eq. (4.2) show high values. (c) In contrast,
our OverlapNet can predict the overlaps between two LiDAR scans without the relative
transformation between the scans such that only the correct location get a high overlap.

poses between scans, as shown in Figure 4.3. Thus, the proposed approach can
learn not only high overlap values for nearby scans, but also is able to estimate
high overlap values for scans that correspond to the same part of the environ-
ment and lower overlap values for different parts. During test time, no (ground
truth) poses are available and not required by our proposed approach. When per-
forming loop closure detection for online SLAM, the approximate relative poses
computed by the SLAM system before loop closure are not accurate enough to
calculate suitable overlaps by using Equation (4.2) because of accumulated drift.

To verify that the estimated overlap captures more than just the similarity
of the raw scans, we tried directly calculating overlaps using Equation (4.2) as-
suming the relative pose to be the identity and applying different orientations,
e.g., every 30 deg rotation around the vertical axis, and using the maximum over
all these overlaps as an estimate. Figure 4.3 shows the estimated overlaps for all
scans using a query scan produced by this method and the result of the estimated
overlap for all scans using OverlapNet. We leave out the 100 most recent scans
because they will not be loop closure candidates. In the case of the exhaustive
approach based on Equation (4.2), many scans which are far away getting high
overlap values, which makes this method unsuitable for loop closing or global
localization. Our approach, however, correctly identifies the correct similarity as
it produces a highly distinctive peak around the correct location.

4.1.2 Overlap Network Architecture
A visual overview of our proposed OverlapNet is depicted in Figure 4.4. We ex-
ploit multiple cues, which can be generated from a single LiDAR scan, including
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Figure 4.4: Pipeline overview of our proposed approach. The left-hand side shows the
preprocessing of the input data which exploits multiple cues generated from a single
LiDAR scan, including rangeR, normalN , intensity I, and semantic class probability S
information. The right-hand side shows the proposed OverlapNet which consists of two
legs sharing weights and the two heads use the same pair of feature volumes generated
by the two legs. The outputs are the overlap and relative yaw angle between two LiDAR
scans.

depth, normal, intensity, and semantic class probability information. The depth
information is stored in the range image R, which defines one input channel. We
use neighborhood information of the vertex image to generate a normal image N ,
which gives three channels encoding the normal coordinates. We directly obtain
the intensity information, also called remission, from the sensor and represent
the intensity information as a one-channel intensity image I. The point-wise
semantic class probabilities are computed using RangeNet++ [120] and we rep-
resent them as a semantic image S. The semantic segmentation network delivers
probabilities for 20 different classes. For efficiency reasons, we reduce the 20-
dimensional RangeNet++ output to a compressed 3-dimensional vector using
principal component analysis. All the information is combined as the input of
the OverlapNet with the size of 64 × 900 × 8, where 64 and 900 are the height
and width of the range image.

Our proposed OverlapNet is a siamese network architecture, which consists of
two legs sharing weights and two heads that use the same pair of feature volumes
generated by the two legs [23]. The trainable layers are listed in Table 4.1.

4.1.2.1 Legs

The proposed OverlapNet has two legs, which have the same architecture and
share weights. Each leg is a fully convolutional network consisting of 11 convo-
lutional layers. This architecture is quite lightweight, i.e., it only consists of 1.8
million parameters, and generates feature volumes of size 1× 360× 128.

Note that the range projection we used is cyclic, which means a change in the
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Table 4.1: Layers of our network architecture

Operator Stride Filters Size Output Shape

Legs

Conv2D (2, 2) 16 (5, 15) 30× 443× 16

Conv2D (2, 1) 32 (3, 15) 14× 429× 32

Conv2D (2, 1) 64 (3, 15) 6× 415× 64

Conv2D (2, 1) 64 (3, 12) 2× 404× 64

Conv2D (2, 1) 128 (2, 9) 1× 396× 128

Conv2D (1, 1) 128 (1, 9) 1× 388× 128

Conv2D (1, 1) 128 (1, 9) 1× 380× 128

Conv2D (1, 1) 128 (1, 9) 1× 372× 128

Conv2D (1, 1) 128 (1, 7) 1× 366× 128

Conv2D (1, 1) 128 (1, 5) 1× 362× 128

Conv2D (1, 1) 128 (1, 3) 1× 360× 128

Delta Head
Conv2D (1, 15) 64 (1, 15) 360× 24× 64

Conv2D (15, 1) 128 (15, 1) 24× 24× 128

Conv2D (1, 1) 256 (3, 3) 22× 22× 256

Dense - - - 1

yaw angle of the vehicle results in a cyclic column shift of the range image. Thus,
the single row in the feature volume can represent a relative yaw angle estimate
because a yaw angle rotation results in a pure horizontal shift of the input range
images. As the fully convolutional network is translation-equivariant, the feature
volume will be shifted horizontally in the same manner. The number of columns
of the feature volume defines the resolution of the yaw estimation, which is 1 deg
in the case of our leg architecture.

4.1.2.2 Delta Head

The delta head is designed to estimate the overlap between two scans. It consists
of a delta layer, three convolutional layers, and one fully connected layer.

The delta layer, which is shown in Figure 4.5, computes all possible abso-
lute differences of all pixels. It takes the output feature volumes Ll ∈ RH×W×C

from the two legs l ∈ {0, 1} as input. These are stacked in a tiled tensor
T l ∈ RHW×HW×C as follows:

T 0(iW + j, k, c) = L0(i, j, c) , (4.3)
T 1(k, iW + j, c) = L1(i, j, c) , (4.4)

with k = {0, . . . , HW − 1}, i = {0, . . . , H − 1} and j = {0, . . . ,W − 1}.
Note that T 1 is transposed with respect to T 0, as depicted in the middle

of Figure 4.5. After that, all differences are calculated by element-wise absolute
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Figure 4.5: The delta layer: Computation of pairwise differences is efficiently performed
by concatenating the feature volumes and transposition of one concatenated feature
volume.

differences between T 0 and T 1.
By using the delta layer, we can obtain a representation of the latent difference

information, which can be later exploited by the convolutional and fully-connected
layers to estimate the overlap. Different overlaps induce different patterns in the
output of the delta layer.

4.1.2.3 Correlation Head

The correlation head [126] is designed to estimate the yaw angle between two
scans using the feature volumes of the two legs. To perform the cross-correlation,
we first pad horizontally one feature volume by copying the same values (as the
range images are cyclic projections around the yaw angle). This doubles the
size of the feature volume. We then use the other feature volume as a kernel
that is shifted over the first feature volume generating a 1D output of size 360.
The argmax of these correlation values serves as the estimate of the relative yaw
angle of the two input scans with a 1 deg resolution.

4.1.3 Loss Function
We train our OverlapNet end-to-end to estimate the overlap and the relative
yaw angle between two LiDAR scans at the same time. Typically, to train a
neural network one needs a large amount of manually labeled ground truth data.
In our case, each training sample consists of (I1, I2, YO, YY ), where I1, I2 are
two inputs and YO, YY are the ground truth overlaps and the ground truth yaw
angles respectively. We are able to generate the input and the ground truth
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without any manual effort in a fully automated fashion given a dataset with pose
information. From given poses (e.g., obtained using a GPS+IMU combination),
we can calculate the ground truth overlap and relative yaw angles directly. We
denote the legs part network with trainable weights as fL(·), the delta head
as fD(·) and the correlation head as fC(·).

For training, we combine the loss LO(·) for the overlap and the loss LY (·) for
the yaw angle using a weight δ:

L (I1, I2, YO, YY ) = LO (I1, I2, YO) + δLY (I1, I2, YY ) . (4.5)

We treat the overlap estimation as a regression problem and use a weighted ab-
solute difference of ground truth YO and network output ŶO = fD (fL (I1) , fL (I2))

as the loss function. For weighting, we use a scaled sigmoid function:

LO (I1, I2, YO)=sigmoid
(
s
(∣∣∣ŶO − YO

∣∣∣+ a
)
− b
)
, (4.6)

with sigmoid(v) = (1 + exp(−v))−1, the variables a, b being offsets, and s being
a scaling factor.

For the yaw angle estimation, we use a lightweight representation of the cor-
relation head output, which leads to a one-dimensional vector of size 360. We
take the index of the maximum, the argmax, as the estimate of the relative angle
in degrees. As the argmax is not differentiable, we cannot treat this as a sim-
ple regression problem. The yaw angle estimation, however, can be regarded as
a binary classification problem that decides for every entry of the head output
whether it is the correct angle or not. Therefore, we use the binary cross-entropy
loss given by

LY (I1, I2, YY ) =
∑

i={1,...,N}
H
(
Y i
Y , Ŷ

i
Y

)
, (4.7)

where H(p, q) = −p log(q)− (1− p) log(1− q) is the binary cross-entropy and N

is the size of the output 1D vector. The term ŶY = fC (fL (I1) , fL (I2)) is the
relative yaw angle estimate. Note that we only train the network to estimate
the relative yaw angle of a pair of scans with overlap larger than 30%, since
it is more uncertain and difficult to estimate the relative yaw angle if the pair
of scans are less overlapping which is explained more detailed in Section 4.4.3.3.
More uncertain estimations also decrease the accuracy of pose estimation building
on top of OverlapNet and the corresponding experimental results can be found
in Section 4.4.4.2.

4.2 OverlapNet for Loop Closing and SLAM
For loop closing, a threshold on the overlap percentage can be used to decide
whether two LiDAR scans are taken from the same place. For finding loop closure
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candidates, this measure may be even better than the commonly used distance
between the recorded positions of a pair of scans, since the positions might be
affected by drift and therefore unreliable. Furthermore, the overlap takes the
scene into account, e.g., occlusions between the two scans, and it is a direct
measure for the number of corresponding points, which can be exploited by ICP
employed by most SLAM systems. The overlap predictions are independent of
the relative poses and can be therefore used to find loop closures without knowing
the correct relative pose between scans.

4.2.1 SLAM Pipeline
In line with Chapter 3, we use the surfel-based mapping system SuMa [15] as our
SLAM pipeline and integrate OverlapNet in SuMa replacing its original heuristic
loop closure detection method. As already introduced in Section 2.3, we only
summarize here the key steps of SuMa relevant to our approach and refer for
more details to Section 2.3.

Our OverlapNet uses the same vertex image VD and normal image ND as used
in SuMa. Furthermore, SuMa uses projective ICP with respect to a rendered
map view VM and NM at timestep t − 1, the pose update TCt−1Ct and conse-
quently TWCtby chaining all pose increments. Therefore, each vertex u ∈ VD
is projectively associated to a reference vertex vu ∈ VM . Given this association
information, SuMa estimates the transformation between scans by incrementally
minimizing the point-to-plane error, see Section 2.3 for details.

SuMa employs a loop closure detection module, which considers the nearest
frame in the built map as the candidate for loop closure given the current pose
estimate. Loop closure detection works well for small loops, but the heuristic
fails in areas with only a few large loops. Furthermore, drifts in the odometry
estimate can lead to large displacements, where a heuristic of taking the nearest
frame in the already mapped areas into account does not yield correct candidates.
This effect is shown in our experiments, see Section 4.4.4.

4.2.2 Covariance Propagation for Geometric Verification
SuMa’s loop closure detection uses a fixed search radius. In contrast, we suggest
using the covariance of the pose estimate and error propagation to automatically
adjust the search radius as detailed below.

We assume a noisy pose TCt−1Ct with mean T̄Ct−1Ct and covariance ΣCt−1Ct .
We estimate the covariance matrix following Huber [78] by

ΣCt−1Ct =
1

K

E

N −M

(
J⊤WJ

)−1
, (4.8)
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where K is the correction factor of the Huber robustized covariance estimation, E
is the sum of the squared weighted point-to-plane errors (the sum of squared
weighted residuals) given the pose TCt−1Ct , see Equation (2.8), N is the number
of correspondences, M = 6 is the dimension of the transformation between two 3D
poses. W ∈ RN×N is a diagonal matrix containing weights wu for each residual ru,
and J ∈ RN×6 the Jacobian of r with respect to the pose increment.

To estimate the propagated uncertainty during the incrementally pose esti-
mation, we can update the mean and covariance as follows:

T̄WCt = T̄WCt−1T̄Ct−1Ct , (4.9)
ΣWCt ≈ ΣWCt−1 + JCt−1CtΣCt−1CtJ⊤

Ct−1Ct
, (4.10)

where JCt−1Ct is the Jacobian of Equation (4.9).
Since we use the Mahalanobis distance DM as a probabilistic distance mea-

sure between two poses, we make use of Lie algebra to express T as a 6D vec-
tor ξ ∈ se(3) using ξ = log T , yielding

DM (TC1,TC2) =

√
∆ξ⊤C1C2Σ

−1
C1C2∆ξC1C2 . (4.11)

Using the scaled distance, we can now restrict the search space depending on
the pose uncertainty to save computation time.

Once we find loop closure candidates, we try to align the current point cloud to
the rendered view at the corresponding pose TWCj∗ using the frame-to-model ICP.
For the ICP initialization, we use the yaw angle offset estimated from OverlapNet
while keeping other parameters the same as those used in SuMa. If we have
found a loop closure candidate at timestep t, we try to verify it in the subsequent
timesteps {t + 1, . . . , t + ∆verification}, which ensures that we only add consistent
loop closures to the pose graph.

4.3 OverlapNet for Global Localization
As introduced in Section 2.2, we use the Monte-Carlo localization or MCL frame-
work to achieve global localization. For global localization in an MCL frame-
work [44], one of the key challenges lies in the design of the observation model.
For the observation model, we need to compare the sensor data and the map. As
we want to exploit the overlap and yaw angle predictions of OverlapNet for that,
our map consists of virtual scans at discretized 2D locations on a grid. We assume
that a point cloud of the environment is available, which we use to extract the
map information. Then, we render virtual scans as a preprocessing step. We can
then train the network completely self-supervised on the map of virtual scans.
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Finally, we integrate an observation model using the overlap and a separate
observation model for the yaw angle estimates in a particle filter to perform
localization.

4.3.1 Map of Virtual Scans
OverlapNet requires two LiDAR scans as input. One is the current scan and
the second has to be generated from the map point cloud. Thus, we build a
map of virtual LiDAR scans given an aggregated point cloud by using a grid of
locations with grid resolution γ, where we generate virtual LiDAR scans for each
location. The grid resolution is a trade-off between the accuracy and storage size
of the map. Instead of storing these virtual scans, we just need to use one leg
of the OverlapNet to obtain a feature volume F using the input tensor I of this
virtual scan. Storing the feature volume instead of the complete scan has two key
advantages: First, it uses more than an order of magnitude less space than the
original point cloud (roughly ours: 100MB/km, raw scans: 1.7GB/km). Second,
we do not need to compute the F during localization on the map. The feature
volumes of the virtual scans can directly be used to compute overlap and yaw
angle estimates with a query scan that is the currently observed LiDAR point
cloud in our localization framework.

4.3.2 Monte-Carlo Localization
As presented in Section 2.2, MCL is one of the classic frameworks for localization.
In our setup, each particle represents a hypothesis for the robot’s or autonomous
vehicle’s 2D pose xt = (x, y, θ)⊤t at time t. When the robot moves, the pose of each
particle is updated with a prediction based on a motion model with the control
input ut. The expected observation from the predicted pose of each particle is
then compared to the actual observation zt acquired by the robot to update the
particle’s weight based on the observation model.

MCL realizes a recursive Bayesian filtering scheme of the form:

p(xt | z1:t,u1:t) = η p(zt | xt)

∫
p(xt | ut,xt−1) p(xt−1 | z1:t−1,u1:t−1) dxt−1,

(4.12)

where η is the normalization constant resulting from Bayes rule, p(xt | ut,xt−1) is
the motion model, and p(zt | xt) is the observation model. We split the observa-
tion model into two parts:

p(zt | xt) = pL (zt | xt) pO (zt | xt) , (4.13)

where zt is the observation at time t, pL (zt | xt) is the probability encoding the
location (x, y)⊤ agreement between the current query LiDAR scan and the virtual

53



4.3. OverlapNet for Global Localization

Figure 4.6: Overlap-based observation model describing p(zt | xt) for MCL. Local
heatmap of the scan at the car’s position with respect to the map. Lighter shades
correspond to higher probabilities.

scan at the nearest grid position and pO (zt | xt) is the probability encoding the
yaw angle θ agreement between the same pairs of scans.

4.3.3 OverlapNet-Based Observation Model

Given a particle i with the state estimate (x(i), y(i), θ(i))⊤, the overlap estimates
encode the location agreement between the query LiDAR scan and virtual scans of
the grid cells where particles are located. It can be directly used as the probability:

pL (zt | xt) ∝ f
(
zt, z

(i);w
)
, (4.14)

where f corresponds to the neural network providing the overlap estimate between
the input scans zt, z

(i) and w is the pre-trained weights of the network. zt and z(i)

are the current query scan and a virtual scan at one (x, y)⊤ location respectively.
For illustration purposes, Figure 4.6 shows the probabilities of all grid cells

in a local area calculated by the overlap observation model. The blue car in
the figure shows the current location of the car. The probabilities calculated by
the overlap observation model can well represent the hypotheses of the current
location of the car.

Typically, a large number of particles are used, especially when the environ-
ment is large. However, the computation time increases linearly with the number
of particles. When applying the overlap observation model, particles can still
obtain relatively large weights as long as they are close to the actual pose, even
if not in the exact same position. This allows us to use fewer particles to achieve
a high success rate of global localization.
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Furthermore, the overlap estimation only encodes the location hypotheses.
Therefore, if multiple particles locate in the same grid area, only a single inference
using the nearest virtual scan of the map needs to be done, which can further
reduce the computation time.

Given a particle i with the state vector (x(i), y(i), θ(i))⊤, the yaw angle es-
timates encode the orientation agreement between the query LiDAR scan and
virtual scans of the corresponding grids where particles are located. We formu-
late the orientation probability as follows:

pO (zt | xt) ∝ exp

−1

2

(
g
(
zt, z

(i);w
)
− θi

)2
σ2
θ

, (4.15)

where g corresponds to the neural network providing the yaw angle estimation be-
tween the input scans zt, z

(i) and w is the pre-trained weights of the network. zt

and z(i) are the current query scan and a virtual scan of one particle respectively.
σθ is the variance for orientation probability.

When generating the virtual scans of the grid map, all virtual scans will be set
facing along the absolute 0 deg yaw angle direction. By doing this, the estimated
relative yaw angle between the query scan and the virtual scan indicates the
absolute yaw angle of the current query scan. Equation (4.15) assumes a Gaussian
measurement error in the heading.

By combining overlap and yaw angle estimation, the proposed observation
model will correct the weights of particles considering agreements between the
query scan and the map with the full pose (x, y, θ)⊤.

4.4 Experimental Results
The experimental evaluation is designed to evaluate our approach. They support
the claims we made in the introduction of this chapter, which are: Our approach is
able to (i) predict the overlap and relative yaw angle between pairs of LiDAR scans
by exploiting multiple cues without using relative poses, (ii) combine odometry
information with overlap predictions to detect correct loop closure candidates,
(iii) improve the overall pose estimation results in a state-of-the-art SLAM system
yielding more globally consistent maps, (iv) initialize ICP using the OverlapNet
predictions yielding correct scan matching results, (v) build a novel observation
model and achieve global localization.

4.4.1 Implementation Details
We provide the parameters used in the proposed method in Table 4.1 and Ta-
ble 4.2 for the purpose of reproducibility to the experimental results. Table 4.1
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Table 4.2: Hyper parameters of our overlap-based MCL

Parameter Description Value

h Height of range image 64

w Width of range image 900

dmax Maximum range 75m
ϵoverlap Threshold to count overlap pixels 1m
a Constant offset of sigmoid 0.25

b Constant offset of sigmoid 12

s Scaling factor of sigmoid 24

σθ Variance for orientation probability 10deg
ϵconverge Threshold to success converge 5m

Network
training

Learning rate 10−3

Decay of every epoch 0.99

Number of epochs 100

Overlap loss weight δ 5

shows the configuration of the network architecture and Table 4.2 shows hyper pa-
rameters used in the proposed method. As shown in Table 4.2, for generating the
range image following the SuMa setup [15], we only use points within a distance
of 75m to the sensor and generate range images with height h = 64 and width
w = 900. For overlap computation, see Equation (4.2), we use ϵoverlap = 1m. We
use a learning rate of 10−3 with a decay of 0.99 every epoch and train at most 100
epochs. For the combined loss, Equation (4.5), we set δ = 5. For the overlap
loss, Equation (4.6), we use a = 0.25, b = 12, and scale factor s = 24. For the
calculation of yaw angle probability, Equation (4.15), we set the variance σθ = 10.
We use the a threshold of ϵconverge = 5m to decide whether the global localization
converges or not.

4.4.2 Datasets
For SLAM and loop closing, we train and evaluate our approach on the KITTI
odometry benchmark [67] as also used in the previous chapter. It provides 11
sequences (00-10) with ground truth poses covering different types of environ-
ments, e.g., urban, country, and highway. We use sequences 03-10 for training,
sequence 02 is used for validation and sequence 00 for evaluation. In sequence 00,
the vehicle starts to re-enter the visited area in the city after the 170 s. Therefore
we use the data collected in the first 170 s to generate the map, i.e., a database
for loop closing. The remaining point clouds are used for localization queries.
The query point clouds are sampled to be at least 3m apart, as the same setup
introduced in the state-of-the-art baseline method by Schaupp [155].
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Figure 4.7: Illustration of our IPB-Car dataset. Upper: sensor setup used for data
recording. Middle: trajectories of the dataset used in this chapter, overlayed on Open-
StreetMap. The orange trajectory represents the sequence used to generate a map for
localization. The yellow and purple trajectories represent two different test sequences.
Bottom: LiDAR scans of the same place, once during mapping and once during local-
ization. Since the LiDAR data was collected in different seasons, the appearance of the
environment changed quite significantly due to changes in the vegetation but also due
to parked vehicles in different places.
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To evaluate the generalization capabilities of our method, we also test it on
the Ford campus dataset [130], which was recorded on the Ford research cam-
pus in downtown Dearborn in Michigan using a different version of the Velodyne
HDL-64E. In the case of the Ford campus dataset, we test our method on se-
quence 00, which contains several large loops. Note that we never trained our
approach on the Ford campus dataset, only on the KITTI dataset.

For evaluating global localization, we use our own IPB-Car dataset, collected
with our self-developed sensor platform illustrated in Figure 4.7. The KITTI
dataset and Ford Campus dataset do not perfectly fulfill our needs for evaluating
a localization system, because there are no sequences of the same place but from
different seasons available. We therefore collected a large-scale dataset in different
seasons with multiple sequences repeatedly exploring the same crowded urban
area of Bonn city in Germany using an Ouster OS1-64. For our car dataset, we
performed a 3D LiDAR SLAM, SuMa [15], combined with a GPS using SAPOS
correction information to create near ground truth poses. During localization, we
only use LiDAR scans for global localization without using any GPS.

The dataset has three sequences that were collected at different times of the
year, sequence 00 in September 2019, sequence 01 in November 2019, and se-
quence 02 in February 2020. The whole dataset covers a distance of over 10 km.
We use LiDAR scans from sequence 02 to build the virtual scans and use se-
quences 00 and 01 for localization. As can be seen from Figure 4.7, the appear-
ance of the environment changes significantly since the dataset was collected in
different seasons and in a crowded urban environment, including changes in veg-
etation, but also parking cars at different locations, moving people, and other
objects.

4.4.3 Overlap and Yaw Angle Evaluation
In this section, we show the experiments that support the claim that our approach
is able to estimate the overlap and yaw angle offset between pairs of LiDAR scans,
which is well-suited for solving the general similarity estimation. We also provide
an ablation study of using different input modalities and the analysis of the
relationship between the overlap and yaw angle estimations.

In the case of general LiDAR scans similarity estimation, we assume that
we have no prior information about the robot pose. We compare our method
with the state-of-the-art learning-based methods LocNet [204], LocNet++ [155]
and OREOS [155], and also the traditional hand-crafted feature-based method
FPFH [149]. We follow the experimental setup of OREOS, where the KITTI
sequence 00 is used for the evaluation. The LiDAR scans from the first 170 s of
sequence 00 are used to generate the database, as the vehicle starts to revisit
previously traversed areas after 170 s. The remaining LiDAR scans are used for
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Figure 4.8: Place recognition performance on KITTI sequence 00.

Table 4.3: Yaw estimation errors

Approach Mean [deg] std [deg] Recall [%]

FPFH 13.28 32.19 97

OREOS 12.67 15.23 100

Ours 1.13 3.34 100

place recognition queries. The query point clouds are sampled to be at least 3m
apart. Two point clouds are considered in the same place, if their ground truth
poses are within 1.5m. The baseline results are those produced by the authors
of OREOS [155].

4.4.3.1 Overlap Estimation for Similarity Measurement

In a general place recognition application, multiple candidates may be retrieved
according to the similarity measurements with respect to the current query LiDAR
scan. The respective place recognition candidates recall results are shown in Fig-
ure 4.8. Our method outperforms all baseline methods when using a small number
of candidates and attains similar performance as baseline methods for higher val-
ues of numbers of candidates. However, OREOS and LocNet++ attain a slightly
higher recall if more candidates are considered.

4.4.3.2 Yaw Angle Estimation

Table 4.3 summarizes the yaw angle errors on KITTI sequence 00. We can see
that our method outperforms the other methods in terms of mean errors and
standard deviations. In terms of recall, OverlapNet and OREOS always provide
a yaw angle estimate, since both approaches are designed to estimate the relative
yaw angle for any pairs of scans in contrast to the FPFH-based method that
sometimes fails.

The superior performance can be mainly attributed to the correlation head
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Figure 4.9: Overlap and yaw estimation relationship.

Table 4.4: Ablation study on usage of input modalities.

R N I S
overlap yaw [deg]

AUC F1 Mean Std

3 0.86 0.87 11.67 25.32
3 3 0.86 0.85 2.97 14.28
3 3 3 0.87 0.87 2.53 14.56
3 3 3 3 0.87 0.88 1.13 3.34

R: range depth; N : normal; I: intensity; S: semantic information.
AUC: area under the curve, F1: balanced F-score

exploiting the fact that the orientation in LiDAR scans can be well represented
by the shift in the range projection. Therefore, it is easier to train the correlation
head to accurately predict the relative yaw angles rather than a multilayer per-
ceptron used in OREOS. Furthermore, there is also a strong relationship between
overlap and yaw angle, which also improves the results when trained together.

4.4.3.3 Relationship Between Overlap and Yaw Estimations

Figure 4.9 shows the relationship between real overlap and yaw angle estimation
error. As expected, the yaw angle estimate gets better with increasing overlap.
Based on these plots, our method not only finds candidates but also measures the
quality, i.e., when the overlap of two scans is larger than 90%, our method can
accurately estimate the relative yaw angle with an average error of about 1 deg.

4.4.3.4 Ablation Study on Input Modalities

An ablation study on the usage of different inputs is shown in Table 4.4. As can
be seen, when employing more input modalities, the proposed method becomes
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more robust. We notice that exploiting only depth information with OverlapNet
can already perform reasonably in terms of overlap prediction, while it does not
perform well in yaw angle estimation. When combining this with normal infor-
mation, our OverlapNet performs well on both tasks. Another interesting finding
is the drastic reduction of yaw angle mean error and standard deviation when us-
ing semantic information. One reason could be that adding semantic information
makes the input data more distinguishable when the car drives in symmetrical
environments.

4.4.4 OverlapNet-Based Loop Closing
In the following experiments, we investigate the loop closing performance of our
approach and compare it to existing methods. Different from the general place
recognition, loop closure detection typically assumes that robots revisit places
during the mapping while moving with uncertain odometry. Therefore, the prior
information about robot poses extracted from the pose graph is available for loop
closure detection. The following criteria are used in these experiments:

• To avoid detecting a loop closure in the most recent scans, we do not search
candidates in the most recent 100 scans.

• For each query scan, we only consider the best candidate in this evaluation.

• Most SLAM systems search for potential loop closures only within the 3Σ

area around the current pose estimate. We do the same, either using the
Euclidean or the Mahalanobis distance, depending on the approach.

• We aim to find more loops even in some challenging situations with low
overlaps, e.g., when the car drives back to an intersection from the opposite
direction as shown in Figure 4.1. We use the overlap value to decide if a
candidate is a true positive rather than distance. Furthermore, ICP can
find correct poses if the overlap between pairs of scans is around 30%, as
illustrated in Section 4.4.4.2.

We evaluate OverlapNet on both the KITTI dataset and the Ford campus
datasets to showcase the generalization capabilities of the approach.

4.4.4.1 Quantitative Analysis

Figure 4.10 shows the precision-recall curves of different loop closure detection
methods. We compare our method, trained with two heads and all cues labeled
as Ours (AC-TH), with three state-of-the-art approaches: a histo-gram-based
approach (Histogram) by Röhling et al. [144], M2DP by He et al. [75], and the
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Figure 4.10: Precision-Recall curves of different approaches.

original heuristic approach of SuMa by Behley and Stachniss [15]. Since SuMa
always uses the nearest frame as the candidate for loop closure detection, we can
only get one pair of precision and recall value resulting in a single point. We also
show the result of our method using prior information, called Ours-Cov, which
uses covariance propagation to define the search space with the Mahalanobis
distance and use the nearest in Mahalanobis distance of the top 10 predictions of
OverlapNet as the loop closure candidates. For a fair comparison, we also show
the results that can be obtained by enhancing the baselines with the proposed
covariance-based method, named Histogram-Cov and M2DP-Cov respectively.

Table 4.5 shows the comparison between our approach and the state of the art
using the F1 score and the area under the curve (AUC) on both, KITTI and Ford
campus datasets. For the KITTI dataset, our approach uses the model trained
with all cues, including depth, normals, intensity, and a probability distribution
over semantic classes. For the Ford campus dataset, our approach uses the model
trained on KITTI with geometric information only, called Ours (GO), since other
cues are not available in this dataset. We can see that our method outperforms
the other methods on the KITTI dataset and attains a similar performance on the
Ford campus dataset. There are two reasons to explain the worse performance
on the Ford campus dataset. First, we never trained our network on the Ford
campus dataset or even US roads, and secondly, there is only geometric informa-
tion available on the Ford campus dataset. However, our method outperforms all
baseline methods in both, KITTI and Ford campus dataset, if we integrate prior
information.

We also show the performance in comparison to variants of our method in
Table 4.6. We compare our best model using all available cues and two heads
labeled as AC-TH to a variant which only uses a basic multilayer perceptron as
the head named MLPOnly which consists of two hidden fully connected layers
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Table 4.5: Comparison with state of the art.

Dataset Approach AUC F1 score

KITTI

SuMa - 0.85
Histogram 0.83 0.83
Histogram-Cov 0.95 0.92
M2DP 0.83 0.87
M2DP-Cov 0.89 0.88
Ours (AC-TH) 0.87 0.88
Ours-Cov (AC-TH) 0.96 0.96

Ford Campus

SuMa - 0.33
Histogram 0.84 0.83
Histogram-Cov 0.85 0.85
M2DP 0.84 0.85
M2DP-Cov 0.85 0.86
Ours (GO) 0.85 0.84
Ours-Cov (GO) 0.85 0.88

and a final fully connected layer with two neurons (one for overlap, one for yaw
angle). The substantial difference of the AUC and F1 scores shows that such
a simple network structure is not sufficient to get a good result. Training the
network with only one head (only the delta head for overlap estimation, named
DeltaOnly), does not have a significant influence on the performance. A huge
gain can be observed when regarding the nearest frame in Mahalanobis distance
of the top 10 candidates in overlap percentage (Ours-Cov).

4.4.4.2 Application of OverlapNet Predictions as an Initial Guess for
ICP Registration

We aim at supporting the claim that our network provides good initializations
for 3D LiDAR-based ICP registration in the context of autonomous driving. Fig-
ure 4.11 shows the relations between the overlap and ICP registration error with
and without using OverlapNet predictions as initial guesses. The error of the
ICP registration is here the Euclidean distance between the estimated relative
translation and the ground truth translation. As can be seen, the yaw angle pre-
diction of the OverlapNet increases the chance to get a good result from the ICP
even when two frames are relatively far away from each other, i.e., have only a
low overlap. Therefore in some challenging cases, e.g., the car drives back into an
intersection from a different street, our approach can still find loop closures. The
results also show that the overlap estimates measure the quality of the found loop
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Table 4.6: Comparison with our variants.

Dataset Variant AUC F1 score

KITTI

MLPOnly 0.58 0.65
DeltaOnly 0.85 0.88
Ours (AC-TH) 0.87 0.88
Ours-Cov (AC-TH) 0.96 0.96

Ford Campus
Ours (GO) 0.85 0.84
Ours-Cov (GO) 0.85 0.88

closure: larger overlap values result in better registration results of the involved
ICP.

To analyze the correlation between the overlap and the 6 degree of freedom
pose, we show the statistics with all sequences of both KITTI and Ford Campus
datasets in Figure 4.12. As can be seen, with overlap values larger than 30%, the
relative differences in roll, pitch are much smaller than that in yaw. This means
that our method is likely to filter out such cases where there are large differences in
roll and pitch corresponding to low overlaps between pairs of scans and therefore
are not good to be used for loop closing. Furthermore, these experiments also
show the motivation that it is more important to estimate the yaw angle rather
than roll and pitch, since even when two scans have a large overlap, the yaw angle
offset could be very large. For example, when the car drives in both directions on
a road or a slope, the yaw angle offset is around 180 deg. Note that, our method is
not influenced by such cases, because it can estimate the yaw angle offset between
pairs of scans. After rotating in yaw, the offsets of other orientation angles are
small and can typically be handled by the following ICP that is used in general
loop closing.

4.4.4.3 Improving SLAM Results

This experiment supports our claim that our method is able to improve the over-
all SLAM result. Figure 4.13 shows the odometry results on KITTI sequence 02.
The color in Figure 4.13 shows the 3D translation error (including height). The
top figure shows the SuMa method and the bottom figure shows Ours-Cov using
the proposed OverlapNet to detect loop closures. We can see that after inte-
grating our method, the overall odometry is much more accurate since we can
provide more loop closure candidates with higher accuracy in terms of overlap.
The colors represent the translation error of the estimated poses with respect
to the ground truth. Furthermore, after integrating the proposed OverlapNet,
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Figure 4.11: ICP using OverlapNet predictions as the initial guess. The error of ICP
registration here is the Euclidean distance between the estimated translation and the
ground truth translation.

the SLAM system can find more loops even in some challenging situations, e.g.,
when the car drives back to an intersection from the opposite direction as shown
in Figure 4.1.

4.4.5 OverlapNet-Based Global Localization

In the following experiments, we test our proposed localization method by inte-
grating the OverlapNet based sensor model into the MCL framework. The MCL
framework is the same for all baselines and we only exchange the observation
models. Note that in general maps of the environment are built using previously
recorded data. Thus the task is more difficult than loop closing because of larger
environmental changes between the map and the new scans. We will show in
the following experiments that our method is nevertheless able to perform global
localization.

4.4.5.1 Global Localization Baseline Methods

We compare our observation model with two baseline observation models: the
typical beam-end model as introduced by Thrun et al. [178] and a histogram-
based model derived from the work of Röhling et al. [144].

The beam-end observation model is often used for 2D LiDAR data. For 3D
LiDAR scans, it needs much more particles to make sure that it converges to
the correct pose, which causes the computation time to increase substantially.
In this chapter, we implement the beam-end model with a down-sampled point
cloud map using voxelization with a resolution of 10 cm.
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Figure 4.12: Statistics on relative 6 degree of freedom pose (x, y, z, roll, pitch, yaw)
between pairs of scans with overlap larger than 30%. Results on KITTI and Ford
campus datasets are shown.

Our second baseline for comparison uses the model proposed by Röhling et
al. [144], which uses a fast method to detect loop closures through the use of
similarity measures on histograms extracted from 3D LiDAR data. The histogram
contains the range information, and we use it in the MCL framework as a baseline
observation model. We employ the same grid map and virtual frames as used for
our method with the histogram-based observation model. When updating the
weights of particles, we first generate the histograms of the current query scan
and the virtual scans of grids where the particles locate. Then, we use the same
Wasserstein distance [49] to measure the similarity between them and update the
weights of particles as follows:

p(zt | xt) ∝ d
(
h(zt), h(z

(i)
)
) , (4.16)

where d represents the Wasserstein distance between histograms h(zt), h(z
(i)) of

LiDAR scan zt, z
(i).

4.4.5.2 Localization Performance

The experiment presented in this section is designed to show the performance of
our approach and to support the claim that it is well suited for global localization.

First of all, we show the general localization results tested with two sequences
of the IPB-Car dataset in Figure 4.14. For the overlap network, we used only ge-
ometric information (range and normal images) as input. The qualitative results
show that, after applying our sensor model, the proposed method can well localize
in the map with only LiDAR data collected in highly dynamic environments at
different times.

For quantitative results, we calculate the success rate for different methods
with different numbers of particles, as shown in Figure 4.15. The x-axis represents
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Figure 4.13: Qualitative result on KITTI sequence 02 comparing SuMa to our approach.

the number of particles used during localization, while the y-axis is the success
rate of different setups. The success rate for a specific setup of one method is
calculated using the number of success cases divided by the total number of the
tests. To decide whether one test is successful or not, we check the location error
every 100 frames after converging. If the location error is smaller than a certain
threshold, we count this run as a success case.

We test our method together with two baselines using five different numbers
of particles N = {1 000 ; 5 000 ; 10 000 ; 50 000 ; 100 000}. For each setup, we
sample 10 trajectories and perform global localization.

Quantitative results of localization accuracy are shown in Table 4.7. The
upper part shows the location error of all methods tested with both sequences.
The location error is defined as the root mean square error (RMSE) of each test
in terms of the Euclidean error computed in (x, y) with respect to the ground
truth poses. It shows the mean and the standard deviation of the error for each
observation model. Note that the location error is only calculated for success
cases.

The lower part shows the yaw angle error. It is the RMSE of each test in
terms of yaw angle error with respect to the ground truth poses. The table shows
the mean and the standard deviation of the error for each observation model. As
before, the yaw angle error is also only calculated for cases in which the global
localization converged.

As can be seen from the results, our method achieves higher success rates with
a smaller number of particles compared to the baseline methods, which also makes
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Figure 4.14: Localization results of our method with 10, 000 particles on two sequences
recorded with the setup depicted in Figure 4.7. Shown are the ground truth trajectory
(black) and our estimated trajectory using our observation model (red).

Table 4.7: Localization results on IPB-Car dataset

Sequence Location error [meter]
Beam-end Histogram Ours

0 0.92 ± 0.27 1.85 ± 0.34 0.81± 0.13
1 0.67± 0.11 1.86 ± 0.34 0.88 ± 0.07

Sequence Yaw angle error [deg]
Beam-end Histogram Ours

0 1.87 ± 0.47 3.10 ± 3.07 1.74± 0.11
1 2.10 ± 0.59 3.11 ± 3.08 1.88± 0.09

the proposed method faster than the baseline methods. Furthermore, our method
converges already with 100 000 particles in all cases, whereas the other observation
models still need more particles to sufficiently cover the state space. Moreover,
the proposed method gets similar performance in location error compared to the
baseline methods but it achieves better results in yaw angle estimation. This is
because the proposed method decouples the location and yaw angle estimation
and, therefore, can exploit more constraints in yaw angle corrections.

To sum up, for global localization the proposed method outperforms the base-
line methods in terms of success rate, while yielding similar results in terms of
location error. Moreover, our method outperforms baseline methods in yaw angle
estimation because of the proposed de-coupled observation model. Furthermore,
our method is faster than the baseline methods.
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Figure 4.15: Success rate of the different observation models for 10 globalization runs.
Here, we use sequence 00 and sequence 01 to localize in the map of the IPB-Car dataset.
We count runs as success if converging to the ground truth location within 5m.

4.4.6 Runtime
We tested our method on a system equipped with an Intel i7-8700 with 3.2 GHz
and an Nvidia GeForce GTX 1080 Ti with 11 GB memory. When we use only
geometric information, our method takes on average per frame 2ms for feature
extraction and 5ms for head comparison. It takes additional 75ms to perform
semantic segmentation using RangeNet++.

In a real SLAM implementation, most systems only search loop closure can-
didates inside a certain search space given by pose uncertainty using the Maha-
lanobis distance. Once we generated a feature volume for a scan, it will be stored
in memory. During the search process, we need only to generate the feature
volume for the current scan and compare it to the feature volumes in memory.
Therefore, our method operates online, since we usually have to compare only a
small number of candidate poses.

For global localization, we show the number of observation model evaluations
necessary for updating the weights at each time step in Figure 4.16. This is
a fairer way to compare the computational cost of different methods, since our
neural network-based method uses a GPU to concurrently update the weights of
particles, while the other methods only use a CPU. As can be seen, our method
needs a smaller number of observation model evaluations to update the weights
for all particles. This is because we only need to perform the network inference
for all particles which are localized in the same grid cell once. For an incoming
frame and the virtual frame of that grid cell, the inputs of the network and thus
the outputs are the same for all particles in that grid cell.

For initializing in the large-scale map, the worst case takes around 43 s to
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Figure 4.16: Number of observation model evaluations for updating the weights at each
timestep with 100 000 particles. The beam end model needs to be evaluated for each
and every particle individually. The histogram-based method is more computationally
efficient, while our proposed method still needs the fewest evaluations.

process one scan. After convergence, the proposed method takes only 1 s on
average to process one scan with 10 000 particles.

4.5 Conclusion
In this chapter, we proposed a modified Siamese network, OverlapNet, to estimate
the similarity between pairs of LiDAR scans recorded by autonomous vehicles.
This can be used to address both, loop closing for SLAM and global localization.
Our approach utilizes a deep neural network exploiting different cues generated
from LiDAR data. It estimates the similarity between pairs of scans using the
concept of image overlap generalized to range images and furthermore provides
a relative yaw angle estimate. Based on such predictions, our method is able to
detect loop closures in a SLAM system or to globally localize in a given map.
For loop closure detection, we use the overlap prediction as the similarity mea-
surement to find loop closure candidates and integrate the candidate selection
into an existing SLAM system to improve the mapping performance. For global
localization, we propose a novel observation model using the predictions provided
by OverlapNet and integrate it into an MCL framework.

We evaluated our approach on multiple autonomous driving datasets collected
using different LiDAR scanners in various environments. The experimental results
show that our method can effectively detect loop closures surpassing the detection
performance of state-of-the-art methods and that it generalizes well to different
environments. Furthermore, our method reliably localizes a vehicle in typical
urban environments globally using LiDAR data collected in different seasons.
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Chapter 5

Moving Object Segmentation
for LiDAR SLAM

So far, we introduced in Part I how to use multiclass semantics generated
from a segmentation network to improve the performance of LiDAR
perception tasks like SLAM and localization for autonomous vehicles.
Despite significant improvement in the performance of LiDAR SLAM

and localization that can be achieved by exploiting multiclass semantics, accu-
rate and reliable multiclass semantics are not always available. It is not only due
to the lack of training data, but also because of the high difficulty of the multi-
class semantic segmentation task itself, which makes the multiclass segmentation
networks unable to generalize well in different environments.

In this part, instead of exploiting multiclass semantics, we introduce to use
certain semantic classes that may be more useful than others in specific tasks
and, at the same time, more easily to obtain. For example, for LiDAR-based
SLAM, static or dynamic scene understanding can be leveraged to improve the
performance of pose estimation and static map generation. While for localizing
an autonomous vehicle reliably and precisely in an urban environment, pole-like
objects are useful landmarks due to their local distinctiveness, natural availability,
and long-term stability.

In this chapter, we address the problem of moving object segmentation in 3D
LiDAR data at the sensor frame rate in urban environments. The ability to iden-
tify which parts of the environment are static and which ones are moving is key
to safe and reliable autonomous navigation. It supports the task of predicting the
future state of the surroundings, collision avoidance, and planning. This knowl-
edge can also improve and robustify pose estimation, sensor data registration,
and simultaneous localization and mapping. Thus, accurate and reliable moving
object segmentation (MOS) in sensor data at frame rate is a crucial capability
for most autonomous mobile systems. Depending on the application domain and
chosen sensor setup, moving object segmentation can be a challenging task.
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Raw point cloud Segmented point cloud

Range images

Ground truth labels

Figure 5.1: Moving object segmentation using our approach. Our method can detect
and segment the currently moving objects given sequential point cloud data exploiting
its range projection. Instead of detecting all potentially movable objects such as vehicles
or humans, our approach distinguishes between actually moving objects (labeled in red)
and static or non-moving objects (black) in the upper row. At the bottom, we show
the range image and our predictions in comparison to the ground truth labels.

Instead of detecting all potentially movable objects such as vehicles or humans,
we aim at separating the actually moving objects, such as driving cars or walking
pedestrians, from static or non-moving objects such as buildings, parked cars,
etc. See Figure 5.1 for an example scene and our segmentation. Actually moving
objects are colored in red. We propose a novel approach based on convolutional
neural networks to explicitly address the MOS problem for 3D LiDAR scans. As
introduced in Section 2.1, we stick to the LiDAR range image representation,
which is a natural representation of the scan from a rotating 3D LiDAR such as a
Velodyne or Ouster sensor. Based on this comparably lightweight representation,
we can directly exploit the existing range-image-based semantic segmentation
networks, such as RangeNet++ by Milioto et al. [120], SalsaNext by Cortinhal et
al. [38], and MINet by Li et al. [101] to tackle the MOS problem. Most of such ex-
isting LiDAR-based semantic segmentation networks predict the semantic labels
of a point cloud, e.g., vehicle, building, road, etc. They do not distinguish be-
tween actually moving objects and static objects. We are making this distinction
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and are exploiting sequences of range images, allowing for an effective moving ob-
ject segmentation targeted to autonomous vehicles. Our main application focus
is perception for self-driving cars in outdoor scenes, but the method itself is not
restricted to this domain.

The main contribution of this chapter is a novel method based on CNNs, which
generates for each range measurement in the current scan a label indicating if it
belongs to a moving object or not. It uses range images generated from 3D LiDAR
scans together with the residual images generated from past scans as inputs. By
combining range images and residual images, our network exploits the temporal
information and can differentiate between moving and static objects as shown
in Figure 5.1. For training, we reorganize the SemanticKITTI [13] dataset and
merge the original labels into two classes, moving and static, by exploiting the
existing annotations of moving traffic participants. Furthermore, our approach
runs faster than the sensor frame rate, i.e., 10Hz for a typical rotating 3D LiDAR
sensor. Comparisons with multiple existing methods suggest that the proposed
approach leads to more accurate moving object segmentation. In sum, we make
two key claims: (i), our approach is able to achieve moving object segmentation
using only 3D LiDAR scans and runs faster than the sensor frame rate of 10 Hz.
(ii), it improves the moving object segmentation performance by incorporating
residual images in addition to the current scan and outperforms several state-
of-the-art networks. To allow for as easy as possible comparisons and support
future research, we propose and release a moving object segmentation benchmark,
including a hidden test set, based on the SemanticKITTI dataset and release the
source code of our approach.

5.1 LiDAR-Based Moving Object
Segmentation

The goal of our approach is to achieve accurate and fast moving object segmen-
tation (MOS) for LiDAR scans to enable autonomous mobile systems to make
decisions in a timely manner. Figure 5.2 shows a conceptual overview of our
proposed method. To achieve online MOS, we first project the point clouds into
range image representation (see Section 2.1). To separate moving and non-moving
objects, we then exploit sequential information computing residuals between the
current and the previous scans. We finally concatenate them together with the
range information as the input for a segmentation CNN. In addition, we propose
a novel MOS benchmark based on SemanticKITTI to train and evaluate MOS
methods.
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Figure 5.2: Overview of our method. We use the range projection-based representation
of LiDAR scans to achieve online moving object segmentation. Given the current scan
P0, we generate residual images from previous scans {Pi}Ni=1 to explore the sequential
information. This is by transforming them to the current viewpoint with a homogeneous
transformation matrix T i estimated from a SLAM or sensor-based odometry, projecting
them to the range representation with a mapping Π and subtracting them from the
current scan’s range image. The residual images are then concatenated with the current
range image and used as input to a fully convolutional neural network. Trained with
the binary labels, the proposed method can separate moving and static objects.

5.1.1 Sequence Information

We aim at segmenting moving objects online, i.e., only using the current and
recent LiDAR scans, such that one can exploit the information for odometry
estimation in a SLAM pipeline and potentially remove dynamics from a map
representation. We assume that we are given a time series of N LiDAR scans
in the SLAM history, denoted by Pj = {pi ∈ R4} with M points represented
as homogeneous coordinates, i.e., pi = (x, y, z, 1)⊤. We call the current LiDAR
scan by C0 and the sequence of N previously scans by Cj with 1 < j < N .
The estimated N consecutive relative transformations from the SLAM / odometry
approach, TC0C1 , . . . ,TCN−1CN

, between the N +1 scanning poses, represented as
transformation matrices, i.e., T ∈ R4×4, are also assumed to be available. Given
the estimated relative poses between consecutive scans, we can transform points
from one viewpoint to another. We denote the kth scan transformed into the lth

scan’s coordinate frame by

Pk→l = {TClCk
pi | pi ∈ Pk} , with TClCk

=
l+1∏
j=k

TCj−1Cj
. (5.1)
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5.1.2 Residual Images
In line with previous chapters, we use a range image representation of a point
cloud. Inspired by Wang et al. [189], who exploit the difference between RGB
video frames for action recognition, we propose to use LiDAR-based residual im-
ages together with pixel-wise binary labels on the range image to segment moving
objects. Combining the current sensor reading and residual images, we can em-
ploy existing segmentation networks to distinguish between pixels on moving
objects and the background by leveraging the temporal information inside the
residual images.

To generate the residual images and later fuse them into the current range
image, transformation, and re-projection are required. To realize this, we pro-
pose a three-step procedure: First, we compensate for the ego-motion by trans-
forming the previous scans into the current local coordinate system given the
transformation estimates as defined in Equation (5.1). Next, the transformed
past scans Pk→l are re-projected into the current range image view using Equa-
tion (2.2). We compute the residual dk→l

i for each pixel i by computing the
normalized absolute difference between the ranges of the current frame and the
transformed frame by

dk→l
i =

|ri − rk→l
i |

ri
, (5.2)

where ri is the range value of pi from the current frame located at image coor-
dinates (ui, vi) and rk→l

i is the corresponding range value from the transformed
scan located at the same image pixel. We use the normalized residual to keep the
input data within the same range. We only calculate the residual for the valid
pixels that contain measurements and set the residual to zero for the invalid pix-
els. Examples of such residual images are depicted in Figure 5.3. We can see that
due to the motion of objects in the scene, e.g., the moving car, the displacement
between these points in the common viewpoint is relatively large compared to
the static background. However, there are ambiguities, since the large residual
patterns appear twice for one moving object, while for the slowly moving objects
the residual patterns are not obvious. Therefore, directly using residual images
for moving object segmentation does not lead to a desirable performance. It,
however, provides a valuable cue for moving objects and can guide the network
to separate moving and non-moving objects.

In the end, the residual images are concatenated with the current range image
as extra channels where the range image provides spatial information and residual
images encode temporal information. Each pixel (ui, vi)

⊤ in the fused range image
then contains a vector (xi, yi, zi, ri, ei, d

1→0
i , ..., dj→0

i , ..., dN→0
i )⊤. (xi, yi, zi, ri, ei)

⊤

are the 3D coordinates, range, and intensity values. dj→0 is the residual image
calculated between the last jth frame and the current frame.
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Figure 5.3: Residual images, where j means the residual image generated between the
current frame and the last j-th frame. We can see the continuous discrepancy in the
residual images due to the motion of the moving car.

5.1.3 Range Projection-Based Segmentation CNNs

In this chapter, we do not design a new network architecture but reuse networks
that have been successfully applied to LiDAR-based semantic segmentation in
the past. We adopt and evaluate three popular networks, namely SalsaNext [38],
RangeNet++ [120], and MINet [101], for MOS. SalsaNext and RangeNet++
are encoder-decoder architectures with a solid performance and MINet uses a
lightweight and efficient multi-path architecture. After the segmentation, a fast
GPU-based k-Nearest-Neighbor search over the point cloud is used to remove
artifacts produced by the network and back projection (see Section 2.4). All
methods are state-of-the-art range projection-based LiDAR semantic segmenta-
tion networks, comparably lightweight, and can achieve real-time operation, i.e.,
run faster than the frame rate of the employed LiDAR sensor, which is 10Hz
for common Ouster and Velodyne scanners. For more detailed information about
each network, we refer to the original papers [38, 101, 120].

Instead of changing the architecture of these segmentation networks, we di-
rectly feed them with the fused range images plus the residual information, retrain
the network and evaluate their performance with our MOS benchmark. Using
our proposed residual image approach, all segmentation networks show a large
improvement in moving object segmentation. For training, we use the same loss
functions as used in the original segmentation methods, while mapping all classes
into two per-point classes, moving and non-moving.
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5.1.4 Moving Object Segmentation Benchmark
Large datasets for LiDAR-based odometry, object detection, and tracking, like
the KITTI Vision Benchmark [67], and semantic segmentation, panoptic segmen-
tation, and scene completion like SemanticKITTI [13] are available and widely
used. There are, however, not many datasets and benchmarks available for 3D
LiDAR-based moving object segmentation. With this work, we also aim at cov-
ering this gap with a novel benchmark task for MOS.

Our proposed MOS benchmark is based on SemanticKITTI. It uses the same
split for training and test set as used in the original odometry dataset, where
sequences 00 to 10 are used for training and sequences 11 to 21 are used as a
test set. SemanticKITTI contains in total of 28 semantic classes such as vehicles,
pedestrians, buildings, roads, etc. and distinguishes between moving and non-
moving vehicles and humans. In the proposed MOS benchmark, we manually
reorganize all the classes into only two types: moving and non-moving/static
objects. The actually moving vehicles and humans belong to moving objects and
all other classes belong to the non-moving/static objects.

For quantifying the MOS performance, we use the commonly applied Jaccard
Index or intersection-over-union (IoU) metric [58] over moving objects, which is
given by

IoU =
TP

TP + FP + FN , (5.3)

where TP, FP, and FN correspond to the number of true positive, false positive,
and false negative predictions for the moving class.

5.2 Experimental Evaluation
This chapter focuses on moving object segmentation from 3D LiDAR scan se-
quences. We present our experiments to show the capabilities of our method and
to support our key claims, that our approach: (i) achieves moving object segmen-
tation using only 3D LiDAR scans and runs faster than the sensor frame rate of
10Hz, and (ii) improves the moving object segmentation performance by using
residual images, and outperforms several state-of-the-art networks.

We evaluate all the methods on our proposed MOS benchmark, now available
online1. We use the odometry information provided by SemanticKITTI, which are
estimated with a LiDAR-based SLAM system, SuMa [15]. Aiming at an easy-to-
integrate algorithm, we stick to the original setup while only changing the input
and the output of the classification head into the proposed binary labels. We
train each network using their specific training hyperparameters over 150 epochs

1See http://bit.ly/mos-benchmark for more information.
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Table 5.1: Evaluating our method with three different networks in terms of IoU

Input RangeNet++ MINet SalsaNext

One frame 38.9 9.1 51.9
Two frames 40.6 35.0 56.0
Residual frames (N=1) 40.9 38.9 59.9
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Figure 5.4: Ablation studies. The left figure shows the ablation study on the MOS
performance vs. the number of residual images N . The right figure shows the ablation
study on the MOS performance vs. the number of added noise units to the poses during
the inferring.

on sequences 00-07 and 09-10 and keep sequence 08 as the validation set. For
more details on the training regime for each network, we refer to the original
papers [38, 101, 120].

5.2.1 Ablation Study on Input and Architecture

The first ablation study presented in this section is designed to support our claim
that our approach is able to achieve moving object segmentation using only 3D
LiDAR scans. All the experiments in this section are evaluated on the validation
set, i.e., sequence 08.

We test three different setups with three different networks, RangeNet++,
SalsaNext, and MINet, for moving object segmentation as shown in Table 5.1.
The first setup is to train the three range projection-based networks directly with
the labels for moving and non-moving classes. The second setup is to attach
the previous frames to the current frame as the input of the network without
using the relative transformation, which results in 2 × 5 input channels, as each
image contains the coordinates (x, y, z)⊤, the range r, and the remission e for
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each pixel. The third setup is to concatenate the proposed residual images to the
current frame as the input of the network and therefore the input size is 5+N ,
as detailed in Section 5.1.2.

As can be seen in Table 5.1, RangeNet++ and SalsaNext show a fair per-
formance while MINet fails when training the network together with the binary
labels and no additional inputs. Overall, the performance has space for improve-
ments. This is probably due to the fact, that from one frame, the semantic
segmentation networks cannot distinguish well between the moving and static
objects from the same general class, but may learn some heuristics, e.g., that
cars on the road are usually moving while those on parking lots are static, which
can also be seen in the qualitative results Figure 5.5. A reason why MINet fails
may be due to the lightweight architecture that is not capable of learning such
heuristics.

In the second setup, we directly combine two frames. Here, the networks can
already gain some improvements in MOS, since they can obtain the temporal
information from two scans. In this setting, MINet is also capable of predicting
moving objects. In the third setup, the best MOS performance is achieved. We
hypothesize that it is advantageous to give direct access to the residual informa-
tion instead of the full range views. Given that most of the points are redundant
in two successive frames and the input is large due to the concatenation, the
networks need less time to extract the temporal information if the residuals are
provided directly. While a large enough network should be able to learn concepts
as the difference between frames given enough time, it is generally advantageous
to directly provide this information as also shown by Milioto et al. [120].

As shown in Figure 5.4, we provide two further ablation studies using SalsaNext
as the segmentation network. The left figure shows an ablation study on the
number of residual images used for MOS Both ablation studies use SalsaNext
as the segmentation network. We can see that N = 1 residual image attains
the biggest improvement in terms of MOS performance, while adding more resid-
ual images improves the MOS performance further with diminishing returns for
N > 8 residual images. The figure on the right shows an ablation study on the
MOS performance vs. the amount of noise added to the relative odometry poses
used to generate the residual images. We manually add noise to the poses es-
timated by SLAM in (x, y, θ)⊤ with multiples of (0.1m, 0.1m, 1 deg) to see how
the pose estimations influence our method during inferring. As can be seen, the
MOS performance will drop due to the noisy poses. However, when the added
noises are larger than 20 units, (2m, 2m, 20 deg), the noisy residual images do
not further influence the network, and the MOS performance will not become
worse.
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Table 5.2: LiDAR-MOS performance compared to the state of the art.

IoU

SalsaNext (moveable classes) 4.4
SalsaNext (retrained) 46.6

Residual 1.9
Residual + RG 14.1
Residual + RG + Semantics 20.6

SceneFlow 4.8
SceneFlow + Semantics 28.7

Spsequencenet 43.2
KPConv 60.9

Ours (based on SalsaNext/N = 1) 52.0
Ours (based on SalsaNext/N = 8 + Semantics) 62.5

Bold numbers indicate best performance in terms of IoU.

5.2.2 MOS Performance and Comparisons

The experiment presented in this section investigates the MOS performance of
our approach. It supports the claim that our approach improves the MOS per-
formance by using residual images and outperforms several state-of-the-art net-
works. Since there are not many existing implementations for LiDAR-based MOS
available, we choose several methods that have been used in similar tasks, e.g.,
semantic segmentation and scene flow, and modify them to achieve LiDAR-based
MOS. All the methods are evaluated on the test data of the proposed benchmark,
i.e., sequences 11-21.

We analyze multiple alternative approaches. We start using an existing se-
mantic segmentation network, e.g., SalsaNext [38], directly and label all the mov-
able objects, e.g., vehicles and humans, as moving objects while labeling other
objects as static. We name this method as SalsaNext (movable classes). Here,
we also show the results generated by the retrained SalsaNext with the proposed
binary labels, named SalsaNext (retrained). Since the residual images can al-
ready point out rough positions of moving objects, here we also take it as a
simple heuristic-based baseline, named Residual. We use 1m as the threshold
to determine moving and non-moving. Inspired by Yoon et al. [206], we also re-
implement the pure geometric heuristic-based method using residual information
together with free space checking and region growing, named Residual+RG.

We furthermore compare our method also to the state-of-the-art scene flow
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Range image

Diff + RG + semantics

SceneFlow + semantics

SalsaNext (retrained)

SalsaNext (movable)

Ours (1 residual image)

Ours (8 residual images + semantics)

Ground truth labels

Figure 5.5: Qualitative results with range projections, where red pixels correspond to
moving objects.

method, FlowNet3D [105], referred to as SceneFlow, which is a network estimat-
ing the translational flow vector for every LiDAR point given two consecutive
scans as input. We set a threshold on the estimated translation of each point to
decide the label for each point, i.e., points with translations larger than 1m are
labeled as moving. We fix the threshold based on the best MOS performance on
the validation set. We also compare our method to the state-of-the-art multi-
ple point cloud-based semantic segmentation methods, KPConv [177] and Spse-
quencenet [159], since they can also distinguish between moving and non-moving
classes.

For the non-semantic-based methods, we additionally add semantic informa-
tion by checking if the predicted moving objects are movable or not, and only label
a point as moving if it is both predicted as moving by the original method and
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(a) Raw point cloud (b) Ground truth labels

(c) SalsaNext (retrained) (d) Ours

Figure 5.6: Qualitative results shown as point clouds. (a) shows the raw point cloud
with points colored depending on the range from purple (near) to yellow (far). (b)
shows the ground truth, and (c,d) prediction results, where red points correspond to
the class moving. Blue circles highlight wrong predictions.

at the same time assigned to a movable object, e.g., vehicles and humans. The
semantic information is generated using SalsaNext with the pre-trained weights
provided by the original paper. We identify the semantic-enhanced methods by
adding “+Semantics”.

We compare two setups of our method to all the above-mentioned methods.
For our methods, we choose SalsaNext as the base network as it shows the best
performance in our ablation study. In the first setup, we use only one residual
image, N = 1, to obtain the temporal information, and in the other setup, we
use our best setup fixed on the validation sequence with N = 8 residual images
and semantic information to see the best performance of our method.

As shown in Table 5.2, our residual image-based method with N = 1 already
outperforms most baselines, while being worse than KPConv, which is a dense
multiple point clouds-based semantic segmentation method. Due to the heavy
computation burden, it cannot achieve real-time performance. When our method
uses multiple residual images (N = 8) together with semantic information, our
method outperforms all other methods.

Figure 5.5 and Figure 5.6 show the qualitative results on range images and
LiDAR scans respectively in a very challenging situation, where the car is at the
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Table 5.3: KITTI Odometry benchmark results

Split
Approach

SuMa SuMa++ SuMa+MOS

Train (Seq. 00-10) 0.36/0.83 0.29/0.70 0.29/0.66
Test (Seq. 11-21) 0.34/1.39 0.34/1.06 0.33/0.99

In line with Table 3.2: relative rotational error in deg per 100m / relative translational
error in %.

intersection and there are both a lot of moving objects and static objects. Our
method can distinguish moving and static points even when some of the moving
objects are moving slowly and other methods fail to detect this.

5.2.3 Applications
Two obvious applications of our proposed method are LiDAR-based odometry or
SLAM and 3D mapping. Here, we show the effectiveness of our method by using
the MOS predictions as masks for removing effectively all points belonging to
moving objects in the input LiDAR scans. No further tweaks have been employed.
We use our best setup for the MOS, i.e., our approach extending SalsaNext with
N = 8 residual images and semantics. Note that, here we show two direct use
cases of our MOS approach without any further optimizations employed.

5.2.3.1 Odometry/SLAM

For the LiDAR-based odometry experiments, we use an off-the-shelf SLAM ap-
proach SuMa [15] and apply our MOS method before feeding the point cloud
into the SLAM pipeline. We compare the improved odometry results to both the
original approach SuMa introduced in Section 2.3, and our semantic-enhanced
approach, SuMa++ introduced in Chapter 3. We evaluate these odometry meth-
ods, SuMa, SuMa++, and SuMa+MOS on the KITTI odometry benchmark [67].

The quantitative results are shown in Table 5.3. We can see that, by simply
applying our MOS predictions as a preprocessing mask, the odometry results are
improved in both the KITTI training and test data and even slightly better than
the well-designed semantic-enhanced SuMa.

5.2.3.2 3D Mapping

As shown in Figure 5.7, we compare the aggregated point cloud maps (a) directly
with the raw LiDAR scans, (b) with the cleaned LiDAR scans by applying our
MOS predictions as masks. As can be seen, there are moving objects present that
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(a) Raw point clouds

(b) Point clouds with moving segments removed

Figure 5.7: Mapping results on sequence 08, Frame 3960-4070, where we show the ac-
cumulated point cloud (a) without removing segments and (b) when we remove the
segments predicted as moving. Red circle highlights artifactes caused by moving ob-
jects.
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pollute the map, which might have adversarial effects, when used for localization
or path planning. By using our MOS predictions as masks, we can effectively
remove these artifacts and get a clean map.

5.2.4 Runtime
The runtime is evaluated on sequence 08 with an Intel i7-8700 with 3.2 GHz and
a single Nvidia Quadro P6000 graphic card. It takes around 10ms on average to
estimate the odometry and generate the residual image. Since we only change
the input of each network while keeping the architecture the same, the inference
time is nearly the same as the original one, specifically 75ms for RangeNet++,
42ms for SalsaNext, and 21ms for MINet. In the case of using semantics for the
MOS, we can run a second full semantics network in parallel.

As the odometry history for the SLAM is available, we need to estimate
the pose and generate the residual images only once for every incoming scan.
In sum, using our method for LiDAR-based odometry takes approx. 51ms per
scan (20Hz) using SalsaNext, which is faster than the frame rate of a typical
LiDAR sensor, i.e., 10Hz.

5.3 Conclusion
The ability to detect and segment moving objects in a scene is essential for build-
ing consistent maps, making future state predictions, avoiding collisions, and
planning. In this chapter, we address the problem of moving object segmentation
from 3D LiDAR scans. We propose a novel approach that pushes the current state
of the art in LiDAR-only moving object segmentation forward to provide relevant
information for autonomous robots and other vehicles. Instead of segmenting the
point cloud semantically, i.e., predicting the semantic classes such as vehicles,
pedestrians, buildings, roads, etc., our approach accurately segments the scene
into moving and static objects, i.e., distinguishing between moving cars vs. parked
cars. Our proposed approach exploits sequential range images from a rotating 3D
LiDAR sensor as an intermediate representation combined with a convolutional
neural network and runs faster than the frame rate of the sensor. We compare
our approach to several other state-of-the-art methods showing superior segmen-
tation quality in urban environments. Additionally, we created a new benchmark
for LiDAR-based moving object segmentation based on SemanticKITTI. We pub-
lish it to allow other researchers to compare their approaches transparently. The
link to the benchmark is http://bit.ly/mos-benchmark.
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Chapter 6

Pole-Like Object Detection
for LiDAR Localization

Different from SLAM, which benefits more from distinguishing mov-
ing and non-moving objects, for localization, pole-like objects, such
as traffic signs, poles, lamps, etc., are frequently used as landmarks in
urban environments due to their local distinctiveness and long-term

stability. In this chapter, we present a novel, accurate, and fast pole extraction
approach that runs online and has little computational demands such that this
information can be used for a localization system.

Robust and reliable localization is a basic requirement for an autonomous
robot. The accurate estimation of the robot’s pose helps to avoid collisions,
navigate in a goal-directed manner, follow the traffic lanes, and perform other
tasks. Reliability means here that the robot should adapt to changes in the
environment, such as different weather conditions [28], day and night [180], or
seasonal changes [110].

GPS or GNSS-based localization systems are robust to appearance changes of
the environment. However, in urban areas, they may suffer from low availability
due to building and tree occlusions. Additionally, map-based approaches are
needed for precise and reliable localization of mobile robots. Multiple different
types of sensors have been used to build the map of the environments, such
as LiDAR scanners [15, 52, 185], monocular cameras [125], stereo cameras [40],
etc. Among them, LiDAR sensors are more robust to the illumination changes
and multiple LiDAR-based effective and efficient mapping approaches have been
proposed. However, these approaches often need large amounts of memory due
to their map representations, thus cannot generalize easily to large-scale scenes.
If only specific features are used to build the map, such as traffic signs, trunks
and other pole-like structures, the map size can be reduced significantly.
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(a) Current scan

(b) Current range image

(c) Pole extraction result by our approach

Figure 6.1: Visualization of range image and pole extraction results. (a) On the top is
the raw LiDAR scan. (b) The corresponding range image generated from this scan is
in the middle. (c) The bottom is the pole extraction result based on the range image.

The main contribution of this chapter is a novel range image-based pole ex-
tractor for long-term localization of autonomous mobile systems. Instead of using
directly the raw point clouds obtained from 3D LiDAR sensors, we stick to the
use of range images for pole extraction. Operating on range image representation
is considerably faster than on the raw 3D point cloud. Besides, range image keeps
the neighborhood information implicitly in its 2D structure and we can use this
information for segmentation. As shown in Figure 6.1, in the mapping phase, we
first project the raw point cloud into a range image and then extract poles from
that. After obtaining the position of poles in the range image, we use the ground
truth poses of the robot to reproject them into the global coordinate system to
build a global map. During localization, we first use our OverlapNet introduced
in Chapter 4 to find possible locations on the global map/database. We sample
particles for each hypothesis and then utilize Monte Carlo localization for updat-
ing the importance weights of the particles by matching the poles detected from
online sensor data with the poles in the global map. In the end, the particles
converge to the correct location, and our approach achieves global localization.

90



6. Pole-Like Object Detection for LiDAR Localization

A

C

B

D

Figure 6.2: Overview of our approach. A. We project the LiDAR point cloud into a
range image and B. extract poles in the image. C. Based on the extracted poles, we
then build a 2D global pole map of the environment. D. We finally propose a pole-based
observation model for MCL to localize the robot in the map.

In sum, we make three key claims: Our approach is able to (i) extract poles in
the environment more reliably compared to the baseline method, (ii) as a result,
achieves better localization performance in different environments, and (iii) runs
online for pose tracking. These claims are backed up by the chapter and our
experimental evaluation.

6.1 Pole-Based LiDAR Localization
In this chapter, we propose a range image-based pole extractor for long-term
localization using a 3D LiDAR sensor. As shown in Figure 6.2, we first project
the LiDAR point cloud into a range image and extract poles from it. Based on
the proposed pole extractor, we then build a global pole map of the environment.
In the localization phase, we first use our OverlapNet to find possible locations
by comparing the current range image to those stored in the database. We then
extract poles online in the current scan using the same extractor and use a novel
pole-based observation model for Monte Carlo localization.

6.1.1 Pole Extraction
The key idea of our approach is to use range images generated from LiDAR
scans for pole extraction. We utilize the same spherical projection for range
image generation as used in the previous chapters. We extract poles based on the
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range images using a heuristic approach. The general intuition behind our pole
extraction algorithm is that the range values of the poles are usually significantly
smaller than the background. Based on this idea and as specified in Algorithm 3,
our first step is to cluster the pixels of the range image into different small regions
based on their range values. We first pass through all pixels in the range image,
from top to bottom, left to right.

As introduced in Section 2.1, each pixel (ui, vi)
⊤ in the range image stores the

corresponding 3D point p = (x, y, z)⊤, and the range information is computed by
r = ‖pi‖2. We put all pixels with valid range data in an open set O. For each
pixel, we check its neighbors including the left, right and below ones. If there
exists a neighbor with a valid value and the range difference between the current
pixel and its neighbor is smaller than a threshold ϵd, we add the current pixel to
a cluster C and remove it from the open set O. We do the same check iteratively
with the neighbors until no neighbor pixel meets the above criteria resulting in
a cluster of pixels. After checking all the pixels in O, we get a set B of clusters
and each cluster represents one object. If the number of pixels in one cluster is
smaller than a threshold ϵn, we regard it as an outlier and ignore it.

The next step is to extract poles from these objects using geometric con-
straints. To this end, we exploit both the range information and the 3D coordi-
nates stored in each pixel. We first check the aspect ratio of each cluster. Since
we are only interested in pole-like objects, whose height is usually larger than its
width, we therefore discard clusters with aspect ratio h/w < 1. Another heuristic
we use is the fact that a pole usually stands alone and has a significant distance
from background objects. NSmallR is the number of points in cluster C ∈ B whose
range value is smaller than its neighbor outside C, we throw away the cluster if
NSmallR is smaller than δ1 times the number of all points in the cluster.

To exploit the 3D coordinates (x, y, z)⊤ of each pixel, we calculate the length of
each cluster and only take a cluster as a pole candidate if max(z)−min(z) > ϵh.
Besides, we are only interested in poles whose height is higher than Ha. Based
on experience, we also set the lowest position of the pole as Hb to filter outliers.
For each pole candidate, we then fit a circle using the x and y coordinates of
all points in the cluster and get the center and the radius of that pole. Since
the generation of range image loses some point cloud information, thus influences
fitting accuracy. We deal with this problem by finding all points inside the circle
plus a small distance and refitting the circle using these enriched points. We filter
out the candidates with too small or too large radiuses Ra, Rb respectively and
candidates that connect to other objects by checking the free space around them.
After the above steps, we finally extract the positions and radiuses of poles. As
an example, Figure 6.3 visualizes the intermediate results on each step of our
geometric pole extractor.
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Algorithm 3: Range image-based pole extraction.
Input: Range image Irange
Output: Pole parameters L with circle centers and radiuses

1 Let O be the set of all valid pixel coordinates in Irange. ϵd is the distance
threshold to find neighbors, ϵn is the pixel count threshold, and ϵh is the
object height threshold. Ha and Hb are the height lower and upper bounds.
Ra and Rb are the radius lower and upper bounds. δ1 and δ2 are scale factors.

2 while O 6= ∅ do
3 create a new C in B; p← O[0]
4 N ← Neighbor(p)
5 while N 6= ∅ do
6 n← N [0]

7 if n ∈ O and Distance (n,p) < ϵd then
8 C ← C ∪ {p}; p = n

9 N ← N ∪Neighbor(n)
10 end
11 end
12 Npixel ← the number of pixels in C
13 if Npixel < ϵn then
14 B ← B − C
15 end
16 end
17 foreach C ∈ B do
18 w, h←Width(C),Height(C)
19 NSmallR ← the number of pixels in C whose range value is smaller than its

neighbor outside C
20 if h/w < 1 or NSmallR < δ1 |C| then
21 B ← B − C
22 end
23 end
24 foreach C ∈ B do
25 x,y, z ← 3D coordinates of pixels in C
26 if max(z) > Ha and min(z) < Hb and (max(z)−min(z)) > ϵh then
27 xC , yC , rC ← FitCircle(x,y)
28 NFree ← the number of the pixels in a small free space outside the

radius of the pole
29 if rC < Ra and rC > Rb and NFree < δ2 |z| then
30 L ← L ∪ {xC , yC , rC}
31 end
32 end
33 end
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(a) LiDAR range image

(b) Clustering results

(c) Pole candidates

(d) Final pole results

Figure 6.3: Visualization of results on each step of our pole extractor. (a) The first
image shows the original range image. (b) The second represents the clustering result.
(c) The third shows the pole candidates after applying geometric constraints. (d) The
last one is the final pole extraction result.

6.1.2 Mapping

To build the 2D global pole map for localization, we follow the same setup as
introduced by Schaefer et al. [153], splitting the ground truth trajectory into
shorter sections with equal lengths. Since the provided poses are not very accurate
for mapping [153], instead of aggregating a noisy submap, we only use the middle
LiDAR scan of each section to extract poles. We merge multiple overlapped pole
detections by averaging over their centers and radiuses and apply a counting
model to filter out the dynamic objects. Only those poles that appear multiple
times in continuous sections are regarded as real poles.

To achieve global localization, we also store the leg features of all the map
scans generated by our OverlapNet as a place recognition database. Each leg
feature is a lightweight 1D vector describing one map scan. Therefore, the
descriptor-based database is also relatively much smaller than the raw point cloud
map. Similar to our overlap-based global localization presented in Section 4.3, we
use our OverlapNet to estimate the similarities between the current query scan
and the map scans to find the possible locations as the initial hypotheses. Unlike
overlap-localization, we only store the features generated from the real map scans
obtained by the LiDAR sensor but not from the rendered synthetic scans. We use
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the descriptor database only to find initial global hypotheses to sample particles
and use the pole map for final accurate pose tracking.

6.1.3 Pole-Based Localization

We achieve global localization in two steps. In the first step, we use our OverlapNet
to generate a descriptor for the current range image and find the most No similar
places in the database to initialize the particles. For each location hypothesis of
these top No similar places, we sample Np particles. Then, we propose a novel
pole-based observation model to update the importance weights of particles and
integrate it into the MCL framework to achieve accurate global localization.

As presented in Section 2.2, MCL is one of the classic frameworks for local-
ization and commonly implemented using a particle filter. It realizes a recursive
Bayesian filter estimating a probability density p(xt | z1:t,u1:t) over the pose xt

given all observations z1:t and motion controls u1:t up to time t. This posterior
is updated as follows:

p(xt | z1:t,u1:t) = η p(zt | xt)

∫
p(xt | ut,xt−1) p(xt−1 | z1:t−1,u1:t−1) dxt−1,

(6.1)

where η is a normalization constant, p(xt | ut,xt−1) is the motion model, p(zt | xt)

is the observation model, and p(xt−1 | z1:t−1,u1:t−1) is the probability distribution
for the prior state xt−1.

In our case, each particle represents a hypothesis for the 2D pose xt = (x, y, θ)⊤t
of the robot at time t. When the robot moves, the pose of each particle is updated
based on a motion model with the control input ut or the odometry measure-
ments. For the observation model, the weights of the particles are updated based
on the difference between expected observations and actual observations. The
observations are the positions of the poles. We match the online observed poles
with the poles in the map via nearest-neighbor search using a k-d tree [17]. The
likelihood of the j-th particle is then approximated using a Gaussian distribution:

p (zt | xt) ∝
Nm∏
i

exp
(
−1

2

d
(
zi
t, z

(j)i
)2

σ2
d

)
, (6.2)

where d corresponds to the difference between the online observed pole zi
t and

matched pole in the map z(j)i given the position of the particle j. Nm is the
number of matches of current scan. If the query pole and its nearest neighbor
are not overlapped, we directly multiple a fixed penalty. Otherwise, we use the
Euclidean distance between the pole center positions to measure this difference.
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6.2 Experimental Evaluation
The main focus of this work is an accurate and efficient pole extractor for long-
term LiDAR localization. We present our experiments to show the capabilities of
our method and to support our key claims, that our method is able to: (i) better
extract poles compared to the baseline method, (ii) as a result, achieve better
performance on long-term localization in different environments, and (iii) achieve
online operation for pose tracking.

6.2.1 Pole Extractor Performance
The first experiment evaluates the pole extraction performance of our approach
and supports the claim that our range image-based method outperforms the base-
line method in pole extraction.

There are few public datasets available to evaluate pole extraction perfor-
mance. To this end, we label the poles in session 2012-01-08 of the NCLT dataset
by hand and release this dataset for public research use. For the reason that
the original NCLT ground truth poses are inaccurate [153], the aggregated point
cloud is a little blurry. Therefore, to create the ground truth pole map of the
environment, we partition the ground truth trajectory into shorter segments of
equal length. For each segment, we aggregate the point cloud together and use
Open3D [214] to render and label the pole positions. We only label those poles
with high certainty and ignore those blurry ones. Besides our own labeled data,
we also reorganize the SemanticKITTI [13] dataset sequence 00-10 by extract-
ing the pole-like objects, e.g., traffic signs, poles, and trunk, and then clustering
the point clouds to generate the ground truth pole instances. We evaluate our
method and compare it to the state-of-the-art pole-based LiDAR localization
method proposed by Schaefer et al. [153] in both datasets.

During the matching phase, we find the matches via nearest-neighbor search
using a k-d tree with 1m distance bounds, which is the same way as used in our
proposed pole-based observation model. Table 6.1 summarizes the precision, re-
call, and F1 score of our method and Schaefer et al. [153] compared to the ground
truth pole map on both the NCLT dataset and SemanticKITTI dataset. As can
be seen, our method has better performance in terms of all metrics compared to
the baseline method. The higher recall and precision results indicate that our
method extracts more poles in both environments with better accuracy.

6.2.2 Localization Performance
The second part of experiments is presented to support the claim that our ap-
proach achieves higher accuracy on localization in different environments. To as-
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Table 6.1: Pole extraction accuracy on NCLT and KITTI datasets.

Dataset Method Precision Recall F1 Score

NCLT
Schaefer [153] 0.52 0.66 0.58
Ours 0.53 0.71 0.61

Semantic
KITTI

Schaefer [153] 0.62 0.38 0.46
Ours 0.68 0.44 0.52
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Figure 6.4: Pole-based localization success rate. We vary the used number of hypotheses
and sample 200 particles around each hypothesis. We test each setup 10 times on all
the test sequences of NCLT and calculate the average success rate.

sess the localization reliability and accuracy of our method, we use three datasets
for evaluation, the NCLT dataset [28], and MulRan dataset [90]. Note that, these
two datasets are collected in different environments (U.S., Korea) with different
LiDAR sensors (Velodyne HDL-32E, Ouster OS1-64). In the NCLT and MulRan
dataset, the robot passes through the same place multiple times with month-level
temporal gaps, hence ideal to test the long-term localization performance. We
compare our methods to both the pole-based method from Schaefer et al. [153]
and our previously proposed range image-based method [36], named RangeMCL.
We use the SemanticKITTI dataset to evaluate the pole extraction performance
but do not use it for localization, since there is no long-term repetitive visiting
of the same places. For our pole-based method and the method by Schaefer et
al. [153], we use our OverlapNet to provide the initial hypotheses for particle ini-
tialization, while RangeMCL also achieves global localization using range images
via particle filter but without using pole information.

The NCLT dataset contains 27 sessions with an average length of 5.5 km
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and an average duration of 1.3 h over the course of 15 months. The data was
recorded by onboard sensors mounted on a mobile robot. The dataset covers
different times over a year, different weather and seasons, including both indoor
and outdoor environments, and also lots of dynamic objects. The trajectories of
different sessions have a large overlap. Therefore, it is an ideal dataset for testing
long-term localization in urban environments.

We first build the map following the setup introduced by Schaefer et al. [153],
which uses the laser scans and the ground truth poses of the first session. Since in
later sessions, the robot sometimes moves into unseen places for the first session,
we therefore also use those scans whose position is 10m away from all previously
visited poses to build the map. We also use such map scans to train our Over-
lapNet and build the feature database for providing initial global hypotheses.

During localization, we first use the top No = 20 place candidates provided
by our OverlapNet. Then, we uniformly sample Np = 200 positions around each
location candidate within a 2.5m circle. The orientations are uniformly sampled
from −5 to 5 deg. We resample particles if the ratio of effective particles is less
than 0.5. To get the pose estimation, we use the average poses of the best 10%
of the particles. We compare the localization results after the particles converge
successfully. We consider one run as a success if all particles converge into the
correct location.

Figure 6.4 shows the success rate with using different numbers of top-N hy-
potheses we use for the MCL initialization. We vary the used number of hypothe-
ses and sample Np = 200 particles around each hypothesis. We test each setup 10

times on all the test sequences of NCLT and calculate the average success rate.
As can be seen, when using No = 20 place candidates, our method has a high
success rate to find the correct global pose of the robot. After converging, we use
only 1000 particles for pose tracking to ensure the online operation. We use this
setup for all experiments below.

6.2.2.1 Localization on the NCLT Dataset

Table 6.2 shows the position and orientation errors for every session. We run the
localization 10 times and compute the average means and RMSEs to the ground
truth trajectory. The results show that our method surpasses Schaefer et al. [153]
in almost all sessions with an average error of 0.17m. Besides, in session 2012-
02-23, the baseline method fails to localize resulting in an error of 2.47m, while
our method never loses track of the robot position (Figure 6.5). This is because
our pole extractor can robustly extract poles and reliably localize the robot even
in an environment with fewer poles.
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Session fmap ∆pos RMSEpos ∆ang RMSEang

Date [%] [m] [m] [deg] [deg]
Schaefer’s Ours Schaefer’s Ours Schaefer’s Ours Schaefer’s Ours

2012-01-08 100.0 0.13 0.12 0.18 0.15 0.66 0.63 0.86 0.81
2012-01-15 8.5 0.16 0.15 0.23 0.20 0.76 0.75 1.00 0.98
2012-01-22 5.1 0.17 0.15 0.22 0.19 0.94 0.91 1.29 1.24
2012-02-02 0.4 0.16 0.14 0.21 0.17 0.72 0.70 0.98 0.92
2012-02-04 0.1 0.14 0.13 0.20 0.17 0.68 0.67 0.90 0.88
2012-02-05 0.5 0.15 0.14 0.21 0.20 0.69 0.69 0.95 0.94
2012-02-12 0.8 0.27 0.25 1.01 1.00 0.80 0.79 1.04 1.02
2012-02-18 0.8 0.15 0.13 0.22 0.18 0.70 0.68 0.94 0.91
2012-02-19 0.1 0.15 0.14 0.19 0.18 0.70 0.69 0.94 0.92
2012-03-17 0.0 0.15 0.14 0.19 0.17 0.83 0.80 1.06 1.03
2012-03-25 0.0 0.20 0.18 0.26 0.24 1.42 1.38 1.84 1.79
2012-03-31 0.0 0.14 0.14 0.18 0.18 0.75 0.73 0.97 0.94
2012-04-29 0.0 0.17 0.15 0.25 0.22 0.83 0.82 1.08 1.07
2012-05-11 5.5 0.16 0.13 0.23 0.16 0.77 0.75 1.00 0.97
2012-05-26 0.4 0.16 0.14 0.22 0.18 0.69 0.67 0.89 0.87
2012-06-15 0.4 0.18 0.15 0.24 0.19 0.66 0.65 0.88 0.87
2012-08-04 0.3 0.21 0.17 0.34 0.23 0.88 0.84 1.14 1.09
2012-08-20 3.8 0.19 0.16 0.26 0.21 0.71 0.69 0.94 0.91
2012-09-28 0.3 0.21 0.17 0.31 0.24 0.73 0.72 0.95 0.94
2012-10-28 1.4 0.22 0.19 0.34 0.28 0.69 0.68 0.92 0.91
2012-11-04 2.5 0.26 0.21 0.46 0.32 0.75 0.72 1.00 0.97
2012-11-16 2.7 0.40 0.30 0.72 0.44 1.47 1.40 2.03 1.92
2012-11-17 0.4 0.24 0.20 0.38 0.32 0.69 0.68 0.96 0.95
2012-12-01 0.0 0.27 0.23 0.49 0.43 0.67 0.66 0.93 0.89
2013-01-10 0.0 0.22 0.19 0.28 0.23 0.69 0.63 0.91 0.81
2013-02-23 0.0 2.47 0.24 5.48 0.57 1.08 0.59 1.77 0.85
2013-04-05 0.0 0.37 0.30 0.92 0.87 0.65 0.64 1.03 1.04
Average 0.28 0.17 0.53 0.29 0.80 0.76 1.08 1.02

Table 6.2: Results of our experiments with the NCLT dataset compared to Schae-
fer [153], averaged over ten localization runs per session. The variables ∆pos and ∆ang
denote the mean absolute errors in position and heading, respectively, RMSEpos and
RMSEang represent the corresponding root mean squared errors, while fmap denotes
the fraction of LiDAR scans per session used to build the reference map.
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Ground truth
Schaefer et al.
Ours

Figure 6.5: Comparison of localization results of Schaefer et al. [153] and our method
in session 2012-02-23 on the NCLT dataset. The black dots are the poles on the map.
The grey line is the ground truth trajectory. The blue line is our result and the red one
is of the baseline method. As can be seen, Schaefer’s method loses track of the robot
in some places, while our method always tracks the correct robot poses with respect to
the ground truth.

6.2.2.2 Localization on the MulRan Dataset

In the MulRan dataset, we use KAIST 02 sequence (collected on 2019-08-23) to
build the global map and use KAIST 01 sequence (collected on 2019-06-20) for
localization. We use the same setup as used in the experiments conducted on the
NCLT dataset for mapping and localization. Table 6.3 shows the location and
yaw angle RMSE errors on the MulRan dataset. As can be seen, our method
consistently achieves a better performance than both baseline methods [36, 153].

6.2.3 Runtime

This experiment has been conducted to support the claim that our approach runs
online at the sensor frame rate for pose tracking. For the initialization time cost
by OverlapNet with 4000 particles is around 2 s, and for more details of time
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Table 6.3: Localization results on MulRan dataset.

Schaefer [153] RangeMCL [36] Ours

RMSEpos [m] 1.82 0.83 0.48
RMSEang [deg] 0.56 3.14 0.27

cost by OverlapNet components, we refer to Chapter 4. In this section, we focus
more on the online pose tracking runtime cost. We compare our method to the
baseline method proposed by Schaefer et al. [153]. As reported in their paper, the
baseline method takes an average of 1.33 s for pole extraction. Our method only
needs 0.09 s for pole extraction and all MCL steps take less than 0.1 s yielding a
run time faster than the LiDAR frame rate of 10Hz.

6.3 Conclusion
Reliable and accurate localization is crucial for mobile autonomous systems.
Pole-like objects, such as traffic signs, poles, lamps, etc., are ideal landmarks
for localization in urban environments due to their local distinctiveness and
long-term stability. In this paper, we present a heuristic, yet accurate, and
fast pole extraction approach that runs online and has little computational de-
mands such that this information can be used for a localization system. Our
method performs all computations directly on range images generated from 3D
LiDAR scans, which avoids processing 3D point cloud explicitly and enables fast
pole extraction for each scan. We test the proposed pole extraction and local-
ization approach on different datasets with different LiDAR scanners, routes,
and seasonal changes. The experimental results show that our approach out-
performs other state-of-the-art approaches, while running online for pose track-
ing. Besides, we release our pole dataset generated from the SemanticKITTI
dataset to the public for evaluating the performance of pole extractors here:
https://github.com/PRBonn/pole-localization.
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Chapter 7

Automatic Labeling for Moving
Object Segmentation

As discussed in Part II, specific semantic categories in the scene can be
more useful than others depending on the underlying application sce-
narios. For example, for LiDAR SLAM, distinguishing moving and
non-moving objects can be more important than identifying differ-

ent classes of objects, as shown in Chapter 5. In contrast, to localize precisely
and reliably, pole-like objects can be used as good landmarks due to their local
distinctiveness and long-term stability, as presented in Chapter 6.

With the advent of deep learning techniques, neural networks can provide ac-
curate point-wise semantic predictions. Task-specific semantics can be addressed
by semantic segmentation networks, such as using moving object segmentation,
or in brief, MOS to distinguish moving and non-moving objects or using pole-like
object segmentation to separate poles and non-pole backgrounds [33, 50, 190].
Despite the good performance that such deep neural networks can achieve, they
rely on the diversity and amount of labeled training data that may be costly
to obtain. With a large amount of publicly available LiDAR datasets nowa-
days [12, 25, 66], labeling LiDAR data is still a tedious process and one of the
bottlenecks in supervised learning. Automatic label generation can alleviate this
problem by exploiting the temporal-spatial dependence of the recorded sensor
data. Especially for task-specific semantics, after specifying and simplifying the
categories of semantics for specific tasks such as MOS and pole segmentation,
we turn the challenging multiclass semantic segmentation problem into an easier
point-wise binary classification task, which enables automatic label generation to
be feasible.

In the final part of this thesis, we focus on methods that can automatically gen-
erate labels to train segmentation neural networks for LiDAR perception tasks.
As shown in Figure 7.1, we use geometric-based methods to automatically gener-
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Figure 7.1: Pipeline overview of our proposed auto-labeling method. Our method gener-
ates training data offline without human annotations. It can leverage temporal-spatial
information from sequences of LiDAR data. After training, the network can be used
for online perception tasks of autonomous vehicles such as moving object segmentation
and pole-like object detection.

ate training data offline, leveraging temporal-spatial information from sequences
of LiDAR data and without human annotations. Based on our automatic la-
beling methods, we can generate a large number of training data on different
datasets collected in different environments, which boosts the segmentation neu-
ral networks’ performance and enables better generalization across different en-
vironments. After training the network, it can be deployed for online perception
tasks of autonomous vehicles. We provide two examples of our automatic label-
ing methods for moving object segmentation in Chapter 7 and pole-like object
segmentation in Chapter 8.

7.1 Automatic Labeling for LiDAR-MOS
Moving object segmentation is one of the techniques to separate the actually
moving objects such as driving cars and pedestrians from static or non-moving
objects such as buildings, parked cars, etc. This is an important processing step
needed in many applications, such as predicting the future state of the surround-
ings [117], collision avoidance [134], or robot path planning [95]. This knowledge
can also improve and robustify pose estimation, sensor data registration, and
simultaneous localization and mapping [35]. Thus, accurate and reliable MOS
available at frame rate is relevant for most autonomous mobile systems.

3D LiDAR-based moving object segmentation (LiDAR-MOS) is challenging
due to the distance-dependent sparsity and uneven distribution of the range mea-
surements. In Chapter 5, we propose a deep neural network, called LMNet,
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to achieve LiDAR-MOS faster than sensor frame rate by exploiting sequential
LiDAR range images. Such supervised learning-based methods rely on often man-
ually labeled data, which is often limited in size and cannot easily be generated
for new or unseen environments. Automatic label generation can alleviate this
problem by exploiting the temporal-spatial dependence of the recorded sequen-
tial data and, compared to online operation, that the data can be processed in
batches. For example, the labels at a specific timestamp can be easier determined
when exploiting preceding and succeeding scans compared to online MOS.

The main contribution of this chapter is a novel modularized approach to gen-
erate MOS labels in 3D LiDAR scans automatically. Our approach first exploits
occupancy-based dynamic object removal techniques to detect possible dynamic
objects coarsely. We then cluster the proposals into instances and track them
using a Kalman filter. Based on the tracked trajectories, we label the actually
moving objects (driving cars, pedestrians, etc.) as moving. In contrast, the non-
moving objects, including parked cars, are labeled as static. Based on the labels
automatically generated offline, we train the LiDAR-MOS network LMNet [33].
Note that no manually labeled data or other sensor information is needed for
training. Once having a sequence of LiDAR scans, our method can automatically
generate MOS labels.

For evaluation, we automatically label LiDAR scans in the training sequences
of the KITTI odometry dataset [66] using different methods and compare the
quality of generated MOS labels using SemanticKITTI [13, 33] ground truth
LiDAR-MOS labels. Next, we automatically generate more labels on additional
data from KITTI, i.e., the KITTI road dataset, to train LMNet further. Com-
pared to the network trained on manually labeled ground truth data, the evalu-
ation results suggest that the network trained on labels automatically generated
by our method achieves similar performance, and is superior when using more
automatically generated data from additional scans. Furthermore, our approach
generalizes well to different, unseen environments, which we show for MOS on
three different datasets.

In sum, we make the following claims for our approach: (i) Compared to ex-
isting methods, our approach generates better labels for LiDAR-MOS. (ii) Based
on our generated labels, a network achieves similar performance compared to
the same network trained with manual labels on the same data and better per-
formance with additional automatically labeled training data. (iii) Our method
generates effective labels for different LiDAR scanners and in different environ-
ments.

As shown in Figure 7.2, our approach consists of five serialized modules. Our
proposed method only uses sequential LiDAR scans as input, and first uses a
LiDAR odometry / SLAM approach to estimate the poses for each scan. With
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Point Cloud Data

LiDAR SLAM/Odometry

Dynamic Removal

Offline Automatic 
Label Generation

Instance Segmentation Object Tracking

Generated LabelsOnline LiDAR-MOS Network

Figure 7.2: Overview of our method. It uses sequential LiDAR scans as input, and first
conducts a LiDAR odometry / SLAM step to estimate the poses. With the estimated
poses, it then applies a map cleaning method to coarsely detect the moving objects
(colored in green). A clustering method is then used to extract instances (in different
colors) based on the detected moving object proposals. After that, a multi-object
tracking method is applied to associate instances (with bounding boxes) and decide
the final labels of instances based on the tracked trajectories (colored in black). With
the generated labels, we train LMNet that can be later deployed for online LiDAR-
MOS.

the estimated poses, we then apply a map cleaning method to coarsely detect
moving objects. We then use a clustering method to extract instances based
on the detected moving object proposals. After that, we apply a multi-object
tracking method to associate instances and determine the final labels of instances
based on the tracked trajectories. Once we have generated the labels offline, we
train LMNet that can be later deployed on an autonomous vehicle to perform
LiDAR-MOS online in an unseen environment.

7.1.1 LiDAR Odometry

Instead of exploiting ground truth poses or information from other sensors, such
as RTK-GPS, our method uses only sequential LiDAR scans as input. We use an
off-the-shelf SLAM approach, SuMa [15] as introduced in Chapter 2.3, to estimate
the pose of each LiDAR scan, but other systems might be used instead. SuMa
exploits a spherical projection of the point cloud and estimates the relative pose
between the current LiDAR scan and the maintained world model via projective
ICP. In the following, we denote the estimated absolute pose of a scan at time t

by T t ∈ R4×4.
Note that there might be noise in the estimated poses, which may influence the

performance of visibility or ray tracing-based methods [88, 135]. With increasing
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noise, more objects will be detected as moving due to the misalignment caused
by inaccurate poses. However, this does not affect our method, since we use
the estimated poses for map cleaning and generate only coarse dynamic object
proposals, which are later verified and typical false positives are filtered out via
tracking.

7.1.2 Coarse Dynamic Object Removal
Different from Chapter 3 using multiclass semantic information to pre-define mov-
able objects, e.g., cars, pedestrians, here we only exploit the sequential temporal-
spatial information to coarsely detect the moving objects in a class-agnostic man-
ner. Since the sequential LiDAR data is available for offline label generation, we
can detect dynamic objects with an aggregated map, which is also referred as
map cleaning. Thus, this happens offline and not during the online operation. In
this work, we use ERASOR [104], a state-of-the-art map cleaning approach. It
first aggregates all local LiDAR points to obtain a single point cloud map M:

M =
⋃
t∈T

{T tp | p ∈ Pt} , (7.1)

where T = {1, 2, . . . , N} is the set of timestamps and N is the number of scans.
Pt = {pj}Nt

j=1 is the scan at time t with Nt points. The transformations T t are
the aforementioned estimated poses from the SLAM method.

Let M̂ be the estimated static map, where the problem of map cleaning is
defined as follows:

M̂ =M−
⋃
t∈T

M̂dyn,t , (7.2)

where M̂dyn,t refers to the estimated dynamic points at timestamp t. In this
work, we are interested in the set M̂dyn,t of moving objects instead of the static
map M̂.

ERASOR determines dynamic points by checking the discrepancy between
transformed points P ′

t = {T tp | p ∈ Pt} and M, i.e., if an object in the map M
can be found in the same position of P ′

t. Instead of checking the whole query
scan P ′

t at the same time t, it divides the volume of interest into small cells over
azimuthal and radial directions. For each cell, it calculates the pseudo occupancy
by subtracting the maximum and minimum height of the points inside the cell,
and then labels the cell as dynamic if the ratio of pseudo occupancy between the
corresponding pair of cells in the query P ′

t and mapM is larger than a threshold.
In the end, it reverts the ground points as static in the labeled dynamic cells. For
more details, we refer to the original paper [104].

Even though such map cleaning methods can distinguish moving objects from
the static map, we observe a substantial number of false positive detections,
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possibly caused by noisy points or inaccuracies in the estimated poses. Since
the goal of ERASOR is to obtain a static map, it is reasonable for map cleaning
methods to be more aggressive and remove some points to guarantee a clean
map. Moreover, exploiting both, past and future data sequentially, there are also
redundant observations. Thus, it may not influence the mapping results when
cleaning methods remove more points that belong to static objects.

However, the objective of MOS training data generation is different from that
of map cleaning. Thus, we aim to accurately separate actual moving objects, e.g.,
driving cars, from static or non-moving objects, e.g., buildings, parked cars.

7.1.3 Class-Agnostic Instance Segmentation
To compute accurate segments of moving objects, we apply instance segmentation
on the dynamic proposals M̂dyn,t provided by the map cleaning method. The goal
of a segmentation G is to partition the point cloud into disjoint subsets:

G =
⋃

k∈{1,...,NS}

Gk , (7.3)

where Gk ⊂ M̂dyn,t is a segment, and NS denotes the number of segments. Every
point p ∈ M̂dyn,t exists in one and only one segment Gk, i.e., Gi ∩Gj = ∅,∀ i 6= j.

There are many methods for class-agnostic segmentation [16, 20, 27]. In this
section, we choose HDBSCAN [27], which is an extension of DBSCAN [26]. DB-
SCAN is density-based and provides a clustering hierarchy from which a simplified
tree of significant clusters can be constructed. HDBSCAN performs DBSCAN
over varying density thresholds ϵdensity and integrates the result yielding a cluster-
ing that gives the best score over ϵdensity. This allows HDBSCAN to find clusters
of varying densities and to be more robust to parameter selection.

Once we obtain the final clustering results using HDBSCAN, we generate a
bounding box bk = (ck, θ, l, w, h, s)

⊤ for each segment Gk, including the center
coordinates ck ∈ R3, the length l, width w, and height h, heading angle θ, and
confidence score s. We filter out segments that are too small or too large, i.e., seg-
ments with less than Nmin points or with a maximum side length of the bounding
box larger than a threshold ϵsize and get the final set of instances B = {bm}NB

m=1

with NB ≤ NS.

7.1.4 Multiple Dynamic Object Tracking
After clustering, there can still be static objects inside the set of instances B. To
verify the real dynamic objects, we use a multi-object tracking method proposed
by Weng et al. [194] to obtain trajectories of object instances and determine the
label for each tracked instance based on its movement.

110



7. Automatic Labeling for Moving Object Segmentation

To this end, we use multiple extended Kalman filters to track instance bound-
ing boxes. For the motion model, we first compensate the ego-motion using the
poses estimated by the SLAM system. Then, for each instance, we apply a con-
stant velocity model as the state prediction. For the observation model, we find
associations between instances in consecutive scans. We compute a cost matrix
C ∈ RNt

B×Nt−1
B between all N t

B instances in the LiDAR scan at timestamp t and
all N t−1

B instances still tracked in the previous scan at timestamp t− 1, by means
of the similarity. The association problem can be formulated as a bipartite graph
matching problem that can be solved using the Hungarian method [93], an opti-
mal assignment method to determine the pairs of associations between currently
detected and previously tracked instances based on a fixed cost function.

To compute the instance similarity, we take three different geometric features
into account, the center distance, overlapping bounding box volumes, and change
of the volume between each pair of instances based on their bounding boxes.
Each entry of the cost matrix C is calculated as the association cost by a linear
combination of these three features between a new instance i and the prediction
of a previous tracked instance j:

C i,j = αd cd + αo co + αv cv , (7.4)
cd = ‖ci − cj‖2 , (7.5)
co = 1− IoU(bi, bj) , (7.6)

cv = 1− min(vi,vj)

max(vi,vj)
, (7.7)

where cd, co, cv ∈ R are the cost for the center distance, overlapping volume,
and change of the volume, and αd, αo, αv ∈ R are corresponding importance
weights. The center of the bounding box bk is denoted as ck and ‖·‖2 is the
Euclidean distance. The intersection over union IoU (·) between two instance
bounding boxes is used to account for the volume overlap with vk = l × w × h

representing the volume of the bounding box bk.
There are multiple challenging cases during tracking. For example, newly

detected objects might not be tracked in the previous scans, a tracked instance
might leave the scene, or a tracked instance might be occluded or missed. To
avoid wrong associations, we add a new EKF in case of newly detected objects
by determining Flagadd:

Flagadd = (cd > ϵd) ∨ (co > ϵo) ∨ (cv > ϵv) , (7.8)

where ϵd, ϵo, ϵv are the thresholds for the three instance features respectively de-
termined based on the validation data. We store the deactivated trajectories
for a fixed number of timestamps nold. We associate or re-identify instances if
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the similarity between a newly detected object and the still tracked or deacti-
vated one is high, resulting in Flagadd = false. For re-identification, the motion
model is applied continuously also to the deactivated targets (not matched with
any newly detected instance) to estimate their position in case of occlusions or
missed detections.

After tracking, we label an instance as moving if its accumulated trajectory
is larger than its maximum side length of the associated bounding box. We
label the instance point-wise, which means all points inside the bounding box
will be labeled as moving once we determine the instance as moving. In case of
misdetection or occlusion, we can still generate temporally consistent labels by
re-identifying instances using the EKFs.

7.1.5 Training a Neural Network for Online LiDAR-MOS
After running our pipeline, we obtain binary labels for all points. Based on that,
we can train our LiDAR-MOS network LMNet [33] as introduced in Chapter 5,
which can be later deployed for online LiDAR-MOS in unseen environments.
LMNet exploits sequential range images from a LiDAR sensor as an intermediate
representation combined with a typical encoder-decoder CNN and runs faster
than the frame rate of the sensor. By using residual images, our network obtains
temporal information and can differentiate between moving and static objects
and achieves state-of-the-art performance on the LiDAR-MOS task.

Instead of using the manual labels provided by our LiDAR-MOS benchmark,
we train our LMNet with the automatically generated labels by our proposed
off-line pipeline. Since our method can generate labels automatically for sequen-
tial LiDAR data, we can train LMNet with more data than that provided by the
LiDAR-MOS benchmark [33], which further boosts the performance of our net-
work for online LiDAR-MOS. Furthermore, the proposed auto-labeling method
can also generate labels for LiDAR data from other datasets, which were collected
from different environments. Using these additional generated labels, our LMNet
can better generalize in different environments.

7.1.6 Parameters and Implementation Details
Our method consists of individual modules that are carried out sequentially. We
use SuMa [15] with the default parameters as the LiDAR SLAM approach. We
then use ERASOR [104] with the default parameters to coarsely detect the dy-
namic objects. Based on the dynamic object proposals, we apply HDBSCAN [27]
with multiple density thresholds ϵdensity = {2.0, 1.0, 0.5, 0.25} to generate dynamic
object instances. After filtering out instances with less than Nmin = 5 points or
with a maximum side length larger than ϵsize = 20m, we track the remaining
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instances using a multi-object tracking method [194]. We use the same impor-
tance weights for three different association terms, i.e., αd = αo = αv = 1, and
keep track of deactivated instances for nold = 5 timestamps. The thresholds are
ϵd = 2m, ϵo = 0.95, and ϵv = 0.7. For training LMNet [33], we use the default
parameters with 8 residual images without semantic information and train for
150 epochs.

7.2 Experimental Evaluation
We present our experiments to illustrate the capabilities of our automatic label
generation method for LiDAR-MOS. They furthermore support our key claims,
that: (i) Our approach generates better labels for moving object segmentation
using only 3D LiDAR scans; (ii) Based on our automatically generated labels,
the network achieves similar performance in LiDAR-MOS compared to the one
trained with manual labels, and better performance with additional automati-
cally generated training data; (iii) Our method generates LiDAR-MOS labels for
different LiDAR data collected from different environments.

7.2.1 Experimental Setup

In line with Chapter 5, we use the intersection-over-union (IoU) metric over
moving objects to quantify the LiDAR-MOS performance, which is given by

IoUMOS =
TD

TD + FD + FS , (7.9)

where TD, FD, and FS correspond to the number of true dynamics, false dynam-
ics, and false statics points.

We evaluate our method on four different datasets. The first one is the LiDAR-
MOS benchmark [33] of SemanticKITTI [12], which separates all classes into
moving and static. It contains 22 sequences, from 00 to 07 and 09 to 10 for
training with ground truth labels, 08 for validation, and 11 to 21 for testing.
In this work, we first evaluate the automatic label generation methods on the
training data in Section 7.2.2. After generating the labels automatically, we re-
train the LMNet with the generated labels and test the re-trained model on the
hidden test set. Since there is more unlabeled LiDAR data available in the original
KITTI dataset [66], we generate more labels automatically and train the network
with extra data. We also test the further trained model on the hidden test set,
see Section 7.2.3. To evaluate the generalization ability of the proposed method,
we also test our approach on three other datasets, Apollo [106], MulRan [90],
and IPB-Car [30, 32], shown in Section 7.2.4. KITTI and Apollo have been
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Table 7.1: Evaluation on LiDAR-MOS automatic label generation.

IoUMOS

Octomap-based [4] 13.6
Removert [88] 15.7
ERASOR [104] 19.1

Pfreundschuh’s [135] 34.5
Yoon’s [206] 15.1

Ours 74.2

recorded with Velodyne HDL-64E LiDAR scanners, while IPB-Car and MulRan
offer LiDAR data from Ouster sensors.

7.2.2 Automatic Data Labeling Results
The experiment in this section supports our claim that our approach generates
better labels for moving object segmentation using only 3D LiDAR scans than
baseline methods. We test multiple methods that can distinguish moving and
non-moving objects on 3D LiDAR data, as shown in Table 7.1. We compare
our method to map cleaning-based methods like Removert [88], ERASOR [104],
and an Octomap-based [4] method. Those methods are open-source and have
been evaluated on the KITTI dataset. Therefore, we directly use the provided
implementation with the default parameters. We also re-implement two other
methods whose source code is not publicly available. The first one is proposed
by Yoon et al. [206] and detects dynamic objects in LiDAR scans exploiting
geometric heuristics, including residual and region growth, named Yoon’s. The
other one is the label generation method proposed by Pfreundschuh et al. [135],
which uses range images for visibility checking and later uses clustering to verify
candidates by voting, named Pfreundschuh’s. We implement that method using
the range image-based visibility checking part from Removert, the HDBSCAN
for clustering, and the same voting as used in the original paper. Our method
is denoted as Ours. All methods only use geometric information without any
learning or semantic information, which makes it possible to generate labels fully
unsupervised.

As shown in Table 7.1, our method outperforms other baseline methods on
generating LiDAR-MOS labels in terms of IoU over moving objects, which is in
line with the qualitative results shown in Figure 7.3. As can be seen, the map-
cleaning-based methods, Octomap-based, Removert, and ERASOR, show many
false dynamics (colored in red), while other label generation methods, Yoon’s and
Pfreundschuh’s, often miss moving objects leading to many false static points (col-
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(a) Octomap-based [4] (b) Removert [88]

(c) Erasor [104] (d) Yoon’s [206]

(e) Pfreundschuh’s [135] (f) Ours

Figure 7.3: Qualitative results of (a) Octomap-based [4], (b) Removert [88], (c) Era-
sor [104], (d) Yoon’s [206], (e) Pfreundschuh’s [135], and (f) ours. The green points
represent the true dynamics (TD), red points are false dynamics (FD), blue points are
false statics (FS), and the gray background are true statics (TS).
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Frame 3085 Frame 3090 Frame 3095 Frame 3100 Frame 3105

Figure 7.4: Qualitative results on consecutive scans. Our method detects different
types of moving objects, i.e., vehicles and cyclists, consistently across a sequence of
scans (green=TD, red=FD, blue=FS, gray=TS).

ored in blue). In comparison, our method detects moving objects more accurately.
We further provide qualitative results of our method on consecutive scans

in Figure 7.4. As can be seen, our method detects different types of moving
objects, i.e., vehicles and cyclists, consistently across a sequence of scans.

7.2.3 MOS Performance Using Auto-Generated Labels
In the second experiment, we re-train LMNet with the automatically generated
labels and evaluate the model on the hidden test set of the LiDAR-MOS bench-
mark, as shown in Table 7.2. We compare the network trained on manual ground
truth labels named LMNet+Manual, with the network re-trained on the labels
generated by the proposed method named LMNet+Ours. As can be seen, LM-
Net+Ours achieves a similar IoU on the benchmark as LMNet+Manual. We also
show the results of LMNet re-trained with extra automatically generated labels
named LMNet+Ours+Extra. In this experiment, we use the road sequences of the
KITTI raw dataset [66], generate additional labels using the proposed method,
and re-train LMNet with labels automatically generated on both KITTI odom-
etry and road data. Boosted with extra data, we see that LMNet+Ours+Extra
outperforms LMNet+Manual trained with manual labels, and is the best per-
forming strategy.
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7. Automatic Labeling for Moving Object Segmentation

Table 7.2: Online LiDAR-MOS performance on benchmark.

IoUMOS

SalsaNext [38] (movable classes) 4.4
SceneFlow [105] 4.8
Spsequencenet [159] 43.2
KPConv [177] 60.9

LMNet+Manual 58.3
LMNet+Ours 54.3
LMNet+Ours+Extra 62.3

Figure 7.5: MOS performance vs. the number of epochs for fine-tuning on Apollo data.

We additionally compare our method to other online LiDAR-MOS methods
that only use the current and past observations as required for real-world self-
driving applications. For example, one uses all movable objects as dynamic de-
pending on the semantics from a semantic segmentation network, such as Sal-
saNext [38], or multi-scan networks to learn to distinguish moving and non-
moving object classes, such as Spsequencenet [159] or KPConv [177], or using
the flow vectors with a threshold to determine the moving objects, such as Scene-
Flow [105]. Our method also outperforms all these baselines by a large margin.

7.2.4 Generalization Capabilities

The third experiment investigates the generalization capabilities of our approach,
and it supports our last claim that our method can generate LiDAR-MOS labels
for different LiDAR data collected from different environments. To this end, we
test our method on three more datasets, Apollo [106], MulRan [90], and IPB-
Car [30, 32]. To quantitatively evaluate the generalization capabilities of the pro-
posed method, we manually label a small test set on the Apollo-ColumbiaPark-
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(a) Apollo raw (b) Apollo clean

(c) IPB-Car raw (d) IPB-Car clean

(e) MulRan raw (f) MulRan clean

Figure 7.6: Map cleaning results on three different datasets. The color from blue to
red represents the height from low to high. Artifacts by moving objects are effectively
removed by our method, as highlighted by red circles. The mapping results on three
different datasets show that our method generalizes well in different environments.
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Table 7.3: Online LiDAR-MOS performance on Apollo dataset.

IoUMOS

LMNet+Manual (trained on KITTI) 16.9
LMNet+Ours 45.7
LMNet+Ours+Fine-Tuned 65.9

MapData [106], sequence 2 frame 22300-24300 and sequence 3 frame 3100-3600,
which contain many dynamic objects. We use the same LMNet and compare three
different setups: the pre-trained model with SemanticKITTI LiDAR-MOS man-
ual labels indicated by LMNet+Manual trained on KITTI, the re-trained model
with automatically generated labels on Apollo-ColumbiaPark-MapData sequence
1 frame 6500-7500 and sequence 4 frame 1500-3100 indicated by LMNet+Ours,
and the pre-trained model with automatically generated labels on KITTI fine-
tuned with automatically generated labels on the Apollo dataset indicated by
LMNet+Ours+Tuned.

As shown in Table 7.3, the model pre-trained with SemanticKITTI LiDAR-
MOS manual labels cannot generalize very well to different environments. The
re-trained model with our approach achieves a better performance, even when
using only a small set of training data, in this case only 2600 LiDAR scans. If
we fine-tune the pre-trained model with our automatically generated labels, i.e.,
using automatic generated labels from both KITTI and Apollo, it performs best
with only a few fine-tuning epochs, as shown in Table 7.3 and Figure 7.5.

We also test our method on the MulRan and IPB-Car datasets. Since there are
no manual labels available, we only show qualitative mapping results of Apollo,
IPB-Car, and MulRan datasets in Figure 7.6. As can be seen, using the auto-
matically generated labels, we can effectively remove dynamics during mapping
shown in the upper row and obtain comparably clean maps shown in the bottom
row.

7.3 Conclusion
In this chapter, we propose an automatic data labeling pipeline for 3D LiDAR
data to save the extensive manual labeling effort and to improve the performance
of existing learning-based MOS systems by automatically annotation training
data. Our proposed approach achieves this by processing the data offline in
batches, i.e., it is not designed to run online on a vehicle. It first uses a SLAM
method to estimate the poses of a sequence of LiDAR scans. Second, It exploits
an occupancy-based dynamic object removal to detect possible dynamic objects
coarsely. Then, it extracts segments among the proposals and tracks them using a
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Kalman filter. Based on the tracked trajectories, it labels the actually moving ob-
jects such as driving cars and pedestrians as moving. In contrast, the non-moving
objects, e.g., parked cars, lamps, roads, or buildings, are labeled as static. We
show that this approach allows us to label LiDAR data highly effectively and
compare our results to those of other label generation methods. We also train a
deep neural network with our automatically generated labels and achieve compa-
rable performance to the one trained with manual labels on the same data—and
an even better performance when using additional datasets with labels generated
by our approach. Furthermore, we evaluate our method on multiple datasets us-
ing different sensors, and our experiments indicate that our method can generate
labels in different outdoor environments.
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Chapter 8

Automatic Labeling for Pole
Segmentation

As discussed in Chapter 6, pole-like objects are useful landmarks for
global localization. Multiple works have been done using poles for
localization in different environments, such as in urban environments
by Wilbers [42] and in forests by Pierzchala et al. [136]. This chapter

applies the self-supervised learning scheme for pole segmentation, that is used
for LiDAR-MOS automatic labeling introduced in the previous chapter illustrat-
ing the applicability of our self-supervised method for different binary semantic
segmentation tasks. We adopt the automatic labeling-based learning scheme in-
troduced in Chapter 7, but use the geometric-based pole extractor introduced
in Chapter 6 to train a pole segmentation network. Instead of segmenting the
environment into moving and non-moving parts, the proposed pole segmentation
network only distinguishes the pole-like objects from others, which is very useful
for localization.

Learning-based semantic segmentation networks [38, 101, 120] have achieved
strong performance in segmenting and predicting different semantic classes of
objects in the environments on LiDAR data. We can use such segmentation net-
works to online detect pole-like objects that can be used for localization. However,
existing supervised networks generalize poorly to sensor data collected by differ-
ent LiDAR scanners in unseen environments where they have not been specifically
trained. To improve the generalization ability and at the same time exploit the
good performance obtained by segmentation networks, we propose in this chapter
to use our geometric-based pole extractor introduced in Chapter 6 to automati-
cally generate pseudo pole labels from different environments for easily training
an accurate and reliable pole segmentation network. We then integrate the pole
segmentation network into our pole-based MCL method to improve the localiza-
tion capabilities.
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We evaluate our supervised learning-based method on three different datasets
collected with varying types of LiDAR sensors. The evaluation results show that
our supervised learning-based approach generalizes well in different environments
and outperforms the geometric-based baseline methods in both localization ac-
curacy and runtime.

8.1 Automatic Labeling for Pole Segmentation
We directly use our geometric-based pole extractor, as presented in Chapter 6,
to automatically generate pseudo pole labels on LiDAR point clouds. Since our
geometric-based pole extractor uses only range information, it generalizes well
to different environments and different LiDAR sensors. It can generate a large
amount of training data across different datasets. We then use such automatically
generated pseudo pole labels to train a pole segmentation network. Trained and
boosted with a large amount of such pseudo pole labels from different datasets,
our learning-based method can generalize well in different environments and even
outperforms the geometric-based method. As for the network architecture, we use
the same SalsaNext [38], a range image-based semantic segmentation network, as
used in the previous section.

The main contribution of this section is a novel learning-based pole segmenta-
tion method on LiDAR range images that can be used for long-term localization
of autonomous mobile systems. In line with the previous chapters, we rely on
the use of range images for pole extraction. The detected poles in the range im-
age using only geometric information can further be used as pseudo pole labels
to train a pole segmentation neural network. After training once with pseudo
pole labels generated from different datasets, our learning-based based method
can detect poles in different environments and achieve even better localization
performance than our geometric-based method.

In sum, we make three key claims in this chapter: Our self-supervised pole
extractor is able to (i) extract more reliable poles in the environment compared
to the baseline method, as a result, (ii) achieve better online localization per-
formance in different environments, and (iii) faster runtime compared to the
geometric method.

8.1.1 Generate Pseudo Labels Using Geometric Pole
Extractor

As shown in Chapter 7, geometric information can be used to automatically gen-
erate labels for training a LiDAR-based moving object segmentation network and
achieve good performance in various environments. Such auto-labeling methods
enable network learning in a self-supervised manner, which saves the extensive
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manual labeling effort and improves the generalization ability of the learning-
based method. Similar to the idea of the previous chapter, we also use the poles
detected by our geometric-based pole extractor to generate pseudo labels to train
an online pole segmentation network.

As presented in Chapter 6, we can extract poles based on the range images
exploiting purely geometric information. The intuition behind this pole extrac-
tion algorithm is that the range values of the poles are usually smaller than the
backgrounds. We therefore first cluster points belonging to stand-alone objects
that have different range values with respect to the background points. Then,
we use multiple geometric shape-based checks to filter out non-pole objects and
obtain pole-like object clusters.

Our geometric method only exploits the range information of the LiDAR
scans, without exploiting any learning techniques, it generalizes well to different
environments and different LiDAR sensors and can therefore generate a large
amount of training data across different datasets, such as the NCLT dataset [28]
with Velodyne HDL-32E sensor, SemanticKITTI dataset [13] with Velodyne HDL-
64E sensor and MulRan dataset [90] with Ouster OS1-64 sensor. We use auto-
matically generated pole labels from all these datasets to jointly train one seg-
mentation network and apply it to unseen data.

8.1.2 Pole Segmentation Network Trained with Pseudo
Labels

In this chapter, we do not design a new network architecture but reuse net-
works that have been successfully applied to LiDAR-based semantic segmenta-
tion. In line with our automatic labeling method for LiDAR-MOS, we rely on
SalsaNext [38], an encoder-decoder architecture with a solid performance. After
the segmentation, similar filtering steps as used in the geometric method are ap-
plied to remove outliers. SalsaNext network is comparably light-weight and can
achieve real-time operation, i.e., run faster than the frame rate of the employed
LiDAR sensor, which is commonly 10 Hz.

For training the segmentation network, we directly feed them with the range
images plus the pseudo pole labels generated from our geometric-based pole ex-
tractor. We use the same loss functions as used in the original segmentation
methods, while mapping all classes into two per-point classes, poles and non-
poles. We retrain the network and evaluate the pole extracting performance
with our pole datasets and also localization tasks. Figure 8.1 shows the training
pipeline of our proposed learning-based pole segmentation method. Note that,
we train the network with pseudo pole labels generated from different datasets,
and later use the same model to extract poles in different environments.
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Figure 8.1: Overview of our learning-based pole extraction approach. We first use
the geometric method to generate range images and pseudo pole labels on multiple
datasets, including NCLT, KITTI, and MulRan. Then, we train a deep neural network
to extract pole-like objects directly on the range images. Our learning-based pole
extractor generalizes well to all three datasets with a single model.

8.1.3 Pole Segmentation-Based LiDAR Localization

For global localization, we use the same setup as used in Chapter 6. Here, we
only present the difference between our learning-based approach and the previous
geometric-based approach and refer the full localization pipeline to Chapter 6.

We use the poles extracted from LiDAR range images of mapping sequences
to build the pole-based map for both methods. For the learning-based method
proposed in this chapter, the same poles used for mapping are also used for train-
ing the pole segmentation network. Both mapping and training are conducted
offline. We treat the poles stored in the historical maps generated from different
datasets as a large training data pool. Therefore, we can exploit a large amount
of training data automatically generated by our geometric-based pole extractor
to boost the generalization ability and accuracy of our learning-based pole seg-
mentation network.

During the online localization phase, we also stick to the setup as used in Chap-
ter 6. We first use OverlapNet to provide the initial location hypothesis and then
sample particles around each location candidate. Different from the previous
geometric-based method, in this chapter, we match the poles detected by the
online pole segmentation network rather than the geometric pole extractor with
those stored in the global map to update the importance weights of the parti-
cles. We integrate this pole segmentation-based observation model into MCL to
achieve accurate global localization.
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8.2 Experimental Evaluation

8.2.1 Evaluation of Auto-Labeling for Pole Segmentation
We present the following experiments to illustrate the capabilities of our auto-
matic label generation method for pole segmentation. The experiments further-
more support our key claims that our auto-labeling method is able to (i) extract
more reliable poles in the environment compared to the baseline method, as a re-
sult, (ii) achieve better online localization performance in different environments,
and (iii) faster runtime compared to the geometric method.

8.2.2 Datasets for Pole Extraction and LiDAR
Localization

Following Chapter 6, we use our manually labeled poles in session 2012-01-08 of
the NCLT dataset to evaluate different pole extraction methods. Besides our own
labeled data, we also reorganize the SemanticKITTI [13] dataset sequence 00-10
by extracting the pole-like objects like traffic signs, poles, and trunk, and then
clustering the point clouds to generate the ground truth pole instances.

To assess the localization reliability and accuracy of our method, we use the
NCLT dataset [28] and MulRan dataset [90]. These two datasets are collected
in different environments (U.S., Korea) with different LiDAR sensors (Velodyne
HDL-32E, Ouster OS1-64). In these two datasets, the robot passes through the
same place multiple times with month-level temporal gaps, hence ideal to test
the long-term localization performance. We compare our methods to both a
pole-based method proposed by Schaefer et al. [153] and our range image-based
method [36], RangeMCL. For the SemanticKITTI dataset, there is no overlap area
between different sequences for evaluating long-term localization. Therefore, we
only used the extracted pole labels from the SemanticKITTI dataset to train our
network. Note that, the SemanticKITTI dataset was collected in Germany with
a Velodyne HDL-64E LiDAR scanner.

We stick to the same setup as used in Chapter 6 for all experiments to ensure
fair comparisons.

8.2.3 Pole Extractor Performance
The first experiment evaluates the pole extraction performance of our approach
and supports the claim that our range image-based method outperforms the base-
line method in pole extraction.

We evaluate both our geometric-based pole extractor introduced in Chapter 6,
named Ours-G, and our learning-based pole segmentation method proposed in
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this chapter, named Ours-L. For training the pole segmentation network, we
use data from multiple datasets, including the session 2012-01-08 in the NCLT
dataset, sequence KAIST 02 in the MulRan dataset and sequence 00-02, 05-09
in the SemanticKITTI dataset. For validation, we use sequences 03 and 04 in
the SemanticKITTI dataset and sequence 10 for testing. We train the network
for 150 epochs using stochastic gradient descent with an initial learning rate of
0.01 which is decayed by 0.01 after each epoch. The batch size is 12 and the
spatial dropout probability is 0.2. The size of the range image is 32×256 and
the valid range values are normalized between 0 and 1. To prevent overfitting,
we augmented the data by applying a random rotation or translation, flipping
randomly around the y-axis with a probability of 0.5. During the matching phase,
we find the matches via nearest-neighbor search using a k-d tree with 1m distance
bounds.

Table 8.1 summarizes the precision, recall, and F1 score of our method and
Schaefer et al. [153] with respect to the ground truth pole map on both the NCLT
dataset and SemanticKITTI dataset. As can be seen, our methods achieve better
performance and extract more poles in both environments compared to the base-
line method. Compared to our geometric-based pole extractor, our learning-based
method finds more poles while introducing more false positives, which decreases
precision. This can also be seen in Figure 8.2, which shows pole extraction ex-
amples of our geometric and learning-based pole extractor.

Note that we trained our pole segmentation network only once with pseudo
pole labels generated from different datasets and evaluated it on multiple different
datasets. As can be seen in Figure 8.2, the environments of different datasets vary
a lot, while our learning-based method can still extract poles well without fine-
tuning, which shows a good generalization ability of our method. The possible
reason for that is the range values of the poles are usually significantly different
than the backgrounds, which makes poles distinctive and easy to be detected on
range images. Compared to multiclass segmentation, it is easier for the neural
network to learn a more general model to detect poles based on the range images.

8.2.4 Localization on the NCLT Dataset
The second experiment is presented to support the claim that our approach
achieves higher accuracy on localization in different environments. For all the
experiments, we use the same setup as used in the baselines and report their
results from the original work.

We use the same setup as used in Chapter 6 on the NCLT dataset for local-
ization. To briefly summarize, we first build the map using the data from the
first session and also the scans of later sessions from the unseen places. We use
our OverlapNet to provide the top 20 similar place hypotheses and sample 200
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Table 8.1: Pole extraction accuracy on NCLT and KITTI datasets. Ours-G refers to
our previous geometric-based method, and Ours-L refers to our proposed learning-based
pole extractor.

Dataset Method Precision Recall F1 Score

NCLT
Schaefer [153] 0.69 0.39 0.50
Ours-G 0.77 0.66 0.71
Ours-L 0.68 0.67 0.67

Semantic
KITTI

Schaefer [153] 0.62 0.38 0.46
Ours-G 0.69 0.44 0.52
Ours-L 0.61 0.58 0.59

particles around each place hypothesis within a 2.5m circle. The orientations
are uniformly sampled from −5 to 5 deg. We resample particles if the number of
effective particles is less than 0.5. To get the pose estimation, we use the average
poses of the best 10% of the particles.

Table 8.2 shows the position and orientation errors for every session. We
run the localization 10 times and compute the average means and RMSEs to the
ground truth trajectory. The results show that both our geometric and learning-
based methods surpass Schaefer et al. [153] in almost all sessions with an average
error of 0.17m and 0.16m respectively. Besides, in session 2013-02-23, the base-
line method fails to localize resulting in an error of 2.47m, while our method never
loses track of the robot position (Figure 6.5). This is because our pole extractor
can robustly extract poles even in an environment where there are fewer poles.
Schaefer et al. [153] analyze their localization failure in session 2013-02-23 for the
reason that the barrels in a construction area are moved a few meters to the right
in the later session. As these barrels are detected as poles by their approach,
they are built in the map and cause the wrong pole matching to the map in this
area. In our pole extraction algorithms, we discard those poles with too large ra-
diuses. Thus, the barrels are not a part of our map and our localization will not
be influenced by the movement of these barrels. Interestingly, our learning-based
method improves localization results more than our geometric-based method in
most sessions. It may be caused by a more general pole segmentation model
trained with pseudo labels generated from different environments.

8.2.5 Localization on the MulRan Dataset

To further show the generalization ability of our method, we test both our geo-
metric and learning-based methods on the MulRan dataset, which was collected
from a different type of LiDAR sensor in a different environment. We use the
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Session ∆pos Date RMSEpos ∆ang RMSEang
[m] [m] [deg] [deg]

Ours-G Ours-L Ours-G Ours-L Ours-G Ours-L Ours-G Ours-L

2012-01-08 0.12 0.12 0.15 0.14 0.63 0.63 0.81 0.80
2012-01-15 0.15 0.15 0.20 0.20 0.75 0.75 0.98 0.99
2012-01-22 0.15 0.15 0.19 0.18 0.91 0.91 1.24 1.24
2012-02-02 0.14 0.13 0.17 0.16 0.70 0.70 0.92 0.91
2012-02-04 0.14 0.13 0.17 0.16 0.67 0.67 0.88 0.86
2012-02-05 0.14 0.15 0.21 0.25 0.70 0.70 0.94 0.95
2012-02-12 0.25 0.24 1.00 1.00 0.79 0.78 1.02 0.99
2012-02-18 0.13 0.13 0.18 0.16 0.68 0.68 0.91 0.91
2012-02-19 0.14 0.13 0.18 0.17 0.69 0.71 0.92 0.94
2012-03-17 0.14 0.13 0.17 0.16 0.80 0.80 1.03 1.02
2012-03-25 0.18 0.17 0.24 0.22 1.38 1.37 1.79 1.77
2012-03-31 0.14 0.13 0.18 0.16 0.73 0.73 0.94 0.93
2012-04-29 0.15 0.15 0.22 0.23 0.82 0.82 1.07 1.07
2012-05-11 0.13 0.13 0.16 0.15 0.75 0.77 0.97 0.99
2012-05-26 0.14 0.14 0.18 0.16 0.67 0.68 0.87 0.87
2012-06-15 0.15 0.15 0.19 0.18 0.65 0.63 0.87 0.84
2012-08-04 0.17 0.16 0.23 0.19 0.84 0.85 1.09 1.09
2012-08-20 0.16 0.15 0.21 0.18 0.69 0.69 0.91 0.91
2012-09-28 0.17 0.15 0.24 0.19 0.73 0.71 0.95 0.93
2012-10-28 0.19 0.17 0.28 0.23 0.68 0.68 0.91 0.90
2012-11-04 0.21 0.18 0.32 0.23 0.72 0.70 0.97 0.93
2012-11-16 0.30 0.25 0.44 0.37 1.40 1.38 1.92 1.90
2012-11-17 0.20 0.17 0.32 0.22 0.69 0.68 0.95 0.91
2012-12-01 0.23 0.21 0.43 0.44 0.67 0.65 0.89 0.85
2013-01-10 0.19 0.16 0.23 0.19 0.63 0.64 0.81 0.82
2013-02-23 0.24 0.21 0.57 0.49 0.59 0.59 0.85 0.85
2013-04-05 0.30 0.27 0.87 0.82 0.64 0.64 1.04 1.02

Average 0.17 0.16 0.29 0.27 0.76 0.76 1.02 1.01

Table 8.2: Results of our experiments with the NCLT dataset compared to Schae-
fer [153], averaged over ten localization runs per session. The variables ∆pos and ∆ang
denote the mean absolute errors in position and heading, respectively, RMSEpos and
RMSEang represent the corresponding root mean squared errors.
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Table 8.3: Localization results on MulRan dataset.

Schaefer [153] RangeMCL [36] Ours-G Ours-L

RMSEpos [m] 1.82 0.83 0.48 0.49
RMSEang [deg] 0.56 3.14 0.27 0.28

Table 8.4: Pole extracion runtime results.

NCLT KITTI MulRan

Ours-G 12Hz 2Hz 4Hz
Ours-L 17Hz 16Hz 16Hz

MulRan dataset KAIST 02 sequence (collected on 2019-08-23) to build the global
map and use KAIST 01 sequence (collected on 2019-06-20) for localization. Ta-
ble 8.3 shows the location and yaw angle RMSE errors on MulRan Dataset. As
can be seen, our geometric and learning-based methods consistently achieve a
better performance than both baseline methods [36, 153]. Note that, we train
our pole segmentation only once, and there is no fine-tuning when applying it to
a new environment.

8.2.6 Runtime

This experiment has been conducted to support the claim that our approach runs
online at the sensor frame rate. As shown in Table 8.4, we compare our method to
the baseline method proposed by Schaefer et al. [153] on three different datasets,
including NCLT (session 2012-01-08), KITTI (sequence 09), and MulRan (KAIST
02) datasets. As reported in their paper, on the NCLT dataset the baseline
method takes an average of 1.33 s for pole extraction on a PC using a GPU. We
tested our geometric method without using a GPU and our method only needs
0.09 s for pole extraction and all MCL steps take less than 0.1 s yielding a run
time faster than the LiDAR frame rate of 10Hz.

The performance of geometric-based pole extractors, both Schaefer’s and ours,
is influenced by the size of the input data, and it is a trade-off between localiza-
tion accuracy and speed. To achieve good localization results for the geometric
method, we use the range image size of 32×256 for NCLT and 64×500 for KITTI
and MulRan, which leads to a decrease in the runtime performance. However,
our learning-based method is not influenced by the size of input data. In our case,
we fix the size of network input as 32×256, and our network always works online
with good localization performance with a single GPU, which shows a significant
advantage of our learning-based method.
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8.3 Conclusion
In this chapter, we present a novel self-supervised pole segmentation approach on
LiDAR data that runs online and can be used in different environments. We use
the extracted poles as pseudo labels to train a deep neural network for online range
image-based pole segmentation. After boosted with pseudo pole labels extracted
from multiple datasets collected in different environments, our learning-based
method can run across different datasets and achieve even better localization
results compared to our geometric-based method. We further test our learning-
based pole extraction methods for localization on different datasets with different
LiDAR scanners, routes, and seasonal changes. The experimental results show
that our methods outperform other baseline approaches.

In the final part of this thesis, we propose an automatic data labeling pipeline
for 3D LiDAR data to save the extensive manual labeling effort. Our method
exploits only geometric information together with the temporal-spatial depen-
dence of the dataset to automatically generate labels for training segmentation
networks. We test our auto-labeling pipeline for both LiDAR-based moving ob-
ject segmentation and pole-like object segmentation and improve the performance
of existing learning-based MOS and pole segmentation systems. Our proposed
approach achieves this by processing the data offline in batches and generating
labels on different datasets collected from different environments. We show that
our auto-labeling method allows us to label LiDAR data highly effectively and
compare our results to those of other label generation methods. We also train
deep neural networks with our auto-generated labels and achieve similar perfor-
mance compared to the one trained with manual labels on the same data—and
an even better performance when using additional datasets with labels generated
by our approach. Furthermore, we evaluate our automatic labeling methods for
both LiDAR-MOS and pole segmentation on multiple datasets using different
sensors and our experiments indicate that our methods can generate labels in
diverse environments, consequently training networks with strong generalization
ability.

131





Chapter 9

Related Work

A large number of research activities have been conducted in the field
of robotics and autonomous vehicles. Perception tasks, such as SLAM
and localization, are among the longest-running research areas, as
they are critical components for most autonomous mobile systems.

Furthermore, many textbooks [8, 163, 178] and surveys [6, 7, 24] focusing on
SLAM and localization have been published over the past decades. Recently,
with the advent of deep learning and neural networks, especially in the computer
vision context, the fast growth of exploiting semantics in autonomous vehicles
has been driven. Multiple surveys [64, 85, 92] review the possible ways of using
semantic information to improve the capabilities of autonomous mobile systems.
Especially in the perception area, semantics have attracted increasing attention
for tasks such as SLAM and localization [56, 83, 167].

In this chapter, we discuss LiDAR-based methods for perception tasks of
autonomous vehicles and the advantages of our approach compared to existing
methods related to the developments in this thesis. We review both classical
geometric-based approaches and newly semantic-based methods that exploit a
high-level understanding of the environment. Instead of presenting how to obtain
such semantic information, e.g., semantic segmentation, object detection, etc., in
this chapter, we focus more on the approaches about how to use such semantics
for perception tasks of autonomous vehicles, e.g., SLAM and localization. We
divide this chapter into four sections in which we deal with individual aspects of
the structure of this thesis. In Section 9.1, we present different works that achieve
LiDAR-based SLAM, including traditional geometric-based methods and recent
semantic-based methods. In Section 9.2, we discuss LiDAR-based loop closing
works used to eliminate the drift of pose estimation during SLAM. Section 9.3
discusses approaches that localize robots in given maps. Finally, Section 9.4
deals with related works that automatically generate training data for LiDAR
perception tasks, thus reducing the effort of the laborious labeling of the data.
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9.1 LiDAR-Based SLAM

LiDAR-based odometry estimation and simultaneous localization and mapping
or SLAM are classical topics in robotics and autonomous vehicles with a large
body of scientific work. Traditional LiDAR-based odometry and mapping systems
often reduce the 3D point cloud data by relying on features [211], subsampled
clouds [124, 183], or voxels [211] as well as normal distributions transform (NDT)
based map representations [43, 150, 166]. For example, the LiDAR odometry
and mapping (LOAM) by Zhang and Singh [211, 212] extracts distinct features
corresponding to surfaces and corners, which are then used to determine point-
to-plane and point-to-line distances to a voxel grid-based map representation. To
enable real-time operation, LOAM switches between frame-to-frame and frame-
to-model registration. As a follow-up, LeGO-LOAM by Shan et al. [157] conducts
ground segmentation and isotropic edge points extraction from the projected
range image. Then a two-step non-linear optimization is executed on ground and
edge correspondences to solve two sets of transformation coefficients successively.

Unlike the above-mentioned methods using only key points, the approach by
Moosmann and Stiller [124] directly uses range images generated from a LiDAR
scanner to accelerate the computation of normals. It uses nearest neighbors
in a grid-based map representation to estimate correspondences. Thus, it is
inevitable to use subsampling to accelerate the processing. In contrast to the
grid-based map representation, Park et al. [131] proposed a surfel-based mapping
approach based on ElasticFusion by Whelan et al. [195] that allows optimization
of continuous-time trajectories for a rotating 2D laser scanner. SuMa by Behley
and Stachniss [15] also exploits surfels and operates on all LiDAR points and
performs registration to a surfel map at every step of the algorithm. Instead of
relying on nearest neighbor search, SuMa uses projective data association to find
correspondences between the current scan and rendered model views, which is
computationally efficient. Unlike other approaches, it performs frame-to-model
tracking for every incoming scan and updates the map representation at the
same time. We build our semantic LiDAR-SLAM presented in Chapter 3 based
on SuMa due to its high efficiency and accuracy.

Recently, motivated by the advances of deep learning and convolutional neu-
ral network for scene understanding, many semantic SLAM techniques have been
proposed exploiting semantic information from different types of sensors, includ-
ing cameras [3, 22, 74, 97, 111, 115, 175], cameras + IMU data [21], stereo cam-
eras [63, 100, 103, 184, 202], or RGB-D sensors [18, 112, 113, 147, 152, 169, 207].
Most of these approaches were applied indoors or in specific scenarios such as
fields and forests using either an object detector or semantic segmentation on
the camera images. For example, Mercier et al. [115] propose a deep network to
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localize target object instances in 2D RGB images. They train the network with
synthetic data and directly apply it to real-world images demonstrating good
applicability for indoor robotics and augmented reality applications. McCool et
al. [111] propose a lightweight neural network to improve the speed and accuracy
of agriculture robots in detecting weeds and crops in the fields. Based on the same
agricultural robotics platform, Hall et al. [74] introduce a clustering method on
such network features to achieve an unsupervised weed scouting for later weed
localization and destruction. Unlike localizing weeds in fields, Robert et al. [143]
focus on identifying tree bark that can be used for robot navigation and re-
localization in forest environments. They propose a deep learning-based tree
bark identification network that outperforms the hand-crafted descriptors for
bark re-identification.

To achieve outdoor large-scale semantic SLAM, one can combine 3D LiDAR
sensors with RGB cameras. For example, Yan et al. [201] combine 2D images and
3D points to detect cars and pedestrians. They exploit heuristics to first coarsely
segment and track objects in sequential LiDAR data. By projecting LiDAR seg-
ments into images, they apply shape and color priors to distinguish different
objects. Finally, they remove the detected object to generate clean maps of the
environments. Wang and Kim [188] use images and 3D LiDAR point clouds from
the KITTI dataset [67] collected by a car to jointly estimate road layout and seg-
ment urban scenes semantically. They use such semantic information to provide
location priors for navigation. Jeong et al. [81, 82] also propose a multi-modal
sensor-based semantic 3D mapping system which improves the segmentation re-
sults as well as the mapping results. To achieve reliable SLAM results in forests,
Pierzchała et al. [136] use a 3D LiDAR together with a stereo camera and an IMU
to detect the tree stems and use such information to improve robot localization
and mapping results. The work by Parkison et al. [132] develops a point cloud
registration algorithm by directly incorporating image-based semantic informa-
tion into the estimation of the relative transformation between two point clouds.
By adding the semantic constraints, their method improves the LiDAR poes es-
timates. A subsequent work by Zaganidis et al. [208] combines LiDAR points
and images to achieve semantic 3D point cloud registration. It uses semantic
information to improve pose estimation but cannot be used for online operation
because of the long processing time. All these approaches focus on combining
3D LiDAR with other sensors, especially cameras, to improve object detection or
semantic segmentation for localization or mapping.

In contrast to the approaches mentioned above, our proposed semantic LiDAR
SLAM only uses LiDAR data. There are not many LiDAR-only semantic SLAM
methods published yet. The most similar approaches to our proposed method
presented in Chapter 3 are by Sun et al. [173] and Dubé et al. [53], which
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also realize semantic SLAM using only a single LiDAR sensor. Sun et al. [173]
present a semantic mapping approach, which is formulated as a sequence-to-
sequence encoding-decoding problem. They represent and maintain a 3D map as
a Recurrent-OctoMap, where each cell is modeled as a recurrent neural network.
Although the proposed Recurrent-OctoMap achieves good semantic mapping re-
sults, especially for long-term consistently mapping, it is time-consuming and can
not operate online for autonomous driving. On the contrary, Dubé et al. [53, 54]
propose an approach called SegMap, which builds a coarse semantic map and
localizes the car within the semantic map online. SegMap extracts segments
from the point cloud and assigns semantic labels to them. It exploits learning-
based descriptors of segments for extracting semantic information that can be
later used for the global retrieval and multi-robot collaborative SLAM. Despite
achieving good localization results, SegMap only generates coarse semantic maps
with segments of cars, buildings, and others.

Different from Recurrent-OctoMap and SegMap, our proposed semantic LiDAR
SLAM, SuMa++ presented in Chapter 3, operates online and builds dense se-
mantic maps with an abundance of semantic classes. Our approach uses LiDAR
data and exploits information from a semantic segmentation operating on range
images generated from LiDAR scans. Using these semantics, SuMa++ filters
outliers caused by dynamic objects, like moving vehicles and humans, to improve
both mapping and odometry accuracy.

Although our semantic LiDAR SLAM successfully exploits semantic informa-
tion to achieve more accurate pose estimation and improve the mapping results,
it relies on multiclass semantic segmentation [38, 101, 120]. However, the perfor-
mance of these multiclass semantic segmentation networks strongly depends on
the diversity and amount of labeled training data that may be costly to obtain.
To alleviate this, in Chapter 5, we propose LiDAR-based moving object segmen-
tation (LiDAR-MOS) [33]. Instead of detecting multiple semantic classes such as
vehicles, humans, buildings, etc., we aim at separating the actually moving objects
such as driving cars from static or non-moving objects such as buildings, parked
cars, etc. Such binary labels are easier to obtain than multiclass semantics. For
example, we use automatic labeling techniques as described in Chapter 7 to au-
tomatically generate training data for LiDAR-MOS without human annotation
effort. With simplified binary labels, we retrain the same semantic segmentation
networks [38, 101, 120]. During online operation, we use the MOS predictions
estimated by the retrained network to mask out the dynamic objects in the input
LiDAR data of the same geometric LiDAR SLAM system, SuMa [15]. As the
experimental results presented in Chapter 5, by applying our MOS predictions as
a preprocessing mask, the odometry results are even better than our multiclass
semantic-enhanced SLAM, SuMa++ [35].
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9.2 Loop Closing for LiDAR SLAM

Loop closing is the problem of correctly identifying that a robot has returned to
a previously visited place and is a key component in SLAM systems. A correct
loop closing helps the SLAM system to reduce the accumulated drift of the pose
estimation due to robot motion and enhances the mapping accuracy.

Loop closing with 2D LiDAR scanners has been well studied in the indoor
environment [76, 162]. Stachniss et al. [162] reduce the localization error and
obtain more accurate maps of a 2D LiDAR-SLAM by actively seeking loop clo-
sures. Hess et al. [76] build submaps and then align scans to submaps to generate
closed loops by a branch-and-bound approach to efficiently develop more consis-
tent global maps. For loop closing in the large-scale outdoor environment is still
challenging due to the dynamic objects and the changing appearance of the en-
vironments. In this thesis, we focus more on approaches that can be applied in
outdoor environments for autonomous driving.

Multiple geometric-based 3D LiDAR loop closure detection methods have
been proposed. For example, Steder et al. [164] propose a place recognition sys-
tem operating on range images generated from 3D LiDAR data. They first exploit
a combination of bag-of-words and NARF features [165] to find the loop closure
candidates, and then use the matched features for robots’ relative poses estima-
tion. Instead of using specific features, Röhling et al. [144] present an efficient
method for detecting loop closures through the use of similarity measures on his-
tograms extracted from 3D LiDAR scans of an autonomous ground vehicle. Once
finding a loop, they use ICP to calculate the relative transformation between loop
candidates and integrate the loop constraints into an optimization-based SLAM
system. The work by He et al. [75] presents M2DP, which projects a LiDAR
scan into multiple reference planes to generate a descriptor using a density sig-
nature of points in each plane. In the end, M2DP uses the first left and right
singular vectors of these 2D signatures as the descriptor to find the loop closure
candidates robustly. Kim et al. [87] generate scan context images based on point
clouds and use them for LiDAR-based place recognition. They use scan context
images as global descriptors to encode each point cloud and find LiDAR pair
matches based on such descriptors. Besides using pure geometric information,
there are also methods [37, 73] exploiting the intensity/remission information,
i.e., how well LiDAR beams are reflected by a surface, to create descriptors for
localization and loop closure detection with 3D LiDAR data. These works show
that the LiDAR intensity information can be good supplements for finding loop
closures when using LiDAR data only. Vysotska et al. [186] link LiDAR ob-
servations with background knowledge about the environment, such as building
structures to create global constraints, similar to loop closures, to reduce the pose
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estimation uncertainty of SLAM systems. All the methods mentioned above are
based on hand-designed features and geometric information, which may not be
robust enough for outdoor changing environments.

Recently, deep learning-based methods that yield features in an end-to-end
fashion have been proposed for loop closing to overcome the need for hand-crafting
features. For example, Dube et al. [55] investigated an approach that matches
segments extracted from a scan to find loop closures via segment-based features.
A geometric test via RANSAC is used to verify a potential loop closure identified
by the matching procedure. Based on such segments, Cramariuc et al. [39] train a
CNN to extract descriptors from segments and use them to retrieve nearby place
candidates. Their experimental results show that the learning-based descriptors
outperform hand-crafted ones in finding loop closures in real-world urban driving
scenarios. Instead of using segments, Angelina et al. [181] propose PointNetVLAD
which is a deep network used to generate global descriptors for 3D point clouds.
It aggregates multiple LiDAR scans and end-to-end encodes a global descriptor
to tackle the retrieval and place recognition task. Yin et al. [204] develop Loc-
Net, which uses semi-handcrafted features learning based on a siamese network
to solve LiDAR-based place recognition. To recognize places and estimate the
yaw angle offset of pairs of candidates at the same time, Schaupp et al. [155] pro-
pose a system called OREOS. They use a convolutional neural network to extract
compact descriptors from LiDAR scans and use the features to retrieve nearby
place candidates from a map and to estimate the yaw discrepancy. Most recently,
there are also several works that exploit semantic information to improve loop
closure detection accuracy. For example, Zaganidis et al. [209] proposed a normal
distribution histogram-based loop closure detection method, which is assisted by
semantic information. Kong et al. [91] use semantic graphs for place recogni-
tion for 3D point clouds. Their network is capable of capturing topological and
semantic information from the point cloud and also achieves rotational invari-
ance. Li et al. [99] enhance the scan context descriptors by exploiting semantic
information to improve the descriptiveness of the descriptors. A two-step global
semantic ICP is then applied to align the point clouds for loop closing.

Contrary to the above-mentioned methods, our method presented in Chap-
ter 4 exploits multiple types of information extracted from 3D LiDAR scans,
including depth, normal information, intensity/remission, and probabilities of se-
mantic classes generated by a semantic segmentation system [120]. Our method
furthermore uses a siamese network to learn features and yield predictions end-
to-end, which directly provides estimates for overlap and the relative yaw angle
between pairs of LiDAR scans. Based on that, our method can be used not
only for detecting loop closure candidates but also to provide an estimate of the
matching quality in terms of the overlap.
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9.3 LiDAR-Based Localization

Besides loop closing, our method introduced in Chapter 4 can be further used
for LiDAR-based localization. Localization is a classical topic in robotics and au-
tonomous vehicles [44, 178]. For localization given a map, one often distinguishes
between pose tracking and global localization. In pose tracking, an approach
needs to locally localize the vehicle from a known initial pose, and the pose is
updated over time. In global localization, no pose prior is available and an ap-
proach needs to localize the vehicle globally. A popular traditional framework
for robot localization, that relies on probabilistic state estimation techniques, is
Monte-Carlo localization (MCL) [44, 62], which uses a particle filter to estimate
the pose of the robot. MCL has been well-applied in 2D indoor environments
with 2D laser scanners, as presented in the work by Dellaert et al. [44]. However,
it is still challenging to use MCL with 3D LiDAR in outdoor environments due
to the extensive computation in outdoor areas and big changes in environments
caused by the dynamic objects.

High-definition (HD) maps are frequently used for localization in outdoor en-
vironments in the context of autonomous vehicles. HD maps usually include map
elements such as road shape, road marking, traffic signs, etc., which are often
constructed using multiple sensors, such as LiDAR, radar, digital camera, and
GPS. There are many approaches proposed for building and using high-definition
maps for localization in outdoor environments. For example, Levinson et al. [98]
utilize GPS, IMU, and LiDAR data to build HD maps for localization. They gen-
erate a 2D surface image of ground reflectivity in the infrared spectrum and define
an observation model that uses these intensities. Wolcott et al. [198] propose a
new scan matching algorithm that leverages Gaussian mixture maps to exploit
the structure in the environment. The uncertainty in intensity values has been
handled by building a prior HD map. Barsan et al. [10] use a fully convolutional
neural network to perform online-to-map matching to improve the robustness of
dynamic objects and eliminate the need for LiDAR intensity calibration. Their
approach requires a good GPS prior to achieve good performance. Based on
this approach, Wei et al. [191] proposed a learning-based compression method
for HD maps, which compresses the intermediate representations of the neural
network while retaining important information for downstream tasks. Merfels et
al. [116] present an efficient chain graph-like pose graph for vehicle localization
exploiting graph optimization techniques and different sensing modalities. Based
on that work, Wilbers et al. [197] propose a LiDAR-based localization system
performing a combination of local data association between laser scans and HD
maps, temporal data association smoothing, and a map matching approach for
robustification.
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Despite good localization results that can be achieved using HD maps, such
high-definition maps are expensive to obtain and not always available. Instead of
using HD maps, we proposed several possible solutions for outdoor localization
in our previous work using only LiDAR data. Our work led by Wiesmann [196]
proposes a deep network to compress and decompress the point cloud maps which
can be later used for online localization. Recently, our work led by Vizzo [185]
also proposes a lightweight mesh mapping algorithm using Poisson surface re-
construction for LiDAR scans. Based on such mesh maps, we propose a novel
LiDAR range image-based observation model for MCL to achieve LiDAR-based
global localization [36]. There are also other approaches aiming at performing
LiDAR-based place recognition to initialize localization in outdoor environments
to relieve the computational burden. For example, Kim et al. [86, 89] transform
point clouds into scan context images and train a CNN based on such images.
They generate scan context images for both the current frame and all grid cells
of the map and compare them to estimate the current location as the cell pre-
senting the largest score. After finding the matched pairs of scans, they then use
ICP to compute the final localization results. Yin et al. [204] propose a siamese
network to first generate fingerprints for LiDAR-based place recognition and then
use iterative closest points to estimate the metric poses. Cop et al. [37] propose a
descriptor for LiDAR scans based on intensity information. Using this descriptor,
they first perform place recognition to find a coarse location of the robot, elim-
inate inconsistent matches using RANSAC [60], and then refine the estimated
transformation using ICP. In Chapter 6, we also use such a two-step scheme to
achieve global localization. We first use place recognition to find initial location
hypotheses and then use MCL to achieve metric localization. Different from the
existing methods, we use a pole-like object-based observation model to update the
importance weights of particles, which is more robust to changing environments
and achieves good long-term localization performance.

Recently, multiple approaches exploiting deep neural networks and semantic
information for 3D LiDAR localization have been proposed. Zhang et al. [210]
utilize both ground reflectivity features and vertical features for localizing au-
tonomous cars in rainy conditions. Both a histogram filter and a particle filter
are integrated to estimate the posterior distributions of the vehicle poses. Us-
ing a similar idea, Ma et al. [109] combine semantic information such as lanes
and traffic signs in a Bayesian filtering framework to achieve accurate and robust
localization results. Furthermore, their approach does not require detailed knowl-
edge about the appearance of the world, thus requiring orders of magnitude less
map storage than traditional geometric maps, which is important for autonomous
driving in large environments. Similarly, Yan et al. [200] exploit buildings and
intersections information from a LiDAR-based semantic segmentation system to
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localize on OpenStreetMap data using 4-bit semantic descriptors, which is fast
and lightweight. Tinchev et al. [179] propose a learning-based method to match
segments of trees and localize the robot in both urban and natural environments.
Their approach also learns a light feature space representation that can be de-
ployed using only a CPU. Sun et al. [172] use a deep-probabilistic model to
accelerate the initialization of the MCL and achieve a fast localization in outdoor
campus environments. This hybrid LiDAR-based localization approach integrates
a learning-based with a Markov-filter-based method, which makes it possible to
effectively and efficiently provide global localization results. These learning-based
semantic localization methods typically rely on sparse but distinctive semantic
landmarks to achieve fast runtime, lightweight map representation, and accurate
localization results for autonomous driving in large-scale environments.

Different from the above-discussed methods, our method presented in Chap-
ter 4 and Chapter 6 only exploits LiDAR information to achieve global localization
without using any other prior information. Our approach relies on convolutional
neural networks to either directly predict the overlap between LiDAR scans and
their yaw angle offset as described in Chapter 4 or detect pole-like objects as
described in Chapter 6. We exploit neural networks and such task-specific se-
mantic information to build new observation models for MCL which is robust
and accurate.

More specifically, in Chapter 4, we exploit a siamese network architecture [23]
and proposed a new network named OverlapNet [30, 31], which uses different
types of information generated from LiDAR scans to provide overlap and relative
yaw angle estimates between pairs of 3D scans. This information includes depth,
normal information, intensity/remission, and probabilities of semantic classes
generated by a semantic segmentation system [120]. We use the overlap and rel-
ative yaw angle estimates predicted by our OverlapNet to build a learning-based
observation model for MCL as detailed in Chapter 4.

The learning-based methods perform well in the trained environments, while
they usually cannot generalize well in different environments or with different
LiDAR sensors. Instead of using dense multiclass semantic information estimated
by neural networks [101, 120], in Chapter 6, we propose a rather lightweight so-
lution for long-term localization, which extracts only pole landmarks from point
clouds. During the mapping phase, we first extract poles in range images gen-
erated from LiDAR point clouds. After obtaining the position of poles in the
range image, we use the ground truth poses of the robot to reproject them into
the global coordinate system to build a global map. During online localization,
we utilize MCL for updating the importance weights of the particles by matching
the poles detected from online sensor data with the poles in the global map to
achieve robust and reliable localization.
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9.4 Task-Specific Semantics for LiDAR
Perception

As discussed in Section 9.1 and Section 9.3, multiclass semantic information pro-
vided by neural networks can be used to improve the robustness and accuracy of
LiDAR perception tasks, such as SLAM and localization. However, the perfor-
mance of these multiclass semantic segmentation networks strongly relies on the
diversity and amount of labeled training data, which may be costly to obtain.

To alleviate the strong dependence on human manual labelings, we propose
using more specific semantics for different LiDAR perception tasks, which are
also easier to obtain than multiclass semantics, such as using automatic labeling
techniques. In this section, we present and discuss the work related to moving
object segmentation and pole-like object extraction that can be used for specific
tasks like SLAM and localization. We also discuss here the possible ways to
automatically generate training data for each task.

9.4.1 Moving Object Segmentation for SLAM
While there has been a large interest in vision-based [9, 114, 133], radar-based [2]
and vision and LiDAR combined [139, 201] moving object segmentation ap-
proaches, only using a LiDAR sensor for MOS is challenging due to the distance-
dependent sparsity and uneven distribution of the range measurements. We con-
centrate here on approaches using only LiDAR sensors.

There are both geometric model-based and deep neural network-based meth-
ods in the literature to address the problem of online LiDAR-MOS. For example,
Yoon et al. [206] detect dynamic objects in LiDAR scans by exploiting geomet-
ric heuristics, e.g., the residual between LiDAR scans, free space checking, and
region growing to find moving objects. Dewan et al. [47] propose a LiDAR-
based scene flow method that estimates motion vectors for rigid bodies. They
formulate the problem as an energy minimization problem, where they assume lo-
cal geometric constancy and incorporate regularization for smooth motion fields.
Besides geometry-based approaches, there are also deep network-based meth-
ods [11, 68, 105], which use generic end-to-end trainable models to learn local
and global statistical relationships directly from data and estimate the flow vec-
tor for each point in the LiDAR point clouds. Such scene flow methods usually
estimate motion vectors between two consecutive scans, which may not differen-
tiate between slowly moving objects and sensor noise.

Semantic segmentation can be seen as a relevant step toward moving object
segmentation, since it can provide information about potentially moving objects,
such as vehicles and pedestrians. As presented in Section 2.4, LiDAR-based se-
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mantic segmentation methods operating only on the sensor data have recently
achieved great success [38, 101, 120]. Based on such online semantic segmen-
tation networks, our method presented in Chapter 3, SuMa++ [35], exploits
semantics to detect and filter out dynamic objects to improve the LiDAR SLAM
performance. Based on the geometric model-based approach [47], Dewan et al.
later also develop both semantic classification and segmentation methods [46, 48],
which exploit the temporally consistent information from the sequential LiDAR
scans to distinguish moving and non-moving objects. There are also several 3D
point cloud-based semantic segmentation approaches [159, 177], which exploit
sequential point clouds and predict moving objects. However, these methods re-
quire a large number of semantic labels, which are not always available and make
it difficult to train and generalize to unseen data.

Different from the multiclass semantic-based methods, Wang et al. [187] tackle
the problem of segmenting things that could move from 3D laser scans of urban
scenes, e.g., cars, pedestrians, and bicyclists. Ruchti and Burgard [146] also pro-
pose a learning-based method to predict the probabilities of potentially movable
objects directly. The output from their network is fed to the mapping module
for building a 3D grid map containing only static parts of the environment. Bo-
goslavskyi and Stachniss [20] propose a class-agnostic segmentation method for
3D LiDAR scans that exploits range images to enable online operation and leads
to more coherent segments. Based on such segments, one can later distinguish be-
tween moving and non-moving objects by tracking the segments and calculating
the speed [34].

Most existing semantic segmentation methods only find movable objects, e.g.,
vehicles and humans, but do not distinguish between actually moving objects, like
driving cars or walking pedestrians, and non-moving/static objects, like parked
cars or building structures. There are also multiple 3D point cloud-based semantic
segmentation approaches [159, 174, 177], which exploit sequential point clouds
and predict moving objects. However, based on networks operating directly on
point clouds, these methods are usually heavy and difficult to train. Furthermore,
most of them are both time-consuming and resource-intensive, which might not
be applicable for autonomous driving.

The most similar work to ours is the one by Yoon et al. [206], which also detects
dynamic objects in LiDAR scans. It exploits heuristics, e.g., the residual between
LiDAR scans, free space checking, and region growing to find moving objects.
Instead of using only geometric heuristics, our method presented in Chapter 5
is based on neural networks and we investigate the usage of three recent range
projection-based semantic segmentation methods proposed by Milioto et al. [120],
Cortinhal et al. [38], and Li et al. [101] to tackle MOS with the prospect of
real-time capability and operation beyond the frame rate of the LiDAR sensor.
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Our method does not rely on a pre-built map and operates online, i.e., uses
only LiDAR scans from the current and past observations. We exploit residuals
between the current frame and the previous frames as an additional input to
the investigated semantic segmentation networks to enable class-agnostic moving
object segmentation. Note that the proposed architecture does not depend on a
specific range projection-based semantic segmentation architecture. By training
the network with proposed new binary masks, our method distinguishes between
moving cars and parked cars in an end-to-end fashion.

Despite good LiDAR-MOS performance achieved by our approach using neu-
ral networks trained with simplified binary labels, it still relies on manual labels.
Due to the sparsity of the LiDAR sensor data and the lack of publicly available
datasets which contain point-wise moving and static labels, it is still challenging
for the LiDAR-MOS to generalize to different environments with varying ap-
pearances. To further eliminate dependence on manual labeling, in Chapter 7,
we propose an approach that can generate LiDAR-MOS labels automatically.
Next, we discuss more possible ways of automatically generating training data
for LiDAR-MOS, which have been proposed in the literature.

Unlike online LiDAR-MOS, label generation can be done offline, which enables
better performance in perception tasks using sequential future and past obser-
vations. Multiple works have already been proposed to clean the point cloud
map, which removes dynamic objects during the mapping procedure, resulting
in a clean static map [4, 65, 88, 104, 129, 138, 154, 199]. Early methods by
Gehrung et al. [65] and Schauer et al. [154] use time-consuming voxel ray casting
to remove non-stable points which require accurately aligned poses to clean the
dense terrestrial laser scans. To alleviate the computational burden, visibility-
based methods have been proposed [138, 199]. This type of method associates a
query point cloud to a map point within a narrow field of view, e.g., cone-shaped
used by Pomerleau et al. [138] and Xiao et al. [199]. Kim et al. [88] propose
a range image-based method, which exploits the consistency check between the
query scan and the pre-built map to remove dynamic points. The authors use a
multi-resolution false prediction reverting algorithm to refine the map. Instead of
using range images, Pagad et al. [129] propose an occupancy map-based method
to remove dynamic points in LiDAR scans. They first build occupancy maps
using object detection and then use the voxel traversal method to remove the
moving objects. Recently, Lim et al. [104] also propose a method to first remove
dynamic objects by checking the occupancy of each sector of LiDAR scans and
then relabel the points on the ground plane as static using a region growth. In
contrast, Arora et al. [4] first segment out the ground plane and then remove the
“ghost effect” caused by the moving object during mapping.

Even though such map cleaning methods can distinguish moving objects from
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the static map, there are many false positive detections possibly caused by noisy
points or inaccuracies in the estimated poses. Different from that, MOS training
data generation aims to accurately separate actual moving objects from static
or non-moving objects. Hoermann et al. [77] propose a fully automatic labeling
method to predict dynamic occupancy grids for urban autonomous driving. It
exploits the occupancy grid map and Bayesian filtering to distinguish static and
dynamic grids and uses them as training data to a convolutional neural network
for online dynamic grid detection. Instead of using 2D occupancy grid maps,
Thomas et al. [176] present a self-supervised learning approach for the semantic
segmentation of 3D LiDAR scans in the indoor environments. Their method
automatically labels 3D point clouds and provides movable probabilities for each
point using ray-tracing. The method by Pfreundschuh et al. [135] also generates
labels automatically to train a network for moving object-aware SLAM working
in small areas, e.g., a hall or a train station. Different from the works mentioned
above, our approach presented in Chapter 7 does not require ground truth poses
and exploits tracking to distinguish between moving and non-moving objects.
Furthermore, our method can be used in large-scale outdoor scenes.

9.4.2 Pole-Like Object Extraction for Localization
Using pole landmarks for localization and mapping has attracted a lot of interest
in the literature with different types of sensors, such as cameras [94, 161], RGB-D
sensors [84, 168], and cameras combined with LiDAR scanners [136, 151]. It has
been well studied with 2D laser scanners [122, 123]. For example, FastSLAM by
Montemerlo [122, 123] uses the tree trunks detected by a laser range finder as
landmarks and localizes the car within the Victoria Park [72]. In this section, we
focus on pole-based localization using only 3D LiDAR data, which is more robust
to outdoor changing environments.

For pole-based localization with LiDAR data, there are both geometric-based
methods [29, 51, 153, 156, 160, 192, 193] and learning-based methods [50, 137,
190]. For example, the method by Sefati et al. [156] first removes the ground
plane from the 3D point cloud and projects the remaining points on a horizontal
grid. After that, they cluster the grid cells and fit a cylinder for each cluster to
find the pole-like landmarks. In the end, they use a particle filter with nearest-
neighbor data association to estimate the robot’s poses. Weng et al. [192] and
Schaefer et al. [153] use similar particle filter-based methods to estimate the pose
of the robot but use different geometric pole extractors. Weng et al. [192] exploit
a heuristic that the point cloud densities on the poles are larger than their sur-
roundings. Therefore, they first discretize the space and then extract poles based
on the density of points in each voxel grid. Schaefer et al. [153] propose pole
detector considering both the laser ray endpoints and the free space in between
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the laser sensor and the endpoints, which demonstrates good localization perfor-
mance. Shi et al. [160] extract pole-like objects from the point cloud by spatial
independence analysis and cylindrical or linear feature detection. Besides, they
also classify the pole-like objects into street lamps, traffic signs, and utility poles
by 3D shape matching.

Instead of using only geometric information, semantic information has been
also widely exploited in extracting pole-like landmarks for global localization.
Many works have been done using image data [61, 94, 136, 143, 161]. For ex-
ample, Robert et al. [143] propose learning-based descriptors for tree bark re-
identification, which can be used to detect tree landmarks in robot navigation
robustly in forests. In similar forest environments, Fortin et al. [61] recently pro-
pose a wood log instance segmentation dataset for training networks to detect
tree log instances that can be used for robotic navigation systems. Instead of
using only camera images, Pierzchala et al. [136] combine a camera together with
LiDAR, IMU, and GPS to detect tree trunks as landmarks and integrate them
into a graph-SLAM. Their methods build tree trunk-aware 3D maps of forests
which can be used to localize robots accurately and reliably. There are also
works only using LiDAR data to detect pole-like objects for robot localization.
For example, Weng et al. [193] exploit the reflective intensity information pro-
vided by LiDAR scanners to extract traffic signs which are always painted with
highly reflective materials. Chen et al. [29] fuse poles and curbs information into
a non-linear optimization problem to obtain the vehicle location. They propose a
branch-and-bound-based global optimization method to tackle the data associa-
tion problem of poles. Recently, Plachetka et al. [137] use a deep neural network
for pole extraction by learning encodings of the point cloud input. They propose
a respective object anchor design with an accompanying strategy for matching
ground truth objects to object anchors during network training. In this way, their
network can detect pole-like objects with different shapes and heights. Wang et
al. [190] also exploit a neural network to infer the semantics of LiDAR point
clouds and cluster pole-like objects based on semantics. The localization is then
achieved by matching the pole clusters of the current local map with those of the
global map.

In contrast to the existing pole-based localization methods, our method pre-
sented in Chapter 6 uses a range image-based method and avoids the compara-
ble costly processing of 3D point cloud data [51]. Thus, our implementation is
fast and tracks the pose of the robot online. Our pole extractor uses geomet-
ric information only and generalizes well to different environments and different
LiDAR sensors. In Chapter 8, we also propose a neural network-based pole seg-
mentation approach for LiDAR localization [50]. Similar to our LiDAR-MOS
auto-labeling method, after simplifying the semantic information needed for lo-
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calization from multiple classes into only pole-like objects, we can generate the
training data automatically without human supervision. In Chapter 8, we further
use the poles extracted by our geometric-based method presented in Chapter 6
as pseudo labels to train a pole segmentation network. Trained with a large
number of pseudo pole labels automatically generated by our geometric-based
pole extractor from different datasets, our learning-based method can generalize
well in different environments and outperforms other state-of-the-art geometric
methods. When integrating our pole extractors into the MCL system, both our
geometric and learning-based methods achieve good localization performance.
When trained with a large number of pseudo pole labels automatically generated
by our geometric-based pole extractor from different datasets, our learning-based
method can generalize well in different environments and even outperforms the
geometric method.
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Chapter 10

Conclusion

High-level semantic understanding of the surroundings is the key for
autonomous vehicles to achieve full autonomy in dynamic and com-
plex real-world environments. The main contributions of this thesis
are novel approaches that exploit semantic information to improve

the performance of LiDAR perception tasks such as SLAM and localization for
autonomous vehicles. We divided this thesis into three parts to answer three
main questions: (i) how to use existing semantic information provided by seman-
tic segmentation methods for perception tasks, (ii) which types of semantics are
more useful for specific perception tasks, and (iii) how to generate semantic labels
for training networks to learn such semantics.

In Part I, we provided examples that exploit the semantic information pro-
vided by the existing semantic segmentation networks to improve the performance
of LiDAR-based perception tasks. We presented in Chapter 3 a novel semantic-
based LiDAR SLAM approach named SuMa++. The main contribution of our
SuMa++ is that it integrates the semantic information provided by a segmenta-
tion network on LiDAR scans into a SLAM system to build dense semantic maps
and provide accurate pose estimates. It explicitly checks the semantic consisten-
cies between scans and the map to filter out dynamic objects and provide high-
level constraints during the pose estimation process. We evaluated our approach
on both the KITTI road and KITTI odometry datasets [66, 67]. Compared to the
geometric methods, our method generates more consistent maps with semantic
information even in situations with many moving objects. The evaluation results
on the KITTI odometry benchmark also show that our proposed semantic-based
approach outperforms geometric approaches in terms of pose estimation.

Instead of explicitly using the semantic class consistencies, in Chapter 4, we
proposed a novel neural network called OverlapNet. The main contribution of
our OverlapNet is to implicitly exploit different types of information generated
from LiDAR scans and estimate similarities between pairs of 3D LiDAR scans.
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OverlapNet uses both geometric and semantic information of pairs of LiDAR
scans as input and provides similarity estimates between them in an end-to-end
fashion. We integrated our OverlapNet into downstream tasks like loop closure
detection and global localization and improved the performance of such tasks.
We evaluated our approach on multiple datasets collected using different LiDAR
scanners in various environments. The experimental results show that our Over-
lapNet can effectively detect loop closures surpassing the detection performance
of state-of-the-art methods at that point in time, and it generalizes well to dif-
ferent environments. Furthermore, our method reliably localizes a vehicle in
typical urban environments globally using LiDAR data collected in different sea-
sons. Our OverlapNet was the first network to exploit multiple cues generated
by LiDAR scans and estimate both the similarity and yaw angle offset between
pairs of scans. We released the implementation of our OverlapNet. It has been
followed by many later works [107, 108, 142, 215], which push the state-of-the-art
LiDAR-based place recognition and loop closing forward.

Instead of exploiting multiclass semantic information from existing segmenta-
tion networks, in Part II, we answered the question of which types of semantics
are more useful for different specific tasks. We presented an example of using
moving/non-moving semantics for SLAM task in Chapter 5. Instead of detecting
all potentially movable objects such as vehicles or humans, the proposed method
aims at separating the actually moving objects such as driving cars from static or
non-moving objects such as buildings, parked cars, etc. It exploits sequential and
temporal information to achieve an effective moving object segmentation, which
is then used to improve the pose estimation and mapping results of SLAM. We
compared our approach to several other state-of-the-art methods showing supe-
rior moving object segmentation quality in urban environments. Additionally, we
created a new benchmark for LiDAR-based moving object segmentation based on
SemanticKITTI [12, 13]. We published it together with the code of our method
to allow other researchers to compare their approaches transparently. It was the
first public available LiDAR-MOS benchmark, which provides dense point-wise
MOS labels and a hidden test set for evaluating LiDAR-MOS approaches.

Unlike SLAM estimating the vehicle’s poses with respect to the on-the-fly
map, localization aims to localize the robot within a given map. Thus, for local-
ization, pole-like objects, such as traffic signs, poles, lamps, etc., are frequently
used landmarks in urban environments due to their local distinctiveness and long-
term stability. We presented a novel, accurate, and fast pole extraction approach
in Chapter 6 that operates online on LiDAR range images. We then used pole-
like objects as landmarks and proposed a novel pole-based observation model
for MCL and achieved good localization results. We tested the proposed pole
extraction and localization approach on different datasets including KITTI [67],
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SemanticKITTI [13], NCLT [28], and MulRan [90], which were created with dif-
ferent LiDAR scanners, routes, and seasonal changes. The experimental results
show that our approach outperforms other state-of-the-art approaches at that
point in time while running online for pose tracking. In addition, we released the
implementation of our approach and our pole dataset to the public for evaluating
the performance of other pole extractors.

One of the bottlenecks in supervised learning approaches is the necessary
amount of labeled data. Labeling training data for such approaches is a laborious
task and thus expensive. In Part III, we presented two examples to automatically
generate labels for training segmentation networks. By specifying and simplify-
ing the categories of semantics for specific tasks, we turned the challenging multi-
class semantic segmentation problem into easier binary classification tasks, which
makes automatic label generation feasible. We provided two examples of our au-
tomatic labeling methods for LiDAR-MOS in Chapter 7 and pole segmentation
in Chapter 8. For automatic labeling of LiDAR-MOS, we provided comparisons
to other existing techniques that can be used for generating LiDAR-MOS labels.
The experimental results suggest that our method achieves a solid performance
on LiDAR-MOS label generation and substantially boosts the online performance
by additional automatically generating labels. We evaluated our method on four
different datasets, including our own LiDAR-MOS benchmark [33], IPB-Car [32],
MulRan [90], and Apollo [106], showing strong generalization capabilities for our
approach. For automatic labeling of pole segmentation, we used the extracted
poles from our geometric pole extractor as pseudo labels to train a deep neural
network for online range image-based pole segmentation. Boosted with pseudo
pole labels extracted from multiple datasets collected in different environments,
our learning-based method can run across different datasets and achieve even
better localization results compared to geometric methods. We further tested
our learning-based pole extraction methods for localization on different datasets,
including NCLT [28] and MulRan [90]. The experimental results show that our
methods outperform other baseline approaches.

Overall, this thesis presented novel approaches to exploit semantic informa-
tion to improve performances of LiDAR perception tasks such as SLAM and
localization for autonomous vehicles. It provided examples of how to use seman-
tics, which types of semantics to use, and how to automatically generate such
semantics, for SLAM and localization. We evaluated and tested all our pro-
posed methods using public available datasets recorded by autonomous vehicles
in different outdoor environments and showed that our proposed semantic-based
methods outperformed the state-of-the-art baseline methods at that point time.
We additionally released all the implementation of our methods as well as the
new LiDAR-MOS and pole segmentation benchmarks.
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10.1 Open Source Contributions
All our proposed algorithms presented in this thesis are open-source to facilitate
further research. The links to the repositories of our implementations are as
follows:

• Chapter 3 presented our proposed efficient semantic LiDAR SLAM method,
called SuMa++. This implementation is available online at: https://
github.com/PRBonn/semantic_suma.

• Chapter 4 presented our proposed OverlapNet, which is a novel neural
network for LiDAR loop closing and global localization. The network it-
self is available at: http://github.com/PRBonn/OverlapNet. The im-
plementation of using OverlapNet for global localization is available at:
https://github.com/PRBonn/overlap_localization.

• Chapter 5 presented our proposed LiDAR-based moving object segmenta-
tion. The implementation is available at: http://github.com/PRBonn/
lidar-mos and the benchmarks is at: http://bit.ly/mos-benchmark.

• Chapter 6 presented our pole-based localization method and Chapter 8
used it for training a pole segmentation network. Both implementations of
our pole extractor and pole segmentation are available online at: http://
github.com/PRBonn/https://github.com/PRBonn/pole-localization.

• Chapter 7 presented our automatic label generation pipeline for LiDAR-
MOS. The implementation is available at: http://github.com/PRBonn/
auto-mos.

10.2 Future Work
In this thesis, we provided examples that exploit semantic information to improve
the performance of LiDAR perception tasks such as SLAM and localization for
autonomous vehicles. We proposed approaches either directly using the multiclass
semantic information from existing semantic segmentation networks or exploiting
task-specific semantics for SLAM and localization individually. Despite promising
results that have been achieved using our proposed approaches, multiple novel
techniques developed while writing this thesis as well as some promising future
works can further improve the performance of the presented perception tasks for
autonomous vehicles.

First of all, different levels of semantics can be further exploited for percep-
tion tasks. The approaches presented in Part I of this thesis exploited point-wise
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car

person

Figure 10.1: Open-world instance segmentation. The green segments outline corre-
spond to known classes, i.e., person A and car C, and red outlines correspond to things
that are not part of the training data. While A and C are known classes, B corresponds
to a baby stroller—an unknown class, which obviously should be detected even though
not annotated in the training set.

semantics at the measurement level. A higher object-level semantics, such as mov-
ing objects and pole-like objects presented in Part II, further improved SLAM and
localization performance by providing more specific semantic information. Most
recently, we also proposed instance-level semantics [14, 119, 127, 128], which not
only distinguish different classes of objects, i.e., car, pedestrians, etc., but also
identify and separate individual instances. For example, the joint work led by
Lucas Nunes [127] exploits class-agnostic instance segments and contrastive loss
to learn descriptive representations of the objects in the scene unsupervised and
boosts the semantic segmentation results. Based on such unsupervised learned
instance representations, we also tackle the open-world instance segmentation
task [128]. As shown in Figure 10.1, one of the bottlenecks of the existing se-
mantic segmentation is that they are bound by the labeled classes, ignoring long-
tailed classes not annotated in the training data due to the scarcity of examples.
However, those unknown long-tailed classes, such as a baby stroller or unseen
animals, can be crucial when interpreting the vehicle surroundings for safe in-
teraction. The cooperation led by Lucas Nunes [128] was under review during
the writing of this thesis and published in the IEEE Robotics and Automation
Letters (RA-L) journal before the final editing of this thesis. We believe such
open-world instance segmentation is essential to achieving a scalable deployment
of autonomous vehicles in the real world.

Beyond a specific level, semantic information could be also represented as a
hybrid and hierarchical or even more complex way. In the same example shown
in Figure 10.1, a person pushing a baby stroller could be detected as an unknown
object and, at the same time, one moving object. Multiple hybrid semantics could
be assigned to the same objects in favor of different tasks. Another example for
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mapping and localization could be hierarchically constructing or exploiting one
map with multiple layers. The same map could store sensor measurements for
accurate pose estimation, global descriptors for place recognition, and appearance
information for environmental categorization. Such a hybrid and hierarchical
understanding of the environment will provide richer information, and multiple
interpolations of the same data enable us to better exploit them within different
contexts at the same time.

Secondly, novel network architectures can provide a high-level understanding
in both spatial and temporal dimensions for perception tasks of autonomous vehi-
cles. The approaches presented in this thesis mostly use 2D convolutional neural
networks, which are lightweight and work well with LiDAR range images. How-
ever, they may not be the best way to exploit 4D spatial-temporal information.
Recently, the joint work led by Benedikt Mersch [117] uses 3D CNN architecture
with consecutive LiDAR range images to better exploit spatial-temporal informa-
tion for future point prediction. Predicting the surroundings state in the future
can be very useful for autonomous vehicles making plans and avoiding collisions.
In another work led by Benedikt Mersch [118], we use a sparse 4D CNN directly on
the point clouds to improve LiDAR moving object segmentation results. Our pro-
posed 4D CNN can directly process 3D point cloud videos using high-dimensional
convolutions to fuse 3D space and an extra time dimension. Our 4D CNN out-
performs our 2D CNN methods [33] in LiDAR MOS. Another cooperation led by
Jiadai Sun [170] proposes a novel coarse-to-fine network, which first exploits se-
quential LiDAR range images to obtain temporal information and then a small 3D
CNN to exploit 3D spatial information and refine the moving object segmentation
results on LiDAR data. This method combines both range image and point cloud
representations of LiDAR data and provides more accurate segmentation results.
The work led by Junyi Ma [108] proposes OverlapTransformer, which adapts
the state-of-the-art transformer network architecture [182] in natural language
processing for the LiDAR-based place recognition task. Benefiting from the at-
tention mechanism and the devised rotation-invariant architecture, the proposed
OverlapTransformer recognizes the same places, even when the vehicle driving in
opposite directions as shown in Figure 10.2. This enables our method to achieve
better performance than our 2D CNN-based network [30] in finding loop closure
candidates and recognizing places. These cooperated works [108, 118, 170] were
under review during the writing of this thesis. [108, 118] are now published in the
IEEE Robotics and Automation Letters (RA-L) journal, and [170] is published
in the proceeding of IROS 2022.

Besides undergoing work, there are other possibilities for exploiting temporal
and spatial information. For example, the current networks still exploit data
within a short period. How to design a network exploiting long-term data and
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Figure 10.2: Transformer network-based LiDAR place recognition. Query scan (blue)
and reference scan (orange) with adjacent locations but opposite viewpoints in our
challenging real-world dataset. Our proposed OverlapTransformer is able to generate
rotation-invariant global descriptors with only range images, which is robust to view-
point changing for place recognition.

achieve continual learning for lifelong localization and mapping is still an open
question. One possible way is to use graph or hierarchical network architectures
to handle short-term adaptation and long-term memory retention separately with
different network nodes or branches. Another possible way could be exploiting
the probabilistic network to learn the motion probability of different objects from
long-term data. One could then use objects with low motion probability for long-
term mapping while high motion probability objects for local obstacle avoidance
or path planning. We believe that using novel network architectures can provide
a high-level understanding of both spatial and temporal dimensions and further
boost the performance of the presented perception tasks in future research.

Last but not least, multi-modality sensing and information fusion can pro-
vide richer information for autonomous vehicles to better understand the world.
Furthermore, the redundancy from different sensing modalities can improve the
robustness and reliability of an autonomous vehicle working in real-world sce-
narios. Our previous work led by Wenbang Deng [45] proposes to use RGB and
depth data together to achieve good semantic mapping results in urban search
and rescuing environments. Based on that, we won the Best-in-Class Exploration
and Mapping in Rescue Robot League at RoboCup competition 2021. Figure 10.3
shows the rescuing scenario used in RoboCup competition and the corresponding
semantic map generated by our approach. As can be seen, our method works
well in the complex rescuing environment and builds a consistent semantic map
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Figure 10.3: Dense semantic map generated by our approach in the RoboCup Rescue
League competition field. The upper image shows the colored point-cloud map of the
RRL test field (view from the top). The lower image shows the corresponding semantic
map, including eight different terrains and objects.
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used for the follow-up rescuing. The work led by Andrzej Reinke [141] uses a
3D LiDAR scanner and a monocular camera to provide reliable state estima-
tion for autonomous vehicles. Our method exploits the advantages of different
existing ego-motion estimating approaches and is resilient to failure cases. In
the work done in cooperation with Mengjie Zhou [213], we describe an efficient
cross-modality localization method. It integrates a novel observation model that
matches ground-level images to 2D cartographic maps such as OpenStreetMap
into the Monte Carlo localization system, and achieves convincing global local-
ization results. This enables autonomous vehicles to localize on publicly available
maps using the data from onboard cameras in urban environments. All these
works [45, 141, 213] show good examples of using different sensing modalities
for autonomous vehicles to boost the performance of the perception tasks and
provide redundant information for the purpose of safety.

Besides the above-mentioned sensors, i.e., camera, LiDAR, and RGB-D sen-
sors, multiple other sensors can be further used for autonomous driving, such as
radars, sonars, IMUs, GPS, and even microphones. There are still many chal-
lenges to fuse different multimodal sensor data. For example, we need to first
spatially and temporally align different sensor measurements with different reso-
lutions, i.e., correctly calibrating and synchronizing multimodal sensor data. How
to achieve automatically online calibration without using artificial markers is still
challenging. One possible solution could be using deep neural networks together
with sequential data to online predict the relative transformations between the
sensors. Using the sequential data and the geometry constraints, such networks
could be trained in a self-supervised way. Another challenge is to fuse multimodal
sensor data from totally different domains, such as image and sound. It is very
natural and relatively simple for human drivers to make driving actions accord-
ing to these two biometric cues. One possible way to fuse them for autonomous
driving is to mimic the human brain and use neural networks, which map such
different modalities into embedding space, find correspondences and then com-
bine them for better awareness of the surrounding environment. We believe that
a better way to fuse more sensor information for future research of autonomous
vehicles will bring better understanding of the environments and enable more
robust and reliable autonomous mobile systems.
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