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Adaptive Robust Kernels
for Non-Linear Least Squares Problems

Nived Chebrolu, Thomas Läbe, Olga Vysotska, Jens Behley, and Cyrill Stachniss

Abstract—State estimation is a key ingredient in most robotic
systems. Often, state estimation is performed using some form
of least squares minimization. Basically, all error minimization
procedures that work on real-world data use robust kernels as
the standard way for dealing with outliers in the data. These
kernels, however, are often hand-picked, sometimes in different
combinations, and their parameters need to be tuned manually
for a particular problem. In this paper, we propose the use
of a generalized robust kernel family, which is automatically
tuned based on the distribution of the residuals and includes the
common m-estimators. We tested our adaptive kernel with two
popular estimation problems in robotics, namely ICP and bundle
adjustment. The experiments presented in this paper suggest that
our approach provides higher robustness while avoiding a manual
tuning of the kernel parameters.

Index Terms—SLAM, Optimization and Optimal Control

I. INTRODUCTION

STATE estimation is a central building block in robotics
and is used in a variety of different components, such

as simultaneous localization and mapping (SLAM) [22]. A
large number of state estimation solvers perform some form of
non-linear least squares minimization. Prominent examples are
the optimization of SLAM graphs, the ICP algorithm, visual
odometry, or bundle adjustment (BA), which all seek to find
the minimum of some error function. As soon as real-world
data is involved, outliers will occur in the data. A common
source of such outliers stems from data association mistakes,
for example, when matching features.

To avoid that even a few such outliers have strong effects
on the final solution, robust kernel functions are used to
down-weight the effect of gross errors. Several robust kernels
have been developed to deal with outliers arising in different
situations. Prominent examples include the Huber, Cauchy,
Geman-McClure, or Welsch functions that can be used to
obtain a robustified estimator [27].

However, the proper choice of the best kernel for a given
problem is not straightforward. As the robust kernels define
the distribution from which the outliers are generated, their
choice is problem-specific. In practice, the choice of the
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Fig. 1. Probability densities of different robust kernels. The adaptive robust
kernel (in yellow) is able to describe the actual residual distribution in different
situations better than a fixed robust kernel for all cases. As a result, it provides
better robustness to different types of outliers during the state estimation
process.

kernel is often done in a trial and error manner, as in most
situations there is no prior knowledge of the outlier process.
For some approaches such as bundle adjustment, today’s im-
plementations even vary the kernel between iterations or pair
them with outlier rejection heuristics. Moreover, for several
robotics applications such as SLAM, the outlier distribution
itself changes continuously depending on the structure of
the environment, dynamic objects in the scene and other
environmental factors like lighting. This often means that a
fixed robust kernel chosen a-priori cannot deal effectively with
all situations.

In this paper, we aim at circumventing the trial and error
process for choosing a kernel and at exploring the automatic
adaptation of kernels to the outliers online. To achieve this, we
use a family of robust loss functions proposed by Barron [6],
which generalizes several popular robust kernels such as Hu-
ber, Cauchy, Geman-McClure, Welsch, etc. The key idea is to
dynamically tune this generalized loss function automatically
based on the current residual distribution so that one can blend
between such robust kernels and make the choice a part of the
optimization problems.

The main contribution of this paper is an easy-to-implement
approach for dynamically adapting the robust kernels in non-
linear least squares (NLS) solvers, which builds on top of
the generalized formulation of Barron [6]. We achieve this by
estimating a hyper-parameter for a generalized loss function,
which controls the shape of the robust kernel. This parameter
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becomes part of the estimation process and we determine it
along with the unknown parameters of the model. We extend
the usable range of this parameter compared to the formulation
of Barron [6]. This allows us to better deal with a larger set
of outlier distributions compared to fixed kernels and to the
Barron formulation. See Fig. 1 for a visualization.

In sum, we make the following key claims. Our approach
can (i) perform robust estimation without committing to a fixed
kernel beforehand, (ii) adapt the shape of the kernel to the
actual outlier distribution, and (iii) illustrate the performance
on two common example problems, namely ICP and bundle
adjustment.

II. RELATED WORK

Robust kernels are the de-facto solution to perform state
estimation using least-squares minimization in the presence
of outliers. To deal with different outlier distributions, several
robust kernels such as Huber, Cauchy, Geman-McClure, or
Welsch have been proposed in the literature. Zhang [27] and
Bosse [9] apply these kernels to different kind of estimation
problems in vision and robotics. Black and Rangarajan [8]
investigate equivalence between robust loss minimization and
outlier processes, and apply this idea to several vision prob-
lems such as surface reconstruction, segmentation, optical
flow etc. Babin et al. [5] analyzed several popular robust
kernels for registration problems and provide advice for using
different kernels depending on the scenario. Similar analysis
and recommendations exists for visual odometry and BA
in [19], [26].

In this work, instead of choosing a specific robust kernel for
a particular scenario, we dynamically adapt a robust kernel to
the actual outlier distribution during the optimization process.
To do this, we build upon the generalized kernel formulation
recently proposed by Barron [6] for training neural networks.
It generalizes over popular robust kernels and we formulate
an approximation of it for the use in NLS estimation.

For pose graph SLAM problems, several approaches exist
to deal with the outliers dynamically [22], [2]. Sünderhauf and
Protzel [23] propose introducing additional switch variables to
the original optimization problem, which determines whether
an observation should be used or discarded during optimiza-
tion. The RRR approach [18] is a robust SLAM back-end that
targets to reject false constraints through constraint clustering
and mutually consistency checks. Agarwal et al. [3] propose
a robust kernel, which dynamically weighs the observations
without requiring to estimate any additional variables. Lajoie
et al. [17] and Yang et al. [25] further this idea as a truncated
least squares problem which can be solved efficiently as
a semi-definite program. They also provide solutions with
certain robustness guarantees for the registration and SLAM
problem. Recently, Yang et al. [24] propose a robust estimation
framework based on graduated non-convexity (GNC) methods
which solves a sequence of minimization problems which are
convex initially, and converge eventually to the original non-
convex robust loss.

Taking a probabilistic view, several robust kernels are un-
derstood to arise from a probability distribution, which can

be used to determine the best kernel type based on the actual
observations. Agamennoni et al. [1] propose to use an elliptical
distribution to represent several popular robust kernels. They
estimate hyper-parameters for each kernel type based on the
residual distribution and perform a model comparison to
determine the best kernel for the situation at hand. In this
paper, we take a different approach and adapt the robust kernel
shape by using the probability distribution of a generalized loss
function [6]. We do not require an explicit model comparison
to choose the best kernel and estimate the kernel shape through
an alternating minimization procedure.

III. LEAST SQUARES WITH AN ADAPTING KERNEL

Our approach targets dynamically adapting robust kernels
when solving NLS problems by estimating a hyper-parameter
that controls the shape of the robust kernel. This parameter
becomes part of the estimation process in an alternating error
minimization procedure. Before explaining our approach, we
first explain robust NLS estimation and generalized kernels to
give the reader a complete view (Sec. III-A). We then present
the generalized robust kernel proposed by Barron [6], which
is the foundation of our work (Sec. III-B). We extend Barron’s
robust kernel to deal with strong outliers typically encountered
in robotics applications (Sec. III-C) and use it for solving
typical state estimation problems (Sec. III-D).

A. Robust Least Squares Estimation

Several state estimation problems in robotics involve esti-
mating unknown parameters θ of a model given noisy ob-
servations zi with i = 1, . . . , N . These problems are often
framed as non-linear least squares optimization, which aims
to minimize the squared loss:

θ∗ = argmin
θ

1

2

N∑
i=1

wi‖ri(θ)‖2, (1)

where ri(θ) = fi(θ)− zi is the residual and wi is the weight
for the ith observation. The estimate θ∗ is statistically optimal
if the error on the observations zi is Gaussian. In case of non-
Gaussian noise, however, the estimate θ∗ can be arbitrarily
poor [13]. To reduce this impact of outliers, sub-quadratic
losses can be applied. The main idea of a robust loss is to
downweight large residuals that are assumed to be caused from
outliers such that their influence on the solution is reduced.
This is achieved by optimizing:

θ∗ = argmin
θ

N∑
i=1

ρ(ri(θ)), (2)

where ρ(r) is also called the robust loss or kernel. Several
robust kernels have been proposed to deal with different kinds
of outliers such as Huber, Cauchy, and others [27]. A summary
of several popular robust kernels can be found in the work by
MacTavish et al. [19].

The optimization problem in Eq. (2) can be solved using
the iteratively reweighted least squares (IRLS) approach [27],
which solves a sequence of weighted least squares problems.
We can see the relation between the least squares optimization
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Fig. 2. Left: General robust loss ρ(r, α, c) takes different shapes depending
on the value of α. Right: Corresponding weights for kernels with different α
values. A smaller α corresponds to a larger down-weighting of the residuals.

in Eq. (1) and robust loss optimization in Eq. (2) by comparing
the respective gradients which go to zero at the optimum
(illustrated only for the ith residual):

1

2

∂(wir
2
i (θ))

∂θ
= wiri(θ)

∂ri(θ)

∂θ
(3)

∂(ρ(ri(θ)))

∂θ
= ρ′(ri(θ))

∂ri(θ)

∂θ
. (4)

By setting the weight wi = 1
ri(θ)

ρ′(ri(θ)), we can solve the
robust loss optimization problem by using the existing tech-
niques for weighted least-squares. This scheme allows stan-
dard solvers using Gauss-Newton and Levenberg-Marquardt
algorithms to optimize for robust losses and is implemented in
popular optimization frameworks such as Ceres [4], g2o [15],
and iSAM [14].

B. Adaptive Robust Kernel

Barron [6] proposes a single robust kernel that general-
izes for several popular kernels such as pseudo-Huber/L1-L2,
Cauchy, Geman-McClure, Welsch. The generalized kernel ρ
is given by:

ρ(r, α, c) =
|α− 2|
α

((
(r/c)2

|α− 2|
+ 1

)α/2
− 1

)
, (5)

where α is a real-valued parameter that controls the shape of
the kernel and c > 0 is the scale parameter that determines
the size of quadratic loss region around r = 0. Adjusting the
parameter α essentially allows us to realize different robust
kernels. Some special cases are squared/L2 loss (α = 2),
pseudo-Huber/L1-L2 (α = 1), Cauchy (α = 0), Geman-
McClure (α = −2), and Welsch (α = −∞). Note that
ρ(r, α, c) in Eq. (5) is not defined for α = 0 and α = 2,
and are instead defined as the respective pointwise limits at
these values (see Eq. (8) of Barron’s paper [6]).

The general loss function ρ(r, α, c) and the corresponding
weights curve w(r, α, c) are illustrated in Fig. 2 for several
values of α. The shape of the weights curve provides an insight
into the influence that a residual has on the solution while
minimizing the robust loss function in Eq. (2). For example,
for α = 2, the weights for all residuals are one, meaning
that all residuals are treated the same. Whereas for α = −∞,
all residuals greater than 3c will not affect the solution θ∗

significantly as they are weighed down to very small values.

Fig. 3. Left: Probability distribution P (r, α, c) of generalized robust loss
function for different values of α. Right: Adaptive robust loss ρa(r, α, c)
obtained as the negative log-likelihood of P (r, α, c). This adaptive loss
enables automatic tuning of α ∈ [0, 2].

With this generalized robust loss, we can interpolate be-
tween a range of robust kernels simply by tuning α. To
automatically determine the best kernel shape through the
parameter α, we treat α as an additional unknown parameter
while minimizing the generalized loss:

(θ∗, α∗) = argmin
(θ,α)

N∑
i=1

ρ(ri(θ), α). (6)

However, this optimization problem in Eq. (6) can be
trivially minimized by choosing an α that weighs down all
residuals to small values without affecting the model parame-
ters θ, essentially treating all data points as outliers. Barron [6]
avoids this situation by constructing a probability distribution
based on the generalized loss function ρ(r, α, c) as

P (r, α, c) =
1

cZ(α)
e−ρ(r,α,c) (7)

Z(α) =

∫ ∞
−∞

e−ρ(r,α,1) dr, (8)

where Z(α) is a normalization term, also called partition
function, which defines an adaptive general loss as the negative
log-likelihood of Eq. (7),

ρa(r, α, c) = −logP (r, α, c) (9)
= ρ(r, α, c) + log cZ(α). (10)

The adaptive loss ρa(·) is simply the general loss ρ(·)
shifted by the log partition. This shift introduces an interesting
trade-off. A lower cost for increasing the set of outliers comes
with a penalty for the inliers and vice versa. This trade-
off forces the optimization in Eq. (6) to choose a suitable
value for α instead of trivially ignoring all residuals by
turning every data point into an outlier. The probability dis-
tribution P (r, α, c) and the adaptive loss function are plotted
in Fig. 3 for visualization.

C. Truncated Robust Kernel

The probability distribution P (r, α, c) is only defined for
α ≥ 0, as the integral in the partition function Z(α) is
unbounded for α < 0. This means that values for α < 0
cannot be achieved while minimizing the adaptive loss ρa(·)
in Eq. (9). This limits the range of kernels that we can
dynamically adapt to. As we can see in Fig. 2, the smaller the
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Fig. 4. Left: Modified probability distribution P̃ (r, α, c) obtained by truncat-
ing P (r, α, c) at |r| < τ . Right: The truncated robust loss ρ̃a(r, α, c) allows
the automatic tuning of α in its complete range, including α < 0.

parameter α is, the stronger is the down-weighting of outliers.
Such a behavior is often desired in situations where a large
number of outliers are present in the data.

In this paper, we propose an extension to the adaptive loss
in Eq. (9), which allows the parameter α to be dynamically
adapted for a larger range of values. We achieve this by
limiting the partition to bounded values. To re-gain the kernels
corresponding to the negative range of α with the adaptive loss
function, we compute an approximate partition function Z̃(α)
as

Z̃(α) =

∫ τ

−τ
e−ρ(r,α,1)dr, (11)

where τ is the truncation limit for approximating the integral.
This results in a finite partition Z̃(α) for all α as the integral
is computed within the limits [−τ, τ ]. We use this to define
our truncated loss function as

ρ̃a(r, α, c) = ρ(r, α, c) + log cZ̃(α). (12)

The truncated probability distribution P̃ (r, α, c) and the
corresponding truncated loss ρ̃a(r, α, c) is shown in Fig. 4.
Since the truncated loss is defined for all values of α including
α < 0, we can adapt α in its entire range during the
optimization procedure. We discuss the effect of the truncation
of the loss function below in Sec. III-E.

D. Optimization of α via Alternating Minimization

We propose to solve the joint optimization problem over θ
and α defined in Eq. (6) in an iterative manner using an
alternating minimization procedure. The procedure alternates
between two steps: (i) the first step where the maximum
likelihood value for α is computed, and (ii) the second step,
where the optimal parameters for the model given the α
from the previous step is computed. This can be seen as a
variation of a coordinate descent approach. By solving the
joint optimization in this manner, we decouple the estimation
of the robust kernel parameter α from the original optimization
problem. This allows to us solve for the model parameters θ
in the same way as before α was introduced.

Algorithm 1 Optimization with adaptive robust kernel

1: Initialize θ0 = θ, α0 = 2, c
2: while !converged do
3: Step 1: Minimize for α
4: αt = argminα−

∑N
i=1 logP (ri(θt−1), αt−1, c)

5: Step 2: Minimize robust loss using IRLS
6: θt = argminθ

∑N
i=1 ρ(ri(θ), α

t, c),

We estimate the parameters α in the first step by minimizing
the negative log-likelihood of observing the current residuals,

L(α) = −
N∑
i=1

logP (ri(θ), α, c) (13)

=

N∑
i=1

log cZ̃(α) + ρa(ri(θ), α, c), (14)

i.e.,

α∗ = argmin
α

L(α). (15)

The solution to Eq. (15) can be obtained by setting its first
derivative dL(α)

dα = 0. Since its not possible to derive the
partition function Z̃(α) analytically, we settle for a numerical
solution. As α is a scalar value, L(α) can be minimized simply
by performing a 1-D grid search for α ∈ [αmin , 2].

In terms of a practical implementation, we chose lower
bound αmin = −10 as its difference to the corresponding
weights for α = −∞ for large residuals (|r| > τ) is small.
The maximum value for α is set to 2 as this corresponds to the
standard least squares problem. The scale c of the robust loss is
fixed beforehand and not adapted during the optimization. This
value for c is usually fixed based on the measurement noise for
an inlier observation z and the accuracy of the initial solution.
To be computationally efficient, we pre-compute Z̃(α) as a
lookup table for values α ∈ [αmin , 2] with a resolution of 0.1
and use the lookup table during optimization. This leads us to
the overall minimization approach shown in Alg. 1.

E. Effect of Using the Truncated Loss

The second step, which is the minimization in the NLS
estimation, is not affected by the truncated loss approximation.
It can, however, affect the first step, i.e., determining the
parameter α. By using our truncated loss, we are implicitly
assuming that no outliers have a residual |r| > τ during the
first step. If we choose a large enough value for τ , the error
that we introduce affects situations with large outliers only
and therefore results in small values of α. The effect of small
α values such as α = −10 vs. α = −∞ on the optimization,
however, is negligible as the outliers will be down-weighted to
basically zero. We observe in our experiments that by setting
choosing τ = 10c, we are able to deal with almost all of the
outlier distributions occurring in practice for ICP, SLAM, BA
applications.
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TABLE I
RESULTS ON KITTI ODOMETRY DATASETS [RELATIVE ROT. ERROR IN degrees PER 100 M / RELATIVE TRANS. ERROR IN %]

Sequence
Approach 00 01 02 03 04 05 06 07 08 09 10 Average

Our Approach 1.5/2.8 1.3/3.8 0.91/1.8 1.5/1.9 0.81/0.95 0.97/1.7 0.51/1.1 2.1/2.6 1.3/2.7 0.80/1.4 1.3/1.7 1.18/2.03

Adaptive Kernel 1.6/3.0 1.2/6.7 0.93/1.9 1.4/1.8 0.82/1.0 0.97/1.8 0.51/1.1 2.2/2.7 1.3/2.8 0.88/1.4 1.2/1.7 1.19/2.35
(Barron [6])

Fixed Kernel 0.93/2.1 1.2/4.5 0.79/2.3 0.7/1.4 1.1/49 0.79/1.5 0.64/0.95 1.2/1.8 0.96/2.5 0.78/1.9 0.97/1.8 0.92/6.34
(Huber)

Fixed Kernel 1.8/3.4 1.3/3.8 1.0/1.9 1.5/2.0 0.88/1.2 0.98/1.7 0.62/1.3 2.6/3.0 1.5/3.0 1.0/1.6 1.3/1.9 1.32/2.27
(Geman-McClure)

Hand-Crafted 0.9/2.1 1.2/4.0 0.8/2.3 0.7/1.4 1.1/11.9 0.8/1.5 0.6/1.0 1.2/1.8 1.0/2.5 0.8/1.9 1.0/1.8 0.9/2.90
Outlier Rejection [7]

IV. EXPERIMENTAL EVALUATION

In the experimental section, we evaluate the performance of
our adaptive robust kernel approach on two common problems
in robotics, (i) registration using Iterative Closest Point (ICP)
algorithm, and (ii) bundle adjustment as an example state
estimation task. The experiments are designed to evaluate
effectiveness of our approach in presence of strong outliers,
and showcase its applicability for common NLS problems.
We compare the performance of our approach against a hand-
crafted outlier rejection mechanism using fixed robust kernels
and the original adaptive kernel formulation by Barron [6] on a
benchmarking dataset and conduct analysis on simulated data
to understand the convergence properties.

A. Application to Iterative Closest Point

The first experiment is designed to show the advantages of
our approach for LiDAR-based registration in form of ICP. We
integrated our truncated adaptive robust kernel into an existing
SLAM system, called surfel-based mapping (SuMa) [7], which
performs point-to-plane projective ICP for 3D LiDAR scans.
The ICP registration is performed in a frame-to-frame fashion
on consecutive scans. We compare the performance of our
approach against two fixed robust kernels, i.e., Huber and
Geman-McClure, as well as to a hand-crafted outlier rejection
scheme as used in the original implementation of SuMa [7].
This hand-crafted scheme combines a Huber kernel with an
additional outlier rejection step that removes all correspon-
dences, which have a distance of more than 2m or which have
an angular difference greater than 30◦ between the estimated
normals of observations and the corresponding normals of the
surfels. Finally, we also compare it to the original adaptive
kernel by Barron [6].

We evaluate all these approaches on the odometry datasets
of the KITTI vision benchmark [12] and summarize the results
in Tab. I. The best performance in terms of relative translation
error for each sequence is highlighted in bold. We observe
that our proposed approach, which does not require an outlier
rejection step at all, performs better or is on-par with fixed
kernel plus outlier rejection scheme for many of the sequences.
At the same time, using only the fixed kernel without the
outlier rejection step fails for some of the sequences. In
particular for Sequence 04, both the fixed kernel using Huber
and the hand-crafted outlier rejection scheme fail, whereas our

approach performs the best on this sequence. Our approach
performs slightly better with respect to the adaptive kernel
by Barron [6], with the biggest gain in Sequence 01, which
requires negative α values to deal with the outliers coming
from dynamic objects in the scene. On average over all the
sequences, our approach provides the best accuracy in terms
relative translation error. Here, we note that our approach is not
the best in terms of relative rotational error, but is around the
1% mark, which is on-par with other approaches. These results
are promising as by using our adaptive robust kernel, we do
not need any hand-crafted outlier rejection mechanism, which
in practice requires manual tuning for new data or different
sensor configurations.

As a qualitative evaluation, we illustrate the advantage of
using the adaptive robust kernel for a challenging dataset (Se-
quence 01), which contains several moving cars moving with
the vehicle itself along the highway with little additional
geometric structures. In Fig. 5 (top-left), we plot the values of
α for each iteration while mapping the sequence. We observe
that α adapts to smaller and more negative values whenever
there are more outliers, which arise mainly from moving
vehicles in the scan. This effect can be seen in Fig. 5 (bottom-
left) where the translation error for the fixed Huber kernel
increases as it cannot handle the outlier situation well. At the
same time, the error remains small for our adaptive kernel.

The two 3D scenes show the registrations at the same point
in time, once computed with the adaptive kernel and once with
a fixed one. The adaptive kernel results in a successful align-
ment while the fixed kernel fails to find the correct solution
due to the outlier in the data association, see Fig. 5 (middle
and right). The adaptive kernel-based ICP can correctly treat
the observations belonging to the moving car as outliers,
and nullify their effect during optimization automatically. For
this sequence, we note that for large portions of the scans,
α is negative and even reaches down to αmin = −10 in
some instances. This suggests that our truncated adaptive loss
proposed in Eq. (12) is critical for the successful application
of ICP as it enables using values α < 0, whereas the original
formulation of the adaptive loss is limited to α ∈ [0, 2].
Thus, our approach greatly supports ICP-based registration
as it avoids hand-crafted outlier strategies and adapts to the
outlier challenges present in each pairs of scans automatically.
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Fig. 5. Registration by ICP and our approach on a challenging dataset for ICP. Top-left: Plot showing α values estimated at each frame based on the residual
distribution for KITTI 01 sequence. Bottom-Left: Translation error (in meters) for our approach and fixed kernel ICP. We use Huber kernel as used as the
fixed robust kernel in this example. We observe lower α values (stronger outlier down-weighting) for scan matches with outliers arising from dynamic objects
in the scene. Middle-right: ICP result from an example frame where ICP converges for adaptive kernel whereas it diverges for a fixed kernel.

B. Application to Bundle Adjustment (BA)

The second experiment is designed to illustrate the per-
formance of our approach and its advantages for the bundle
adjustment problem using a monocular camera. We integrated
the adaptive robust kernel to an existing bundle adjustment
framework proposed by Schneider et al. [21]. The initial
estimate for camera poses and 3D points is obtained by three
commonly used steps. First, extract SIFT features and compute
possible matches between all image pairs. Second, compute
the relative orientation using Nister’s 5-point algorithm [20]
together with RANSAC for outlier rejection and chaining
the subsequent images to obtain the initial camera trajectory.
Third, compute the 3D points as described by Läbe et al. [16]
given the camera trajectory of the second step.

To test the bundle adjustment performance, we created
four datasets covering different scenarios using the CARLA
simulator [11] generating near-realistic images. The advantage
of the simulator is that ground truth information for the
cameras poses is available. The first dataset contains images
from a front looking camera mounted on a car, the second
dataset simulates downward looking aerial images from a UAV,
the third dataset contains images where around half of each
image shows strong shadows, and the fourth dataset simulates
side-ward looking camera where close-by objects suffer from
significant motion blur. We have generated these datasets to
cover situations where feature matching is challenging, thereby
resulting in a large number of outliers. Example images from
the all the four datasets are depicted in Fig. 6.

For each of these datasets, we evaluate the bundle adjust-
ment results by comparing the performance of our approach
against squared error loss as well as the standard Huber
loss as a fixed kernel. We also compare the results to two
adaptive kernels which include the original adaptive kernel by
Barron [6] as well as a prior work by Agamennoni et al. [1]
based on a family of robust kernels derived from an elliptical
distribution. We re-implemented Agamennoni’s [1] approach
using the parameters provided for the visual SLAM problem
in the paper as it is the closest one to the bundle adjustment
problem evaluated here. To evaluate the performance, we

compute the accuracy of the camera poses estimated by each
of the approached by comparing them against the ground
truth poses from the simulator as described by Dickscheid
et al. [10]. This difference is computed by estimating the
optimal transformation between the bundle adjustment result
and the ground truth using all 6 DoF pose parameters with the
approach by Dickscheid et al. [10]. Note that in this analysis,
we perform the ground truth comparison only based on the
camera poses and do not consider the 3D point as they have
been extracted using the SIFT descriptor from the simulated
images and thus no ground truth 3D information is available.

We show the results of the bundle adjustment experiment
for all the four datasets in Fig. 7. Here, we see that our
approach has a lower translation and rotational error than
using squared error or the fixed Huber kernel. We obtain a
translation and rotational error, which is between 2 to 5 times
better as compared to using Huber depending on the dataset.
Our approach also shows a similar performance as compared
to the adaptive kernel by Barron [6] with a marginal gain
on the rotational error some datasets. We believe that the
relatively similar performance of the two approaches in these
experiments is due to the fact that large negative α’s were not
needed as often to deal with the outlier distributions in our
example datasets. We also obtained similar accuracy results as
compared to Agamennoni’s approach for most of the datasets,
except for second dataset where it outperforms our approach in
terms of the translational error. While showing better accuracy
results on these datasets, we note that Agamennoni’s approach
comes at computational overhead. This approach has a two
step process to determine the best robust kernel given a
residual distribution. It first computes the best hyper-parameter
value (similar to α in this paper) for each of the kernels which
can be derived from an elliptical distribution (five such kernels
are provided in the paper), and then a second step to performed
by computing the Kullback-Leibler divergence to determine
the best kernel.

The last experiment in this section is designed to analyze
the influence of our approach on the convergence properties
of BA. A large basin of convergence is important for robust
operation, especially for BA due to the missing range informa-
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Fig. 6. Examples images from CARLA simulated datasets. Top left: front-
looking image mounted on a car from the first dataset. Top right: UAV image
in a nadir view looking downwards from the second dataset. Bottom left:
front-looking image with strong shadows and reflections from the third dataset.
Bottom right: side facing image from the fourth dataset where portions of the
image have significant motion blur.
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Fig. 7. Performance of different fixed and adaptive robust kernels for bundle
adjustment problem on CARLA datasets. We show the translation error (in
meters) on the left and rotational errors (in degrees) on the right.

tion with the image data. We initialized the bundle adjustment
procedure by adding significant noise to the initial camera
poses, i.e., σ ∈ [0.1m, 5m] to the ground truth poses of the
camera. The noise in the camera poses is propagated to the
3D points during the forward intersection step. We sample
20 instances of each noise level (500 instances in total) and
run the bundle adjustment for our approach, using squared
loss, the Geman-McClure as well as the Huber kernel. We
consider the adjustment to have converged if the final RMS
error of the camera center is less than 1 cm from the true
position. We visualize the results in Fig. 8 where the poses
from which the BA has converged are shown in green and the
ones that caused divergence in red. We can clearly see that our
approach has a larger convergence radius as the green points
are spread over a larger area compared to the squared loss or
fixed Huber or Geman-McClure kernel. We obtain successful
convergence rate for 45% of all instances for our approach
against 24.8% for squared loss, 33% for Huber, and 28.2%
for Geman-McClure. Overall, the experiments suggest that by
using our approach, we can obtain a more accurate estimate
and have a larger convergence area as compared to a fixed
kernel. Thus, our approach is an effective and useful approach
for optimization in bundle adjustment problems.

C. Effect of the Truncation Parameter

In this experiment, our goal is to analyze the effect of
the truncation parameter τ on the state estimation task. The

(a) Squared Loss (b) Huber

(c) Geman-McClure (d) Our Approach

Fig. 8. Convergence analysis for BA. Green points indicate poses for which
BA converged, whereas red points indicate divergence. The blue circles
represent the ground truth camera poses.
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Fig. 9. Effect of the truncation parameter τ on the accuracy on the bundle
adjustment task.

parameter τ is used to define the integral limits for the partition
function in Eq. (11). By choosing a value of τ from the set
{10c, 20c, 50c, 100c}, we define a truncated partition function
Z̃(.) for each value of τ . This results in multiple robust kernels
ρ̃a(.) which are then used for solving the bundle adjustment
problem on the four datasets as described in Sec. IV-B. The
results for these experiments are shown in Fig. 9. We observe
that the accuracy results using different values of τ is similar
for all the datasets. The maximum difference in the translation
error is about 5%, and the difference in rotational error is
8% using different values for τ . We also note that during
the experiments, the α estimated in Step 1 of Alg. 1 of the
optimization process belongs to a similar range of α values for
each of the τ used. These results in this experiment suggests
that the approach is not critically sensitive to the value of the
truncation parameter used.

V. LIMITATIONS AND FUTURE WORK

In this paper, we have mainly focused on extending the
generalized robust kernel formulation by Barron [6] for its
use in common state estimation problems in robotics. There
are several interesting directions in which this work can be
extended. We see two such aspects, which offer space for
further investigations:

Adapting scale parameter c: In our current implementation,
we use a fixed scale parameter c, which is set based on
the measurement noise for an inlier observation. In principle,
both, the shape parameter α and the scale parameter c can be
adapted simultaneously. In practice, however, learning both
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these parameters jointly becomes tricky as each of them can
individually find some explanation of the residual distribution.
Typically, a large change in the residuals can be captured by a
rather small change in c without affecting α at all. This results
in a situation where the shape parameter α cannot be estimated
properly. This suggests that a different scheme needs to be
developed to adapt the parameter α and the scale parameter c
jointly to respond to a change in the outlier distribution.

Use of multiple α parameters: We use a single α value
to capture the outlier distribution for the overall optimization
problem in our example applications. For example, in the ICP
case, we estimate only one α value for all the points for a scan
pair. This means, the α value is adapted over time (between
different scan pairs), however, is the same for all the points
in the scan pair at one timestep t. By estimating a different α
value for groups of points belonging to different objects (e.g.
vegetation, road, vehicles etc.) in the scan, we can model
an inlier/outlier weight for each group of points in addition
to time. Similarly, in the bundle adjustment application, we
adapt α at each iteration of the optimization procedure. Here,
one could estimate different α values for each sub-block of
the optimization problem, where each of the sub-block could
consist of the camera poses and measurements of a particular
location in the environment.

Use of an alternative regularization term for the truncated
loss: The truncated partition function Z̃(α) can be seen as
playing the role of a regularizer for α in Eq. (12). An
alternative approach to regularizing α would be to replace the
truncated integral term Z̃(α) with a suitable regularizer that
is defined for any α in the range [−∞, 2]. This is possible
as there is no strict requirement that a robust loss ρ(·) must
correspond to the negative log-likelihood of a probability
distribution function as we have defined in this paper. This
opens up the possibility of designing regularization terms
that have potentially better outlier rejection properties, and
provides an interesting direction for future work.

VI. CONCLUSION

In this paper, we presented a novel approach to robust
optimization that avoids the need to commit to a fixed robust
kernel and potentially has a broad application area for state
estimation in robotics. We proposed the use of a generalized
robust kernel that can adapt its shape with an additional
parameter that has recently been proposed by Barron [6]. We
modified the original formulation, which enables us to use
the adaptive kernel also in situations with strong outliers. We
integrated our adaptive kernel into and tested it for two popular
state estimation problems in robotics, namely ICP and bundle
adjustment. The experiments showcase that we are better or
on-par with fixed kernels such as Huber or Geman-McClure
but do not require hand-crafted outlier rejection schemes in
the case of ICP and can increase the radius of convergence
for bundle adjustment. We believe that several other problems
in robotics, which rely on robust least-squares estimation, can
benefit from our proposed approach.
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