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Abstract

Plant phenotyping is a central task in crop science and plant breeding. It involves measuring

plant traits to describe the anatomy and physiology of plants and is used for deriving traits and

evaluating plant performance. Traditional methods for phenotyping are often time-consuming

operations involving substantial manual labor. The availability of 3D sensor data of plants

obtained from laser scanners or modern depth cameras offers the potential to automate sev-

eral of these phenotyping tasks. This automation can scale up the phenotyping measure-

ments and evaluations that have to be performed to a larger number of plant samples and at

a finer spatial and temporal resolution. In this paper, we investigate the problem of registering

3D point clouds of the plants over time and space. This means that we determine correspon-

dences between point clouds of plants taken at different points in time and register them

using a new, non-rigid registration approach. This approach has the potential to form the

backbone for phenotyping applications aimed at tracking the traits of plants over time. The

registration task involves finding data associations between measurements taken at different

times while the plants grow and change their appearance, allowing 3D models taken at differ-

ent points in time to be compared with each other. Registering plants over time is challenging

due to its anisotropic growth, changing topology, and non-rigid motion in between the time of

the measurements. Thus, we propose a novel approach that first extracts a compact repre-

sentation of the plant in the form of a skeleton that encodes both topology and semantic infor-

mation, and then use this skeletal structure to determine correspondences over time and

drive the registration process. Through this approach, we can tackle the data association

problem for the time-series point cloud data of plants effectively. We tested our approach on

different datasets acquired over time and successfully registered the 3D plant point clouds

recorded with a laser scanner. We demonstrate that our method allows for developing sys-

tems for automated temporal plant-trait analysis by tracking plant traits at an organ level.

Introduction

For optimizing any process, it is important to know or observe the current status of the system

to optimize. Thus, approaches for observing or monitoring dynamic systems over extended

periods of time are of key interest in several disciplines, especially when dealing with complex

systems where input-output relations are complex to formalize. In plant sciences and modern

agriculture high-resolution monitoring of plants plays an important role [1, 2]. It forms the
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C (2021) Registration of spatio-temporal point

clouds of plants for phenotyping. PLoS ONE 16(2):

e0247243. https://doi.org/10.1371/journal.

pone.0247243

Editor: Antonio Agudo, Institut de Robotica i

Informatica Industrial, SPAIN

Received: July 10, 2020

Accepted: February 3, 2021

Published: February 25, 2021

Copyright: © 2021 Chebrolu et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data is made

available at https://www.ipb.uni-bonn.de/data/4d-

plant-registration/. The code for our approach is

available at https://github.com/PRBonn/4d_plant_

registration. This information is also provided in the

manuscript.

Funding: This work has been partly funded by the

Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) under Germany’s Excellence

Strategy, EXC-2070 - 390732324 - PhenoRob.

There was no additional external funding received

for this study.

https://orcid.org/0000-0001-6408-4459
https://doi.org/10.1371/journal.pone.0247243
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247243&domain=pdf&date_stamp=2021-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247243&domain=pdf&date_stamp=2021-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247243&domain=pdf&date_stamp=2021-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247243&domain=pdf&date_stamp=2021-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247243&domain=pdf&date_stamp=2021-02-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0247243&domain=pdf&date_stamp=2021-02-25
https://doi.org/10.1371/journal.pone.0247243
https://doi.org/10.1371/journal.pone.0247243
http://creativecommons.org/licenses/by/4.0/
https://www.ipb.uni-bonn.de/data/4d-plant-registration/
https://www.ipb.uni-bonn.de/data/4d-plant-registration/
https://github.com/PRBonn/4d_plant_registration
https://github.com/PRBonn/4d_plant_registration


basis for analyzing crop performance and provides an indicator of the plant stresses. Measur-

ing how individual plants develop and grow over time is often a manual and laborious task. It

often even requires invasive methods that harm the crop. For example, the standard approach

to measuring the leaf area is to cut off the leaves and scan them with a flatbed scanner. New

measurement technologies for measuring and tracking phenotypic traits employing robots

and robotic sensors open up new possibilities to automate the process of measuring plant per-

formance [3, 4]. Recent studies [5, 6] showcase the potential of using 3D laser data for comput-

ing geometric plant traits with high fidelity. Agricultural robots equipped with such laser

scanners can acquire 3D plant data at a large scale and facilitate high-resolution phenotyping.

This is a step forward for scaling up phenotyping from plants grown in a greenhouse to the

level of plots and maybe even fields.

Laser scanners and RGB-D cameras, i.e., sensors that can measure the 3D geometry of

objects, are commonly used sensors to perceive both static and dynamic environments. Espe-

cially in robotics, this is a key task that most mobile systems rely on [7–9]. Extending such

robotic-inspired approaches to the agricultural setting, however, is not always straightforward.

One of the challenges in this context is to develop techniques that can robustly deal with grow-

ing objects, changing appearance, the development of new organs causing changes in the topol-

ogy as well as non-rigid deformations caused by external factors such as sunlight, wind, gravity,

etc. This is illustrated in Fig 1 where we perceive these large changes in the time-series data of

two plant types which were recorded with a laser scanner recorded over a period of two weeks.

Typically, point cloud registration is performed using iterative closest point-based approaches

[8]. These approaches, however, are often unable to capture the deformations in the object and

are prone to divergence due to new or missing plant organs. In this paper, we investigate the

means to account for the growth and the non-rigid deformations that the plants undergo.

The main contribution of this paper is a fully automatic registration technique for plant

point clouds which have been acquired over time. We propose to use the skeleton structure of

the plant to drive the registration process as it provides a compact representation of the plant

by capturing its overall shape and topology. In this paper, we propose a method for extracting

the skeletal structure along with semantic information to perform the data association step.

We classify each point of the plant as a leaf or stem point, a further clustering allows us to com-

pute individual leaf instances. We then determine correspondences between plant skeletons

using a hidden Markov model. These correspondences in turn allow us to estimate parameters,

which are able to capture the deformation and the growth of the plant skeleton. We then trans-

fer the deformations estimated on the plant skeletons to the whole point cloud to register the

temporally separated point clouds. Using these registration parameters, we are also able to

interpolate over the registration parameters to obtain an estimated point cloud at a time

instant in-between the actual acquisition times.

In sum, our approach is able to (i) register temporally separated plant point clouds by

explicitly accounting for the growth, deformations, and changes in the plant topology, (ii)

exploit the skeletal structure as well as semantic information computed from the data, (iii) find

correspondences between the different organs of the plant and track plant growth parameters

over time, (iv) demonstrate reliable registration results on long-term datasets of two types of

plants captured using a 3D laser scanner mounted on a robotic arm.

Related work

Phenotyping plays an important role in plant sciences. Traditionally, a lot of the activities

required substantial manual work. Over the last decade, however, automated plant phenotyp-

ing has been receiving increasing interest, also in other disciplines such as robotics [10, 11] or
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computer vision [12–14]. One relevant aspect in this context relates to obtaining relevant fea-

tures of plants, often referred to as phenotypic traits, in an automated manner [2, 15]. Several

phenotyping systems [1, 16, 17] have been developed for greenhouse environments and are

also available commercially [18, 19]. Other systems such as [20–24] have been designed to

acquire plant data directly from the fields or estimate information about plants for manage-

ment actions [25–28].

These phenotyping systems have been used for several applications such as plant growth

monitoring [5], drought stress analysis [29], canopy cover estimation [30], horticulture [31,

32] etc. Several approaches [33–37] aim at obtaining traits at a coarse resolution over the entire

field using image data captured from UAVs as well as from ground robots. More recently, 3D

laser data has been used in many agricultural applications such as [38–40] and analyzed to

obtain phenotypic traits with high fidelity [5, 6, 41]. Li et al. [42] and Paproki et al. [43] analyze

Fig 1. A time-series of 3D point clouds of two plants (maize (top) and tomato (bottom)) captured during its growth. Our goal is to develop

techniques for automatically registering such 3D scans captured under challenging conditions of changing topology and anisotropic growth of the

plant.

https://doi.org/10.1371/journal.pone.0247243.g001
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time-series point cloud data to detect topological events such as branching, decay and track

the growth of different organs. While both works emphasize obtaining phenotypic traits at an

organ level, our focus in this paper is on developing basic techniques for matching as well reg-

istering temporally separated scans of individual plants using the whole point cloud data. This

technique forms the basis for tracking phenotypic traits over time.

Several approaches in the past have attempted to leverage the topological structure of the

object to drive the registration process, primarily in the field of human motion tracking [44–

46]. A large number of techniques exist for extracting skeletons from 3D models, also known

as skeletonization. The skeleton structure of the model is then used for different applications

such as animation, tracking, surface reconstruction, etc. Huang et al. [47] use local L1-medial

points to compute the skeleton curve for an unorganized point cloud, while Tagliasacchi et al.
[48] propose the idea of a generalized rotational symmetry axis of the model which exploits the

normal information as well. Recently, Wu et al. [49] proposed a technique using Laplacian

point cloud contraction to extract skeletons of maize point clouds. A detailed state-of-the-art

review for extracting skeletons of 3D objects is given in [50]. In contrast to these approaches,

we exploit both supervised and unsupervised machine learning techniques to compute the

skeleton curve for the plant point clouds. In this process, we classify the plant into stem and

leaf points, cluster them together as individual organs and use this semantic information for

computing the skeleton structure effectively.

Exploiting semantic information of the plant for extracting the skeleton structure is quite

helpful. While a large corpus of literature exists for classification in 2D images, the number of

approaches that operate on 3D point clouds is rather small. Paulus et al. [51] propose an SVM-

based classifier that relies on a surface histogram to classify each point in a 3D point cloud as

leaf or stem. The recent approach by Zermas et al. [52]use an iterative algorithm called ran-

domly intercepted node to tackle the same problem. Sodhi et al. [53] use 2D images to extract

3D phytomers, namely fragments of the stem attached to a leaf for leaves detection. Shi et al.
[54] propose a multi-view deep learning approach inspired by Su et al. [55] to address the

organ segmentation problem, while Zermas et al. [56] uses a skeletonization approach to seg-

ment leaf instances. Our approach builds upon the work of Paulus et al. [51] and additionally

groups the leave points with an unsupervised clustering algorithm to extract leaf instances. In

this way, we achieve an organ segmentation exploiting labeled data for the leaves. We use this

in turn as the basis for our registration approach across plant point clouds.

Recent developments for segmenting point cloud data using deep-learning techniques are

promising. Several methods have been proposed to segment point clouds, among which

PointNet [57]and PointNet++ [58] are often considered as milestones. Several architectures

using special convolution operations designed for point clouds such as KPConv [59]provide

state-of-the art segmentation results. However, a common requirement for many such tech-

niques is the availability of large-scale labeled datasets. In our application where we are using

high resolution plant point cloud data, training datasets at such scale are not available as of

yet. Moreover, in this work we essentially use the segmentation results to generate a skeleton

from the point-cloud. Since, all other steps in the registration process are designed to cope

with imperfections in the skeleton structure, having a precise segmentation for the point

cloud is not critical for this approach. As a result, we did not investigate the use of 3D deep

learning networks in this work. These techniques can form the basis for segmentation task as

opposed to the use SVM as done in this work.

Registering point clouds is a common problem in a lot of disciplines and multiple tech-

niques have been proposed for laser-based or RGB-D-based mapping systems [8, 9, 60]. These

techniques work under the assumption the objects being registered only undergo rigid motion.
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The techniques have been extended by relaxing the rigidity assumption and several non-rigid

registration techniques such as [61–63] aim at capturing the deformation in the object.

Approaches such as [64–68] aim at reconstructing scenes in an online fashion either in the

presence of dynamic objects or deformations. Such approaches typically operate on scans cap-

tured at a high frame rate (10-30 Hz) and thereby deal with rather small deformations in

between consecutive scans. This assumption is violated for the point cloud data considered

here. In our application, the plants are usually scanned at a comparably low frequency (once

per day) and thereby showing larger growth and deformations in between consecutive scans.

In addition, the problem becomes even more difficult if the object changes its appearance and

topology over time. Zheng et al. [69] propose an approach to register 3D temporal point clouds

of objects by exploiting skeleton structures. In this paper, we build upon their formulation and

integrate it within an improved data association approach which accounts for the topology

and the semantic of the plant. We then use these data associations to register temporally sepa-

rated 3D plant point clouds within an iterative non-rigid registration scheme.

This paper extends our previous conference paper [70] in several ways. First, the prior work

required a manually provided skeletonization of the plants, while in this paper, we estimate it

from sensor data. Second, we estimate semantic information about the plant organs and

exploit this estimate to compute a high-quality skeleton and improve the data association

between point clouds. Furthermore, we substantially extended the discussion of related work

and provided additional experiments for maize in addition to tomato plants. All these claims

are backed up through the experimental results presented in this paper. The implementation

of our approach is available at: https://github.com/PRBonn/4d_plant_registration.

Material and methods

Proposed approach to plant point cloud registration

Our approach operates on a time-series of 3D point clouds of plants. Our registration proce-

dure starts with extracting a skeleton along with the organ level semantics for each point

cloud. The skeletons are undirected acyclic graphs, which represent the topology or the inner

structure of the plant. Each node contains the x, y, z coordinates of its position, a 4x4 affine

transformation matrix T to describe the local transformation, and a semantic class label as

attributes. The skeletons are extracted from the point cloud data and are often imperfect. This

fact is taken into consideration during the registration procedure. We also operate directly on

the ordered point clouds and do not require a mesh structure or other cues such as the normals

providing the inside-outside information of the surface. The skeleton structures allow us to

compute data associations between temporally separated 3D scans and use these correspon-

dences to perform an iterative procedure which registers the plant scans obtained at different

times. Finally, the registered skeletons can be used to deform the complete point cloud, e.g.,

the point cloud from time step t1 deformed to time step t2. The overall registration scheme is

summarized in Alg. 1 and will be explained in detail in the following sections.

Algorithm 1 Skeleton-driven iterative non-rigid registration procedure
1: P1;P2 ⊳ Input point clouds
2: Ct� 1

12
; Ct

12
¼ ; ⊳ Initialization

3: O1  PERFORMINSTANCESEGMENTATIONðP1Þ ⊳ Segment P1

4: O2  PERFORMINSTANCESEGMENTATIONðP2Þ ⊳ Segment P2

5: S1  COMPUTESEMANTICSKELETONðP1;O1Þ ⊳ Compute skeleton S1

6: S2  COMPUTESEMANTICSKELETONðP2;O2Þ ⊳ Compute skeleton S2

7: while ðCt
12
nCt� 1

12
Þ [ ðCt� 1

12
nCt

12
Þ ¼ ; do ⊳ Repeat until matches are same

8: Ct� 1

12
¼ Ct

12

9: Ct
12
 FINDSKELETALCORRESPONDENCESðS1;S2Þ ⊳ Compute matches
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10: T 12  COMPSKELETALDEFORMATIONðS1;S2; C
t
12
Þ ⊳ Compute deformation

11: P̂1  APPLYDEFORMATIONðP1; T 12Þ ⊳ Apply deformation to P1

Extracting the skeletal structure along with semantics

The first step of our approach is to extract the skeleton structure S of the plant from the input

point cloud P. To achieve such goal, we first perform a segmentation step aiming at grouping

together points belonging to the same plant organ, namely one leaf instance or the stem. To do

this, we start by classifying each point of the point cloud P as a point belonging to either the

stem or leaf category. We use a standard support vector machine classifier with the x, y, z coor-

dinates along with with the fast point feature histograms [71] as a feature vector. The fast point

feature histograms technique computes a histogram of directions around a point using the

neighborhood information, thereby capturing the local surface properties in a compact form.

With these feature vectors as inputs, the support vector machine can classify each point of a

plant point cloud into stem and leaf points. We train the support vector machine model using

the scikit-learn library [72] in a supervised manner by providing labels for two randomly sam-

pled scans of the temporal sequence as the training set.

After the model is trained, we use it to predict the semantics (category) for all the remaining

point clouds of the sequence. Once the classification step is complete, we perform a clustering

step in order to find the individual leaves or the stem as unique instances. We perform the

clustering using the density-based spatial clustering algorithm [73]. It uses the x, y, z coordi-

nates of the points to obtain an initial segmentation, which is then refined by discarding small

clusters and assigning each discarded point to one of the remaining clusters based on a k-near-

est neighbor approach.

At this stage, each point in the point cloud is assigned to an organ, namely to the stem or to

one leaf instance. We then learn keypoints for each organ using self-organizing maps [74].

These keypoints would form the nodes of the skeleton structure. Self organizing maps are

unsupervised neural networks using the concept of competitive learning instead of back-prop-

agation. They take as input a grid that organizes itself to capture the topology of the input data.

Given an input grid G and the input set of points P, the self organizing map defines a fully-

connected layer between G and P. This network learns a transformation the grid G points in

manner to cluster the data P effectively. The learning process is composed of two alternating

steps until convergence. First, the winning unit is computed as:

x ¼ argmin
p2P

k p � wi k; ð1Þ

where p is a randomly chosen sample from P and wi is the weight vector most similar to x, also

called the best matching unit. The second step consists of updating the weights of each unit

according to:

wn ¼ wn þ Z bðiÞ ðx � wiÞ; ð2Þ

where η is the learning rate and β(i) a function, which weights the distance between unit n and

the best matching unit. In our case, the grid for each organ is an n × 1 chain of 3D points that

will form the nodes along the skeleton for that organ. The length of the chain n is proportional

to the size of the organ, such that the keypoints are expected to have a minimum distance

between 1 cm between them. In this way, it is possible to obtain a skeleton-like structure for

each plant of the temporal sequence of plant point clouds. Fig 2 visualizes the organ segmenta-

tion as well as the skeleton structures extracted from the input point cloud P for two sample

scans of our dataset.
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Estimating skeletal correspondences

Before data from any 3D objects can be aligned, we need to establish the data associations

between the sensor readings, i.e, estimating which part of cloud P1 corresponds to which parts

of cloud P2. Establishing this data association is especially hard for objects that change their

appearance and automatic processes are likely to contain data association outliers, which will

affect the subsequent alignment. For registering temporally separated plant scans, we propose

to obtain these data associations by matching the corresponding skeleton structures and not

work directly on the raw point clouds.

In this data association step, we estimate correspondences between two skeletons by

exploiting their geometric structure and semantics, which are computed using the approach

described in the previous section. As the skeleton structure and the semantics are estimated

from sensor measurements, it might suffer from several imperfections. To cope with these

imperfections in the individual skeletons and inconsistencies between them, we use a probabi-

listic approach to associate the skeleton parts as opposed to graph matching approaches, which

typically do not tolerate such errors well. We, therefore, formulate the problem of finding cor-

respondences between the skeleton pair (S1,S2) using a hidden Markov model formulation

[75]. The HMM model provides the flexibility to encode different cues, define constraints for

the correspondences, as well as include prior information about the skeleton structure. This

allows us to track several correspondence candidates and choose the best correspondences

between the skeleton pair.

The unknowns or the hidden states of the HMM model represent all the potential corre-

spondences between the nodes of the two skeletons. In addition, we also add a so-called “not

matched state” for each node to the HMM to account for the situations in which the node may

have no correspondences at all. This happens, for example, when nodes belong to new organs

that were not present before or when new nodes emerge on the curve skeleton due to the plant

Fig 2. Extracting skeletal structure for using semantics of the plant. The figure illustrates the skeletonization pipeline for a maize (top) and tomato

(bottom) plant scan. Note that for the tomato plant, we classify individual leaflets (green + yellow + light-blue) as separate instances rather than as an

individual leaf. The leaflets can be combined into a single leaf in case this distinction is not desired/required for the application.

https://doi.org/10.1371/journal.pone.0247243.g002
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growth. As required in a HMM formulation, we need to define the emission cost Z and the

transition cost Γ. The emission cost Z describes the cost for a given hidden state (correspon-

dence) to produce a certain observation. In our case, the observations are the sequence of

nodes of the first skeleton S1 arranged in depth first manner starting from the node at the base

of the stem. We define this cost for a correspondence cij 2 C12 between node ni of S1 and node

nj of S2 as:

ZðcijÞ ¼ wd jdegðniÞ � degðnjÞj þ we k xi � xj k þwsem rsemðLðniÞ;LðnjÞÞ; ð3Þ

where we the first term yields the absolute difference (denoted by |�|) between the degrees of

the corresponding nodes, where deg(n) is the number of edges incident to a node. The second

term refers to the Euclidean distance (denoted by k�k) between them with xi, xj being the 3D

locations of the nodes ni, nj respectively. The final term ρsem is one in case the semantics for the

corresponding nodes LðniÞ;LðnjÞ the are not the same, otherwise, it is set to zero. The idea

behind combining these three terms is to capture the geometric aspects, i.e., the topology dif-

ference, the spatial distance between the nodes, and the semantics of the skeleton nodes being

matched. This combined cost will be smaller for correspondences between nodes that have

similar topology, are located close to each other, and have the same semantic label. We weigh

all the three terms using wd, we, and wsem to scale the measures such that they are in a similar

range. We set wd = 1, we = 10 and wsem = 1 for all of the experiments.

The transition cost Γ describes the cost involved in transitioning from one hidden state cij
to another ckh. This can be treated as the cost involved in having ckh as a valid match given that

cij is a valid match as well. We define this cost as:

Gðcij; ckhÞ ¼ jdgðni; nkÞ � dgðnj; nhÞj

þwnbr jnbrðni; nkÞ � nbrðnj; nhÞj

þrdirððxi � xjÞ; ðxk � xhÞÞ;

ð4Þ

where the first term computes the difference of the geodetic distances dg between the nodes

involved in the two correspondence pairs along their respective skeletons. This means that a

pair of correspondences (cij, ckh) having equal geodetic lengths dg(ni, nk) along S1 and dg(nj,
nh) along S2 will have a lower cost than the ones which have much different lengths along the

skeleton. The second term captures the difference in the number of branches nbr, i.e., nodes

with degree greater than 2, along the way on the skeleton. The weight wnbr is automatically set

as the maximal geodetic distance between all node pairs of the first skeleton. The final term

ρdir is a function that penalizes the correspondence pairs (cij, ckh) with a large cost if the direc-

tions determined by (xi − xj) and (xk − xh) are opposite, i.e., the angle between them are greater

than p

2
. We set the penalty cost as the maximum geodesic distance between any two nodes on

S1.

Once the emission and transition costs are defined, we compute the correspondences

between the skeletons by performing inference on the HMM. The result is the most likely

sequence of hidden variables, i.e., the set of correspondences between S1 and S2. We perform

this inference using the Viterbi algorithm [76]. In case a node has more than one correspon-

dence, we choose the correspondence with the smaller Euclidean distance to ensure a one-to-

one correspondence. As an illustration, Fig 3 (left) shows an example skeleton pair for which

we want to estimate the correspondences C12. Fig 3 (right) depicts the HMM for the example

pair where the red path indicates the set of correspondences estimated by the Viterbi algo-

rithm. The HMM model only shows a subset of the connections between the hidden states,

where in practice each state is connected to every other state.
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Computing skeletal deformation parameters

In this step, we compute the registration parameters between S1 and S2 given the set of corre-

spondences C12. While registering temporally separated plant scans, we need to take into

account the plant growth, which manifests in the form of change in shape and the topology of

the plant. Therefore, to capture these changes we need to forego the usual assumption of rigid-

ity, often used in point cloud registration [8]. Our goal is to capture the non-rigid changes by

computing sets of deformation parameters between skeleton parts of the respective plant

scans. We estimate these deformation parameters through a non-linear least-squares optimiza-

tion procedure based on the correspondences obtained from the procedure described in the

previous section.

To model the deformations between the plant scans, we attach an affine transformation Ti
to each node ni of the skeleton S1 as illustrated in Fig 4 (left). The intuition behind such a

model is that the skeleton may be deformed differently at different locations along the skele-

ton. By modeling the deformations through a 3D affine transformation with 12 unknown

parameters per node, we are able to capture the growth as well as bending of the plant via the

scaling, shearing, and rotation parameters.

We define the objective function of the optimization problem as a combination of the three

energy terms. The first term Ecorresp is defined as:

Ecorresp ¼
X

cij2C12

k Ti xi � yj k; ð5Þ

where xi and yj are the node positions given by the correspondence pair cij obtained using the

procedure described in the previous section. This energy term captures the distance between

corresponding nodes in S1 and S2 for an estimate of the affine transformation Ti. The goal of

Fig 3. Left: Skeletal matching for an example pair of plant point clouds with the variables involved. Right: Hidden Markov model (HMM) used for

correspondence estimation. We only show a subset of the hidden variables, i.e. the potential correspondences, in the HMM. The red line depicts the

sequence of best correspondence estimated by the Viterbi algorithm. This produces the correspondences between S1 and S2 visualized with the dash-

lined arrows on the left.

https://doi.org/10.1371/journal.pone.0247243.g003
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the optimization procedure would be to choose such a transformation Ti attached to each

node ni which makes the overall error in Eq (5) as small as possible.

The second energy term Erot captures how close the estimated affine transformation is to a

pure rotation and it determines the smoothness of the deformation. We define Erot as:

Erot ¼
X3

i ¼ 1

j ¼ modðiþ 1; 3Þ

ðci cjÞ
2
þ
X3

i¼1

ðci ci � 1Þ
2
;

ð6Þ

where ci represents the columns of the rotation part of affine transformation, i.e., the first three

rows and columns of Ti). The first term in Erot in Eq (6) measures the deviation for a pair of

columns to be orthogonal with each other, whereas the second term measures the deviation of

each column from being unit length. Erot forces the estimated affine parameters Ti to be as

close to a true rotation as possible. This energy terms keeps the shearing effect in check and

results in naturally looking deformations.

We also define a regularization term Ereg as:

Ereg ¼
X

j2NðiÞ

normFðT
� 1

i Tj � IÞ; ð7Þ

where Ti, Tj are transformations corresponding to nodes ni, nj such that j is the neighbor N(i)
along S1, and normF is the Frobenius norm after performing the homogeneous normalization

of the involved matrices. Ereg is a regularizing term, which forces the transformation parame-

ters of neighboring nodes to be similar. This results in a smooth deformation along the skele-

ton and achieves similar results as the as-rigid-as-possible constraint described by Sorkine

et al. [62]. The regularization term is also necessary to constrain the nodes that do not have

any correspondences. Finally, the combined energy Etotal is obtained as a weighted

Fig 4. Left: Registering the skeleton pair involves estimating the deformation parameters attached to the nodes of the source skeleton S1. Right:

Transferring the deformation results to the entire point cloud.

https://doi.org/10.1371/journal.pone.0247243.g004
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combination of all the three energies as:

Etotal ¼ wcorresp Ecorresp þ wrot Erot þ wreg Ereg ð8Þ

We use the weights wcorresp = 100, wrot = 10, and wreg = 1 for all the example in our datasets.

The weights have been chosen such that the cost due to each component of the loss is in the

same order of magnitude. We employ the Gauss-Newton algorithm to solve the unconstrained

non-linear least squares problem [77]. We use the Cauchy robust kernel [78] for the error

residuals belonging to Ecorresp as this prevents incorrect correspondences to influence the opti-

mization process. The robust kernel automatically downweights potentially wrong correspon-

dences, which have large residuals. The approach is related to the formulation by Sumner et al.
[63] for estimating deformation parameters for surfaces parametrized as triangular meshes. In

our case, we adapt the energy terms to reflect the constraints valid for deformation between

curve skeletons as opposed to surfaces. Furthermore, the approach by Sumner et al. [63] is not

able to fully constrain the nodes which have a degree smaller than 3, but is essential for regis-

tration of curve skeletons.

Point cloud deformation

Traditional approaches to point cloud registration assume rigid objects. In this case, the align-

ment results in the execution of a 6 degree of freedom transformation consisting of rotations

and translations. This, however, is substantially different in our case. To obtain the final regis-

tered point cloud P̂1 of a growing plant, we need to apply the deformation parameters esti-

mated for the skeleton nodes to all the 3D points of the scan. This means, that the individual

data points will be affected by individual affine transformation to obtain the aligned cloud. An

example of the point cloud deformation is visualized in Fig 4 (right).

For each point p 2 P1, we obtain the deformed point p̂ as a weighted sum of affine transfor-

mations corresponding to the two nearest nodes to the point p as

p̂ ¼
X

k2NðpÞ

ak Tk p; ð9Þ

where k is the index of the nearest node N(p) and αk is computed according to the projection

of the point p on the edge of the skeleton determined by the nearest nodes. Let pe be the projec-

tion of point p on edge e. Then the weight is given by:

ak ¼ 1 �
k p � e k
k e k

: ð10Þ

Iterative non-rigid registration procedure

We use the steps from the previous sections to formulate an iterative approach to register the

point cloud pair ðP1;P2Þ as summarized in Alg. 1. Similar to the popular ICP approach [8],

we alternate between correspondence estimation steps and registration steps given the corre-

spondences. We start out by computing the organ level instance segmentation and skeleton

structure with semantic information (lines 3-6 of Alg. 1). We then start the iterative procedure,

which alternates between estimating the correspondences C12 (line 9) and the registration

parameters, i.e., the 3D affine transformations attached to each node (line 10). By iterating

through these steps multiple times, we can obtain new correspondences, which might not have

been captured due to the large distance between the skeletons given their initial configuration.

Finally, we exit the iterative scheme when there is no change in the estimated correspondence
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set Ct
12

. After computing the registration parameters T 12 between the nodes of the skeletons S1

and S2, we apply these parameters to the entire point cloud P1, which results in the registered

point cloud P̂1 (line 11).

Interpolating point clouds of plants

In addition to registering the plant scans recorded at different times, we would also like to

interpolate how the plant may be deformed at an intermediate time in between the actual

acquisition times. This may allow for increasing the time between the recordings and doing

further analysis on the interpolated point clouds. We compute the deformed point cloud by

interpolating the deformation parameters T estimated between the two registered scans. To

obtain a smooth interpolation, we first decompose of the estimated affine transformation T
into scale/shear transformation Ts, pure rotation TR, and a pure translation Tt using the polar

decomposition approach described by Shoemake [79] and is given by:

T ¼ Ts TR Tt: ð11Þ

We then linearly interpolate Ts and Tt to obtain the transformation at time t. For interpolat-

ing TR, we use the spherical linear interpolation described by Shoemake [80].

Computing phenotypic traits

In this work, we compute different phenotypic traits for both the stem and leaf instances. In

particular, for the stem class, we compute stem diameter and stem length, whereas for the leaf

class, we compute the leaf length and area. We choose these traits as examples, and other geo-

metric traits that use the area or shape of the organs can be computed and tracked over time as

well.

The stem and leaf length can be easily computed from the geometric information of the

semantic skeleton: The stem/leaf length is just the sum of the lengths of the edges of all nodes

of a particular instance.

For computing the stem diameter sd, we first assign each point in the point cloud classified

as stem to the closest node on the skeleton. Then, we compute the main axis of the data distri-

bution in the neighboring region of the selected node using a standard singular value decom-

position (SVD) approach. We can then compute the stem diameter with respect to the main

axis of the considered neighborhood. The stem diameter sd is obtained as:

sd ¼ 2
X

n

1

kn

X

kn

k pk � plðpkÞ k; ð12Þ

where n is the number of nodes of the stem, kn is the number of points in the point cloud

assigned to the n-th node, and πl(�) is a function which projects a point on the main axis.

We compute the leaf area la by exploiting the SVD to estimate the main plane A of the

points associated with each node. This gives us the leaf area la as:

la ¼
X

m

hullðpAðpnÞÞ; ð13Þ

where hull(�) represents the area of the convex hull and πA(�) the projection of all points pn
associated with the nth node on the main plane A. The final sum is taken over allm nodes of a

leaf.
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Experimental results

Dataset description

We evaluate our approach on time-series 3D point cloud data of three sample plants of maize

(Zea mays) and tomato plants (Solanum lycopersicum). The scans were recorded using a

robotic arm (Romer Absolute Arm) [81] equipped with a high precision laser scanner. The

dataset was recorded daily over a period of 10 days. The plants have been scanned in manner

so as to minimize self occlusions whenever possible. The point cloud data undergoes a pre-

processing step where all the points which do not belong to the plant are removed, for example

the points belonging to the soil and the pot. The datasets cover substantial growth of the plants,

starting from the 2 cotyledons (i.e. seed leaves) at the start to around 8 leaflets (2 cotyledons

+ 2 leaves) for the tomato plants, and 1 to 4 leaves for the maize plants. The plants undergo

substantial leaf and stem growth, and includes several branching events till the end of the data-

set acquisition period as illustrated in Fig 1. The height of the tomato plants reaches up to 150

mm and the maize plant reaches over 400 mm. The data used in the paper is available at:

https://www.ipb.uni-bonn.de/data/4d-plant-registration/.

Semantic classification of plant point clouds

In the first experiment, we evaluate the performance of our approach for organ level semantic

classification. The classification system has been trained on two randomly selected point

clouds from each datasets. All the remaining point clouds in the sequence are used as test data-

sets. The ground truth information for both the training and test sets have been generated

manually by human users. We show the qualitative results computed by our approach by visu-

alizing the semantic instances for some point clouds from the two datasets in Fig 5. Each stem

and leaf instance is visualized with a different color. We can visually inspect the stem and the

leave instances throughout the temporal sequence, and see that the classification is successful

for instances despite their size and shape changing over time. The colors of same leaf instances

do not persist over the temporal sequence since the data associations between them have not

been computed at this stage.

We also perform a quantitative evaluation of the classification performance of our classifi-

cation approach by computing standard metrics [82] such as precision p ¼ tp
tpþfp (Table 1),

recall r ¼ tp
tpþfn (Table 2), and intersection over union (IoU) IoU ¼ tp

tpþfpþfn (Table 3), for the

maize and tomato plant datasets. For each metrics, we show the minimum and maximum val-

ues over the dataset as well as the standard deviation. In the definitions above, tp stands for

true positive, fp for false positive, and fn for false negative. In all tables, the SVM is responsible

for the stem and the leaf class, while instance refers to the unsupervised clustering of individual

leaves. We obtain over 90% precision and recall for leaf point in both the datasets, whereas

they are around 85% for the stem points. Regarding the leaves instances, both metrics are

around 90%.

Despite these accurate results, it is worth noticing that the ability of the SVM to classify

stem points is lower on the maize dataset than on the tomato dataset. This is due to a smoother

transition between stem and leaves in the maize plants. In contrast, the performance of the

clustering is higher on the maize dataset. This behavior can be explained by looking at how

leaves develop in the two species. While for the maize plants there is a clear separation between

individual leaves, this separation is not as clear for the leaves in the tomato plants. For refer-

ence, we have shown the ground truth labels for two example plants used in the evaluation of

semantic classification in Fig 6.
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4D registration of plant point clouds

In the second experiment, we demonstrate that our approach successfully registers time-series

point cloud data for two plant types. We use the same weights for our registration procedure

as described in the methods section for all scan pairs (both tomato and maize datasets) at dif-

ferent growth stages. We also perform a quantitative evaluation of the accuracy of the registra-

tion pipeline. Fig 7 illustrates the results of the registration procedure for two example scan

pairs from the maize (top) and the tomato (bottom) datasets. For both examples, we show the

Fig 5. Semantic classification of maize (top) and tomato (bottom) point clouds. Each stem and leaf (or leaflet) instance is visualized with a different

color. Note that the colors of same leaf instances do not correspond over time, as data associations have not been computed at this stage.

https://doi.org/10.1371/journal.pone.0247243.g005

Table 1. Precision values for class-wise and instance segmentation on our datasets.

Dataset Stem Leaf Instances

mean min max std mean min max std mean min max std

Maize 86.3 74.5 99.6 8.6 95.5 93.6 99.4 2.2 94.4 91.9 99.6 2.7

Tomato 89.6 68.6 99.2 9.6 97.9 96.9 99.0 0.9 83.4 59.8 99.7 15.4

https://doi.org/10.1371/journal.pone.0247243.t001
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input point clouds (P1;P2) along with their corresponding skeletons. The correspondences

estimated during the registration procedure are depicted by the dashed lines joining nodes of

the skeleton pair. Our approach was able to find the correspondences reliably despite the

growth and the change in topology. We visualize the final registered point cloud P̂ 1 (in pink)

by deforming the point cloud P1 using the deformation parameters estimated by our approach

and overlay it on the target point cloud P2 (in gray) and observe that it overlaps well indicating

that the registration results are reasonable. Most of the registered point P̂ 1 (in pink) overlaps

the target point cloud P2, however, we notice that the errors are usually high towards the outer

sections of the leaves which are farther away from the skeleton curve. This effect is to be

expected as the skeleton curves do not capture this area well.

Table 2. Recall values for class-wise and instance segmentation on our datasets.

Dataset Stem Leaf Instances

mean min max std mean min max std mean min max std

Maize 85.7 48.6 99.1 16.3 92.9 89.1 99.8 3.3 94.7 91.3 99.6 3.1

Tomato 92.2 60.6 99.4 11.4 96.5 74.0 99.6 8.3 78.2 66.6 99.4 11.2

https://doi.org/10.1371/journal.pone.0247243.t002

Table 3. Intersection over union (IoU) score for our datasets.

Dataset Stem Leaf Instances

mean min max std mean min max std mean min max std

Maize 80.0 47.8 94.6 12.7 94,6 88.9 97.4 2.5 94.0 91.0 97.6 2.3

Tomato 82.6 60.6 92.2 10.4 93.4 73.9 99.0 7.8 69.1 51.4 98.7 15.7

https://doi.org/10.1371/journal.pone.0247243.t003

Fig 6. Example ground truth labels used in the evaluation of semantic classification of maize (left) and tomato (right) point clouds. The instance

wise labels for each plant organ have been manually annotated by a human user.

https://doi.org/10.1371/journal.pone.0247243.g006
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Further, we quantitatively evaluate the accuracy of our registration pipeline by registering

all consecutive scans of the two datasets. First, we compute the accuracy of our skeleton match-

ing procedure by computing the percentage of correspondences estimated correctly. We define

the correct correspondences as those which belong to the same organ (i.e., the same leaf or the

stem) in the skeleton pair as there is no unique way to define a correct correspondence due to

the growth in the plant. We manually label the different organs of the plant with a unique iden-

tifier to provide the ground truth to compute this metric. For our tomato datasets, we obtain

an average of 95% correct correspondences between consecutive skeleton pairs with most

pairs having all the correspondences estimated correctly. For the maize dataset, we obtain

100%of the correspondences between consecutive days correctly. Similarly, we also evaluated

the accuracy of the correspondence estimation between skeleton pairs with 2 and 3 days apart

from each other. For the tomato dataset, we obtain again an average of 95% correspondences

with scans taken 2 days apart, whereas this falls down to 88% with scans taken 3 days apart.

Again for the maize dataset, we obtain all the correspondences correctly both with skeletons

Fig 7. 4D registration of a point cloud pair scanned on consecutive days for maize (top) and tomato (bottom) plant. The left column shows the two

input point clouds (P1;P2) along with their skeletons, with the estimated correspondences between the skeleton nodes shown by dashed lines, and the

right column shows the deformed point cloud P̂ 1 (in pink) overlaid on P2.

https://doi.org/10.1371/journal.pone.0247243.g007
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taken 2 and 3 days apart. The higher accuracy for the maize plants is likely due to the simpler

shape of the plant as compared to the tomato plants.

Secondly, we evaluate the accuracy of the estimated registration parameters by computing

the error between the deformed source point cloud P̂ 1 and the target point cloud P2. We

define this registration error ereg as:

ereg ¼
1

jP̂ 1j

XjP̂1 j

i ¼ 1

j 2 NðiÞ

k p̂i
1
� pj2 k; ð14Þ

where pj2 is the nearest point to pi
1

and jP̂1j is the number of points in P̂1. For our dataset, we

obtain a mean error of 3 mm with a standard deviation of 2.3 mm and a maximum error of 13

mm for consecutive scans, which indicates that the registration results are accurate.

As this registration measure may be susceptible to some degenerate cases, an extreme case

being all points pi 2 P1 deforming to one point in pj 2 P2 giving a zero registration error.

Therefore, we use the ground truth instance information to determine if such degenerated sit-

uations occur. We compute the percentage of points in pc1 that are deformed to the corre-

sponding ground truth instances in pc2. This gives a measure of how well the instances are

mapped after applying the deformation parameters. We obtain an average accuracy of 97% for

the maize dataset and 89% for the tomato dataset with most of the errors occurring at the joints

where leaves merge with the stem. This results suggest that the registration parameters deform

the instances properly and do not result in degenerate estimates.

As a baseline comparison, we assume a rigid transformation for the whole point cloud

between consecutive scans and computed the transformation with a standard ICP approach.

The average error ereg for this experiment is 35 mm and the maximum error is 166 mm. The

large errors using a rigid transformation assumption are both due to the plant growth and in

some cases, the ICP procedure diverging completely. This indicates that a rigid transformation

assumption is inadequate and a non-rigid registration procedure is required to capture the

growth and movement of the plant.

We visualize the registration error as a heat map for the two example point cloud pairs in

Fig 8. The heat map is projected on P̂1 to show how well different portions of the plant are reg-

istered. The blue regions in the heat map represent a smaller registration error whereas the yel-

low regions indicate large errors. Most of the regions are blue indicating a successful

registration, however, we notice that the errors are usually high towards the outer sections of

the leaves which are farther away from the skeleton curve. This effect is to be expected as the

skeleton curves do not capture this area well.

Temporal tracking of phenotypic traits

In this experiment, we show that the spatial-temporal registration results computed by our

approach allows us to compute several phenotypic traits and track them temporally. We com-

pute the area la and length ll for leave instances and the diameter sd and length sl of the stem

for each point cloud in the temporal sequence as describe previously, and associate it over time

using the data associations estimated by our approach during the registration process. The

tracking results for the three sample plants from the maize and tomato datasets are visualized

in Fig 9. The first two columns in Fig 9, track the leaf area and leaf length over time. Different

shades of blue and green in these plots represent individual leaf instances. In addition, we can

also detect certain events, which mark a topological change in the structure of the plant such as

the appearance of a new leaf. These events can be recognized from the leaf area or leaf length
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plots in Fig 9 whenever a new line rises up from the zero level. For example, for the first plant

in the maize dataset, a new leaf emerges on day 2, 3, and 6. In the rightmost column in Fig 9,

we see that stem length and diameter for both the datasets increase considerably over the data

acquisition period. Such phenotypic information can also be used to compute the BBCH scale

[83] of the plant, which is a growth stage scale and provides valuable information to the

agronomists.

Temporal interpolation of plant point clouds

In the last experiment, we demonstrate that the registration results can be used to interpolate

the point clouds at intermediate points in time, i.e., in between the actual acquisition times of

the scans. The ability to interpolate is useful for analyzing properties of the plants even when

actual measurements are not available. It allows us to predict both, the motion and growth at

intermediate time intervals. We visualize the interpolated point cloud at three time instances

ti
1
; ti

2
; ti

3
between the two scans in top of Fig 10. This allows us to animate a time-lapse view of

the plants. The pink point clouds represent the interpolated scans and overlaps well with point

cloud (gray) at time t indicating that the interpolation is reasonable. As the interpolation pro-

cedure does not actually model the movement or the growth of the plant, the result of the

interpolation may differ from the actual plant at those instances. In order to evaluate the inter-

polation step, we take the scans on day t − 1 and day t + 1, then interpolate the point cloud at

day t and compare against the actual point cloud on day t. We compute the registration error

(as described in (14)) and obtain a mean ereg of 4 mm with a standard deviation of 1.9 mm. We

also compute the percentage of points in Pt� 1 that are registered to the corresponding ground

truth instances in Pt similar to the measure in the registration experiments. We obtain an

average accuracy of 91% for the maize dataset and 83% suggesting that our interpolation is a

reasonable approximation of the real plant growth.

Summary and conclusion

In this paper, we presented a novel approach for spatio-temporal registration of 3D point

clouds of individual plants. The proposed method works for raw sensor data stemming from a

Fig 8. Visualizing registration error. We visualize the registration error as a heatmap for two pairs of tomato plant scans, Day 1 vs. Day 2 and Day 6 vs.

Day 10. Blue represents low registration error whereas yellow represents a larger error.

https://doi.org/10.1371/journal.pone.0247243.g008
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Fig 9. Tracking phenotypic traits for individual organs of the plant. Our registration procedures allows us to track the growth of the stem and

different leave lengths over time and detect topological events such as the emergence of new leaves. Different shades of blue and green in these plots

represent individual leaf instances in the first two columns. The orange and red represent the length and diameter of the stem respectively.

https://doi.org/10.1371/journal.pone.0247243.g009
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range sensor such as a 3D LiDAR or a depth camera. The processing of the sensor data hap-

pens in a fully automated fashion without manual intervention. We implemented and evalu-

ated our approach on datasets of tomato and maize plants presenting challenging situations

and supported all claims made in this paper. The experiments suggest that our registration

approach can be used as a basis for tracking plant traits temporally and contribute towards

automated phenotyping. Furthermore, we released the code of our approach as open-source

software.

Our approach works as follows: First, it estimates the skeletal structure of the plant, exploit-

ing also a point-wise classification approach to compute a skeleton representing the plant. This

skeleton structure including the semantic information is used to find reliable correspondences

between parts of the plant recorded at different points in time using a novel data association

approach that relies on a hidden Markov model. It allows for estimating a global association

between the skeletons of the plants extracted from point clouds recorded at different points in

time. As our results showcase, this approach can deal with changing appearance and changing

topology of the 3D structure of the plant. This is an essential capability to form a robust align-

ment of the 4D data, i.e., of 3D geometry and time. Given the data associations, we explicitly

model the deformation and growth of the plant over time using multiple affine transforma-

tions associated with the individual nodes of the skeleton structure. In this way, individual

parts of the plant are transformed using different affine transformation modeling the different

growth along the plant. The parameters for these transformations are estimated using a robust

least-squares approach including regularizations. Given the resulting parameters, we can align

3D scans taken at different points in time and transform them according to the growth. This,

in turn, allows us to estimate basic phenotypical parameters such as leaf area, leaf length, as

well as stem diameter or length and track their development over time in an automated

fashion.

Supporting information

S1 Video. Interpolation of plant point clouds. The video shows the interpolation of the plant

point clouds for time instances in between actual measurements.

(MP4)

S1 Fig.

(PDF)

S2 Fig.

(PDF)

Fig 10. Interpolation of point clouds at intermediate time intervals. Point clouds (gray) at time t − 1 and t come from actual scan measurements

whereas the points clouds (pink) at time instants ti
1
; ti

2
; ti

3
visualize the three interpolated scans.

https://doi.org/10.1371/journal.pone.0247243.g010
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20. Busemeyer L, Mentrup D, Möller K, Wunder E, Alheit K, Hahn V, et al. Breedvision—A multi-sensor plat-

form for non-destructive field-based phenotyping in plant breeding. Sensors. 2013; 13:2830–2847.

https://doi.org/10.3390/s130302830 PMID: 23447014

21. Andrade-Sanchez P, Gore MA, Heun JT, Thorp KR, Carmo-Silva AE, French AN, et al. (2014). Devel-

opment and evaluation of a field-based high-throughput phenotyping platform; 41:68–79. https://doi.

org/10.3389/fpls.2018.01362

22. Qiu Q, Sun N, Bai H, Wang N, Fan Z, Wang Y, et al. Field-Based High-Throughput Phenotyping for

Maize Plant Using 3D LiDAR Point Cloud Generated With a “Phenomobile”. Frontiers in Plant Science.

2019; 10:554. https://doi.org/10.3389/fpls.2019.00554 PMID: 31134110

23. Madec S, Baret F, de Solan B, Thomas S, Dutartre D, Jezequel S, et al. (2017). High-throughput pheno-

typing of plant height: comparing unmanned aerial vehicles and ground LiDAR estimates; 8:2002.

https://doi.org/10.3389/fpls.2017.02002

24. Sun SP, Li CY, Paterson AH, Jiang Y, Xu R, Robertson JS, et al. In-field high-throughput phenotyping

and cotton plant growth analysis using LiDAR Front. 2018; 9:16. https://doi.org/10.3389/fpls.2018.00016
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