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Abstract— Analyzing sensor data of plants and monitoring
plant performance is a central element in different agricultural
robotics applications. In plant science, phenotyping refers to
analyzing plant traits for monitoring growth, for describing
plant properties, or characterizing the plant’s overall per-
formance. It plays a critical role in the agricultural tasks
and in plant breeding. Recently, there is a rising interest in
using 3D data obtained from laser scanners and 3D cameras
to develop automated non-intrusive techniques for estimating
plant traits. In this paper, we address the problem of registering
3D point clouds of the plants over time, which is a backbone
of applications interested in tracking spatio-temporal traits of
individual plants. Registering plants over time is challenging
due to its changing topology, anisotropic growth, and non-
rigid motion in between scans. We propose a novel approach
that exploits the skeletal structure of the plant and determines
correspondences over time and drives the registration process.
Our approach explicitly accounts for the non-rigidity and the
growth of the plant over time in the registration. We tested our
approach on a challenging dataset acquired over the course of
two weeks and successfully registered the 3D plant point clouds
recorded with a laser scanner forming a basis for developing
systems for automated temporal plant-trait analysis.

I. INTRODUCTION

Plant phenotyping [36] plays a fundamental role in the
agricultural domain [10]. It involves the characterization of
the plant traits, which helps plant breeders and other scien-
tists to describe and to evaluate the overall plant performance.
Traditionally, many of these plant traits are measured through
time-consuming manual processes and are often intrusive as
well. Recent studies [26], [19] showcase the potential of
using 3D laser data for computing geometric plant traits
with high quality. Agricultural robots equipped with such
laser scanners can acquire 3D plant data at a large scale
and facilitate high resolution phenotyping. This is a step
forward towards scaling up phenotyping from plants grown
in a greenhouse to the level of plots and maybe even fields.

To facilitate such a scale-up in phenotyping using 3D
sensing, one of the fundamental requirements is the ability to
register scans taken at different times. This bears quite some
resemblance to the SLAM problem [31], loop closing, and
ICP-based scan matching [5], often used in the context of
laser-based SLAM. Similar to graph-based SLAM in non-
static environments, we need to make data associations in
changing scenes, align point clouds, and perform optimiza-
tions and iterative refinement procedures.

Registering plant scans recorded at different points in
time, however, is a comparably challenging task due to
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Fig. 1: A time-series of 3D point clouds of the same plant captured
during its growth. Our goal is to develop techniques for registering
such 3D scans captured under challenging conditions of changing
topology and anisotropic growth of the plant.

the anisotropic growth of different organs of the plant, the
change in its topology and the non-rigid deformations caused
due to external stimuli such as wind or sunlight. In addition,
the measurement process using laser scanners usually results
in incomplete scans of the plant due to the numerous self-
occlusion amongst leaves. Given these challenges, we aim
at developing techniques, which facilitate the automatic
computation of phenotypic traits from 3D time-series point
clouds of plants.

Typically, point cloud registration is performed using
iterative closest point-based approaches. These approaches,
however, are often unable to capture the deformations in the
object and are prone to divergence due to new or missing
plant organs. In this paper, we investigate the means to
account for the growth and the non-rigid deformations that
the plant undergoes.

The main contribution of this paper is an iterative non-rigid
registration process, which leverages the skeleton structure of
the plant to obtain temporal matches between the scans. It
determines correspondences using a hidden Markov model
and estimate parameters, which are able to capture the
deformation and the growth of the plant skeleton. We then
transfer the deformations estimated on the plant skeletons to
the whole point cloud in order to register the temporally sep-
arated point clouds. Using these registration parameters, we
are also able to interpolate over the registration parameters to
obtain an estimated point cloud at a time instant in-between
the actual acquisition times.

In sum, our approach is able to (i) register temporally
separated plant point clouds by explicitly accounting for
the growth, deformations and changes in the plant topology,
(ii) find correspondences between the different organs of the



plant, which allows for tracking plant growth parameters over
time, (iii) demonstrate reliable registration results on a long-
term dataset (recorded daily over two weeks). We illustrate
this using the data of a tomato plant captured using a 3D
laser scanner mounted on a robotic arm.

II. RELATED WORK

Over the last decade, agricultural robotics has been receiv-
ing an increasing interest by the robotics community and the
agricultural one alike. One relevant aspect in this context
relates to obtaining relevant features of plants, often referred
to as phenotypic traits, in an automated manner [10]. Several
approaches [7], [9], [8] aim at obtaining traits at a coarse
resolution over the entire field using image data captured
from UAVs as well as from ground robots. More recently,
3D laser data has been analyzed to obtain phenotypic traits
with high fidelity [2], [19], [26]. Li et al. [21] and Paproki
et al. [25] analyze time-series point cloud data to detect
topological events such as branching, decay and track the
growth of different organs. While these works emphasize
obtaining phenotypic traits at an organ level, our focus in
this paper is on developing basic techniques for matching
as well registering temporally separated scans of individual
plants using the whole point cloud data. This technique forms
the basis for tracking phenotypic traits over time.

Several approaches in the past have attempted to leverage
the topological structure of the object to drive the registration
process, primarily in the field of human motion tracking [11],
[15], [27]. A large corpus of literature exists for extracting
skeletons from 3D models, which are then used for different
applications such as animation, surface reconstruction etc.
Huang et al. [17] and Tagliasacchi et al. [34] propose
approaches to extract curve skeletons from unorganized point
clouds which can be used as an input to our approach. A
detailed state-of-the art review for extracting skeletons of
3D objects is given in [33]. In this paper, we build upon
a skeletal curve for the plant point clouds as an input and
focus on using this skeletal structure of the plant to obtain
correspondences reliably given the challenge of changing
topology and growth of the organs.

Non-rigid registration techniques [6], [30], [32] aim at
capturing the deformation in the object in addition to its
motion while registering the scans. Approaches such as [13],
[18], [20], [23], [24] aim at reconstructing scenes in an
online fashion either in the presence of dynamic objects or
deformations. Such approaches typically operate on scans
captured at a high frame rate (10-30 Hz) and thereby deal
with rather small deformations in between consecutive scans.
In our application, the plants are usually scanned at a
comparably low frequency (once per day) and thereby show-
ing larger growth and deformations in between consecutive
scans. Zheng et al. [37] propose an approach to register
3D temporal point clouds of objects by exploiting skeleton
structures. We build upon their formulation and integrate it
within an improved data association approach and iterative
non-rigid registration scheme to register temporally separated
3D plant point clouds.

Algorithm 1 Skeleton-driven iterative non-rigid registration

1: P1,P2 . Input point clouds
2: S1 ← GETSKELETON(P1)
3: S2 ← GETSKELETON(P2)
4: Ct−112 , Ct12 = ∅ . Initialization
5: while (Ct12 \ Ct−112 ) ∪ (Ct−112 \ Ct12) = ∅ do
6: Ct−112 = Ct12
7: Ct12 ← FINDSKELETALCORRESPONDENCES(S1,S2)
8: T12 ← COMPSKELETALDEFORMATION(S1,S2, Ct12)

9: P̂1 ← APPLYDEFORMATION(P1, T12)

The problem at hand as well as the technique used in our
approach to address plant registration shows some relation
to techniques from the SLAM community [3], [4], [31].
This starts with the iterative scan alignment procedures
such as ICP [5], [13], although we build upon a skeleton
representation and not the point cloud itself. Furthermore,
we build up data associations over time between skeleton
nodes using a hidden Markov model formulation. For the
optimization, least squares approaches related to graph-based
SLAM [12] are used including robust kernel functions.
Different to typical SLAM systems, however, we allow for
multiple affine transformations between plant parts and thus
extend the rigid-body transformations often found in the
SLAM literature.

III. OUR APPROACH TO PLANT REGISTRATION

Our approach operates on a time-series of consistent 3D
point clouds of plants. Our registration starts with a skeleton
for each point cloud and these skeletons can be computed
using method described in [17]. The skeletons extracted are
often imperfect and this fact is taken into consideration
during the registration procedure. Note that we operate
directly on the unordered point clouds and do not require
a mesh structure or other cues such the normals providing
the inside-outside information of the surface.

Our approach registers a point cloud pair (P1,P2) in an
iterative manner. Similar to the popular ICP approach [5],
we alternate between correspondence estimation steps and
registration steps given the correspondences. In contrast
to the nearest neighbor, point-to-plane, or normal-shooting
correspondences used in typical ICP procedures, we use
the skeletal structure of the plant to establish correspon-
dences C12. This is done via a hidden Markov model
(HMM) formulation detailed in Sec. III-A. Also in deviation
from a standard ICP procedure, which assumes a rigid
transformation between P1 and P2, we explicitly model
the deformation through different 3D affine transformations
defined for each node of the skeleton S1. We estimate this set
of affine registration parameters T12 using a non-linear least
squares procedure. We exit the iterative scheme when there
is no change in the estimated correspondence set Ct12. After
computing the registration parameters between the nodes
of the skeletons S1 and S2, we apply these parameters to
the entire point cloud, see Sec. III-C. This results in the



Fig. 2: Left: Example of skeletal matching with all the variables
involved. Right: Hidden Markov model used for correspondence
estimation. The red line depicts the sequence of best correspondence
estimated by the Viterbi algorithm.

registered point clouds. The overall registration scheme is
summarized in Alg. 1.

A. Estimating Skeletal Correspondences

The goal of this step is to obtain correspondences between
two skeletons of temporally separated scans. In order to cope
with the imperfections in the individual skeletons and incon-
sistencies between them, we require a probabilistic approach
to associate the skeleton parts as opposed to graph matching
approaches, which do not tolerate such errors well. We
therefore formulate the problem of finding correspondences
between the skeleton pair (S1,S2) using a hidden Markov
model formulation. The unknowns or the hidden states of the
HMM model are all the potential correspondences between
the nodes of the two skeletons. In addition, we also add a “not
matched state” for each node to the HMM to account for the
situations in which the node may have no correspondences
at all. This happens, for example, when nodes belong to
new organs that were not present before or when new nodes
emerge on the curve skeleton due to the plant growth.

As required in a typical HMM formulation, we define
the emission cost Z and the transition cost Γ. The emis-
sion cost Z describes the cost for a given hidden state
(correspondence) to produce a certain observation. In our
case, the observations are the sequence of nodes of the first
skeleton S1 arranged in depth first manner starting from
the node at the base of the stem. We define this cost for
a correspondence cij ∈ C12 between node ni of S1 and
node nj of S2 as:

Z(cij) = wd|deg(ni)− deg(nj)|+ we‖xi − xj‖, (1)

where we the first term yields the difference between the
degrees of the corresponding nodes, where deg(n) is the
number of edges incident to a node. The second term refers
to the Euclidean distance between them with (xi, xj) being
the 3D locations of the nodes (ni, nj) respectively. The
idea behind combining these two terms is capture both,
the topology difference as well as actual spatial distance
between the nodes. This combined cost will be smaller for
correspondences between nodes that have similar topology
and are located close to each other. We weigh the two terms
using wd and we to properly scale the two measures.

The transition cost Γ describes the cost involved in transi-
tioning from one hidden state cij to another ckh. This can be

treated as the cost involved in having ckh as a valid match
given that cij is a valid match as well. We define this cost
as:

Γ(cij , ckh) = |dg(ni, nk)− dg(nj , nh)|
+wnbr|nbr(ni, nk)− nbr(nj , nh)|
+ρdir((xi − xj), (xk − xh)), (2)

where the first term computes the difference of the geodetic
distances dg between the nodes involved in the two corre-
spondence pairs along their respective skeletons. This means
that a pair of correspondences (cij , ckh) having equal geode-
tic lengths dg(ni, nk) along S1 and dg(nj , nh) along S2 will
have a lower cost than the ones which have much different
lengths along the skeleton. The second term captures the
difference in the number of branches nbr, i.e., nodes with
degree greater than 2, along the way on the skeleton. The
weight wnbr is automatically set as the maximal geodetic
distance between all node pairs of the first skeleton. The
final term ρdir is a function that penalizes the correspondence
pairs (cij , ckh) with a large cost if the directions determined
by (xi − xj) and (xk − xh) are opposite, i.e., the angle
between them are greater than π

2 .
Once the emission and transition costs are defined, we

compute the correspondences between the skeletons by per-
forming an inference on the HMM. The result is the most
likely sequence of hidden variables, i.e., the set of corre-
spondences between S1 and S2. We perform this inference
using the Viterbi algorithm [35]. In case a node has more
than one correspondence, we choose the correspondence
with the smaller Euclidean distance to ensure a one-to-one
correspondence. As an illustration, Fig. 2 (left) shows an
example skeleton pair for which we want to estimate the
correspondences C12. Fig. 2 (right) depicts the HMM for the
example pair where the red path indicates the set of corre-
spondences estimated by the Viterbi algorithm. The HMM
model only shows a sub-set of the connections between the
hidden states, where in practice each state is connected to
every other state.

B. Computing Skeletal Deformation Parameters

In this step, we compute the registration parameters be-
tween S1 and S2 given the set of correspondences C12. While
registering temporally separated plant scans, the shape and
the topology of the plant changes. Therefore, to capture these
changes we need to forego the usual assumption of rigidity
often used in point cloud registration. Our goal is to capture
the non-rigid changes by computing sets of deformation
parameters between skeleton parts of the respective plant
scans. We estimate these deformation parameters through a
non-linear least squares optimization procedure based on the
correspondences obtained from the procedure described in
the previous section.

To model the deformations between the plant scans, we
attach an affine transformation Ti to each node ni of the
skeleton S1. The intuition behind such a model is that the
skeleton may be deformed differently at different locations



along the skeleton. By modeling the deformations through
a 3D affine transformation with 12 unknown parameters per
node, we are able to capture the growth as well as bending of
the plant via the scaling, shearing, and rotation parameters.

We define the objective function of the optimization prob-
lem as a combination of the three energy terms. The first
term Ecorresp is defined as:

Ecorresp =
∑

cij∈C12

‖Tixi − yj‖, (3)

where xi and yj are the node positions given by the corre-
spondence pair cij estimated in Sec. III-A. This energy term
captures the distance between corresponding nodes in S1
and S2 and strives to make this error as small as possible
during optimization.

The second energy term Erot captures how close the
estimated affine transformation is to a pure rotation and it de-
termines the smoothness of the deformation. We define Erot
as:

Erot =

3∑
i=1

j=mod(i+1,3)

(cicj)
2 +

3∑
i=1

(cici − 1)2, (4)

where ci represents the columns of the rotation part of affine
transformation (i.e. the first three rows and columns of Ti).
The first term in Erot in Eq. (4) measures the deviation
for a pair of columns to be orthogonal with each other,
whereas the second term measures the deviation of each
column from being unit length. Erot forces the estimated
affine parameters Ti to be as close to a true rotation as
possible.

We also define a regularization term Ereg as:

Ereg =
∑

j∈N(i)

‖T−1i Tj − I‖, (5)

where Ti, Tj are transformations corresponding to
nodes ni, nj such that j is the neighbor N(i) along S1. Ereg
is a regularizing term, which forces the transformation pa-
rameters of neighboring nodes to be similar. This results in a
smooth deformation along the skeleton and achieves similar
results as the as-rigid-as-possible constraint described by
Sorkine et al. [30]. The regularization term is also necessary
to constrain the nodes that do not have any correspondences.
Finally, the combined energy Etotal is obtained as a weighted
combination of all the three energies as:

Etotal = wcorrespEcorresp + wrotErot + wregEreg(6)

We use the weights wcorresp = 100, wrot = 10,
and wreg = 1 for all the example in our datasets. The
weights have been chosen such that the cost due to each
component of the loss is in the same order of magnitude.
We employ the standard Gauss-Newton algorithm to solve
the unconstrained non-linear least squares problem [14]. We
use the Cauchy robust kernel [22] for the error residuals
belonging to Ecorresp as this prevents incorrect correspon-
dences to influence the optimization process. The approach
is related to the formulation by Sumner et al. [32] for

estimating deformation parameters for surfaces parametrized
as triangular meshes. In our case, we adapt the energy terms
to reflect the constraints valid for deformation between curve
skeletons as opposed to surfaces. Furthermore, the approach
in [32] is not able to fully constrain the nodes which have
a degree smaller than 3, but is essential for registration of
curve skeletons.

C. Point Cloud Deformation

To obtain the final registered point cloud P ′1, we need to
apply the deformation parameters estimated for the skeleton
nodes in Sec. III-B to all the points of the scan. For each
point p in the point cloud P1, we obtain the deformed point p′

as a weighted sum of affine transformations corresponding
to the two nearest nodes to the point p as

p′ =
∑

k∈N(p)

αkTkp, (7)

where k is the index of the nearest node N(p) and αk is
computed according to the projection of the point p on the
edge of the skeleton determined by the nearest nodes. If pe
is the projection of point p on edge e. Then,

αk = 1− ‖p− e‖/‖e‖. (8)

D. Interpolating Point Clouds

In addition to registering the plant scans recorded at
different times, we would also like to interpolate how the
plant may be deformed at an intermediate time in between
the actual acquisition times. We compute the deformed
point cloud by interpolating the deformation parameters T
estimated between the two registered scans. To obtain a
smooth interpolation, we first decompose of the estimated
affine transformation T into scale/shear transformation Ts,
pure rotation TR, and a pure translation Tt using the polar
decomposition approach described in [29].

T = TsTRTt (9)

We then linearly interpolate Ts and Tt to obtain the transfor-
mation at time t. For interpolating TR, we use the spherical
linear interpolation described in [28].

IV. EXPERIMENTAL EVALUATION

A. Dataset Description

We evaluate our approach on a time-series 3D point cloud
data of a tomato plant (Solanum lycopersicum). The scans
were recorded using a robotic arm (Romer Absolute Arm) [1]
equipped with a high precision laser scanner. The dataset
was recorded daily over two weeks. The plants have been
scanned to minimize self occlusions whenever possible. Also
all points not belonging to the plant have been removed in
a pre-processing step. The dataset covers the growth of the
plant from the 2 leaves stage to around 10 leaves capturing
several branching events and substantial leaf growth till the
end of the acquisition period. We obtain the skeletons from
the 3D point clouds using the algorithm described in [17].



Fig. 3: 4D registration of point clouds. Top: shows registration results between scans from consecutive days (Day 1 and Day 2). Bottom:
shows registration results between scans which are 4 days apart (Day 6 and and Day 10). The left column shows the two input point
clouds (P1,P2) along with their skeletons, middle column shows the estimated correspondences (yellow lines) between the skeletons, and
the right column shows the deformed point cloud P ′

1 (in pink) overlaid on P2 along with registration error visualized as a heat map.

B. 4D Registration of Point Clouds

The first experiment is designed to illustrate the results
of our plant registration pipeline for time-series point cloud
data of the plants and to quantitatively evaluate the accuracy
of the registration pipeline. Fig. 3 illustrates the results of the
registration procedure for two example scan pairs. The first
example (Fig. 3 Top) visualizes the registration results for
scans from consecutive days, whereas the second example
(Fig. 3 Bottom) shows registration between scans which are
farther apart (4 days here). For both examples, we show the
input point clouds (P1,P2) along with their corresponding
skeletons. The correspondences estimated during the regis-
tration procedure are depicted by the yellow-lines joining
nodes of the skeleton pair. Our approach was able to find the
correspondences reliably despite the growth and the change
in topology, which is specially prominent in the second
example (Fig. 3 Bottom). We visualize the final registered
point cloud P ′1 (in pink) by deforming the point cloud P1

using the deformation parameters estimated by our approach
and overlay it on the target point cloud P2 (in gray) and
observe that it overlaps well indicating that the registration
results are reasonable.

Further, we quantitatively evaluate the accuracy of our
registration pipeline by registering all consecutive scans of
the dataset. First, we compute the accuracy of our skele-
ton matching procedure by computing the percentage of
correspondences estimated correctly. We define the correct
correspondences as those which belong to the same organ
(i.e., the same leaf or the stem) in the skeleton pair as there is
no unique way to define a correct correspondence due to the
growth in the plant. We manually label the different organs
of the plant with a unique identifier to provide the ground

truth to compute this metric. For our dataset, we obtain
an an average of 95% correct correspondences between
consecutive skeleton pairs with most pairs having all the
correspondences estimated correctly.

Secondly, we evaluate the accuracy of the estimated reg-
istration parameters by computing the error between the de-
formed source point cloud P ′1 and the target point cloud P2.
We define this registration error ereg as:

ereg =
1

|P ′1|

|P′
1|∑

i=1
j∈N(i)

‖p′i1 − p
j
2‖, (10)

where pj2 is the nearest point to p′i1 and |P ′1| is the number
of points in P ′1.

For our dataset, we obtain a mean error of 3 mm and
a maximum error of 13 mm for consecutive scans, which
indicates that the registration results are accurate. As a
baseline comparison, we computed the average overlap error
by assuming a rigid transformation between the scans and
obtain an average error ereg of 35 mm and maximum error
of 166 mm. The large errors using a rigid transformation
assumption are both due to the plant growth and in some
cases the ICP procedure diverging completely. This also
indicates that a rigid transformation assumption is inadequate
and a non-rigid registration procedure is required to capture
the growth and movement of the plant.

We visualize the registration error as a heat map for the
two example point cloud pairs in Fig. 3 (Bottom right of
each example). The heat map is projected on P̂1 to show
how well different portions of the plant are registered. The
blue regions in the heat map represent a smaller registration
error whereas the yellow regions indicate large errors. Most
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Fig. 4: Estimating growth for individual organs. Our registration
procedures allows us to track the growth of the stem and different
leave lengths over time and detect topological events such as the
emergence of new leaves.

of the regions are blue indicating a successful registration,
however, we notice that the errors are usually high towards
the outer sections of the leaves which are farther away from
the skeleton curve. This effect is to be expected as the
skeleton curves do not capture this area well.

C. Growth Estimation

The second experiment is designed to illustrate that we
can derive the growth information about the plant given the
spatial-temporal registration of our approach. We leverage
the registration information between the plant scans and
automatically extract some growth parameters as well as
other important events, which helps us to monitor certain
aspects of the plant growth. As a typical phenotypic trait
example, we compute individual leaf, and stem lengths and
monitor their growth over the acquisition period. This growth
is visualized in Fig. 5, where the red line represents the stem
length and the different shades of green lines represent the
length of the corresponding leaves over time. In addition, we
also detect certain events which mark a topological change
in the structure of the plant such as the appearance of a
new leaf. We show the number of new leaves emerging each
day next to the dashed vertical lines (e.g. three new leaves
emerge on day 8). In Fig. 5, we see how a leaf first appears
on day 2 and then grows up to 40 mm by day 11, and then
in another phase of rapid growth reaches to about 80 mm
by day 14. Such information can be used to compute the
BBCH scale [16] of the plant which is a growth stage scale
and other time varying phenotypic traits of a plant desired by
agronomists. The computation of such traits is only possible
due to the fact that the scans are temporally registered against
each other.

D. Temporal Interpolation of Point Clouds

In this last experiment, we showcase that we can even
interpolate the point clouds at intermediate points in time,
i.e., in between the actual acquisition of the scans. The
ability to interpolate is advantageous for analyzing properties
of the plant scans even when actual measurements are not
available. It allows us to predict both, the motion and growth
at intermediate time intervals. We visualize the interpolated
point cloud at ti mid-way between the two scans in top

Fig. 5: Top: interpolation of point clouds at an intermediate time
interval. Point clouds (gray) at time t− 1 and t come from actual
scan measurements whereas the points cloud (pink) at in-between
instant ti is the interpolated scan. Bottom left: shows the skeletons
at time t − 1 (blue), ti (pink) and t (green). Bottom right: shows
the corresponding point clouds in the same color as the skeletons.
We see that the interpolated skeleton and the point cloud (in pink)
captures the growth well between t− 1 and t.

of Fig. 5. This allows us to animate a time-lapse view of
the plants. The pink point clouds represent the interpolated
scans and overlaps well with point cloud (gray) at time t
indicating that the interpolation is reasonable. To visualize
the growth captured by interpolation better, we show the
skeletons and the point clouds at times t − 1, ti, t together
(Fig. 5 Bottom). As the interpolation procedure does not
actually model the movement or the growth of the plant, the
result of the interpolation may differ from the actual plant at
those instances. In order to evaluate the interpolation step,
we take the scans on day t−1 and day t+1, then interpolate
the point cloud at day t and compare against the actual
point cloud on day t. We compute the registration error (as
described in 10) and obtain a mean ereg of 4 mm suggesting
that our interpolation is a reasonable approximation of the
real plant growth.

V. CONCLUSION

In this paper, we presented a novel approach for spatio-
temporal registration of 3D point clouds of individual plants.
Our method builds upon the skeletal structure of the plant
to find reliable correspondences between parts of the plant
using an HMM-based approach. Furthermore, we explicitly
model the deformation and growth of the plant over time
using multiple affine transformations. We implemented and
evaluated our approach on a long-term dataset of a tomato
plant presenting challenging situations and supported all
claims made in this paper. The experiments suggest that our
registration approach can be used as a basis for tracking plant
traits temporally and contribute towards automated pheno-
typing. As future work, we aim to evaluate the approach on
different types of plants and extend it deal with more noisy
scans obtained from mobile platforms.
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