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Abstract— Continuous crop monitoring is an important as-
pect of precision agriculture and requires the registration of
sensor data over longer periods of time. Often, fields are
monitored using cameras mounted on unmanned aerial vehicles
(UAVs) but strong changes in the visual appearance of the
growing crops and the field itself poses serious challenges to
conventional image registration methods. In this paper, we
present a method for registering images of agricultural fields
taken by an UAV over the crop season and present a complete
pipeline for computing temporally aligned 3D point clouds
of the field. Our approach exploits the inherent geometry
of the crop arrangement in the field, which remains mostly
static over time. This allows us to register the images even
in the presence of strong visual changes. To this end, we
propose a scale-invariant, geometric feature descriptor that
encodes the local plant arrangement geometry. The experiments
suggest that we are able to register images taken over the crop
season, including situations where matching with an off-the-
shelf visual descriptor fails. We evaluate the accuracy of our
matching system with respect to manually labeled ground truth.
We furthermore illustrate that the reconstructed 3D models
are qualitatively correct and the registration results allow for
monitoring growth parameters at a per plant level.

I. INTRODUCTION

Automated crop monitoring is an important aspect of
precision farming, because it allows the farmers to make
informed decisions regarding when, where, and how much
fertilizer or pesticide to apply in the field as well as to
improve yield estimation. With the wide availability of
commercial UAVs, it has become fairly easy to repeatedly
acquire image data of the fields without any expert assistance.
This has led to several new applications in the agricultural
robotics community [2], [4], [11].

State-of-the-art image registration methods such as [1]
are able to register images from a scene and compute a
3D model of the environment [6]. Typically, these methods
rely on a visual descriptor such as SIFT, ORB, BRIEF or
similar to perform the data association amongst the images.
In crop farming, fields and crops are affected by strong
visual changes, due to the weather, growing crops, and farm
equipment such as tractors affecting the soil as shown in
Fig. 2. Most registration methods are not able to cope well
with these changes in appearance.

In this paper, we address the problem of registering UAV
images of a field recorded over the crop season in the
presence of large visual changes caused by crop growth and
field management. The main idea of our approach is to take
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Fig. 1: Matching UAV images taken three weeks apart. Our method
uses geometric cues to perform matching successfully whereas
matching using SIFT fails in challenging conditions with large
visual changes. Fig. 2 shows a zoomed-in view of the field rendering
these changes better visible.

advantage of the fact that the position of crops as well as
gaps between crops remains roughly the same over time,
even if the visual appearance of the plants itself changes
dramatically. A two-image matching example is depicted in
Fig. 1. The first row shows SIFT-based correspondences.
As it can be seen from the lines connecting the identified
corresponding points, SIFT based association is rather poor.
Our approach, however, finds better correspondences as seen
in the second row.

The main contribution of this paper is a novel method for
registering images of a crop field taken using a UAV across
the crop season. Our approach provides better correspon-
dences between images under changing conditions caused by
crop growth, weather, and field management. It copes with
the visual aliasing problem in crop fields. We achieve this
by presenting a descriptor that exploits crop and gap location
information along the crop rows which is mostly invariant
within the same field over time. This spatial information
about crops and gaps is useful for matching images in this
application domain.

We make the following three key claims. Using our
approach, we are able to (i) match images taken from a UAV
during multiple sessions over the field having large visual
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Fig. 2: Zoomed-in view of the same area on the field three weeks apart. In addition to the vegetation growth, the texture of soil also
changes dramatically over time. Texture rich regions such as the tire marks from the tractor in the left image are washed away in the
rain while revealing other new objects like the stones embedded in the ground. Such strong changes make it very challenging for visual
matching methods to work reliably.

differences across the crop season and thus can (ii) compute
a 3D model of the field with a temporal dimension capturing
the evolution of growing plants in the field. This model in
turn allows us to (iii) monitor crop growth parameters such
as leaf area over time. These three claims are supported by
our experimental evaluation.

II. RELATED WORK

Recently, several works investigated into robotic appli-
cations in the context precision agriculture. Das et al. [4]
and Bryson et al. [2] present various methods for auto-
mated monitoring for fields from ground and aerial vehicles.
Lottes et al. [11] focus on distinguishing crops and weeds
for targeted weeding while Kusumam et al. [8] detect and
localize broccoli heads for selective harvesting. Other works
such as [10], [17] have investigated towards analyzing plant
growth from multi-spectral images and point clouds.

Several existing methods address the problem of finding
data associations amongst images having large differences in
visual appearance. Visual localization and place recognition
for long-term applications require robust image matching in
presence of strong illumination and seasonal changes [14],
[18]. A comprehensive survey of the visual place recognition
techniques can be found in [13]. Most of these techniques
are designed for autonomous driving applications and do
not lend themselves to be used for finding matches in field
images having a large baseline.

A large corpus of literature exists for matching point
patterns in images and other synthetic data. Gold et al. [7]
and Hancock et al. [3] propose different formulations for
estimating correspondences from noisy point sets enabling
them to deal with deformable objects in the image. Wolfson
[19] proposes a hashing based method using invariant prop-
erties of transformations to retrieve the correct object from a
large database of objects. Our use of geometric descriptor
is similar to Moreau et al. [20] where they use affine
invariant properties to construct a descriptor for tracking
planar objects. While these works are not directly applicable
for our scenario, we borrow ideas from them and design
a new descriptor along with a robust matching procedure
suitable for matching point patterns detected in nadir view
UAV images.

A highly related work has been proposed by Dong et
al. [5] that address the problem of matching images from

a field across time for the purposes of crop monitoring.
They use a SLAM system to fuse the measurements from
different sensors such as camera, GPS, IMU, etc. to obtain
a high quality estimate of the camera poses and the field
structure. This information is used to reject outliers during
the data association step and in turn to improve the overall
robustness. As the matching still relies on visual information,
it is still bound to fail when visual appearance changes
dramatically, such as in situations like rain. In contrast, our
method is able to deal with such situations since it uses the
geometrical information which remains mostly static even if
the appearance changes dramatically.

III. OUR APPROACH

A. Assumptions and overview

In this section, we present our approach of matching
UAV images of the field taken over multiple data acquisi-
tion sessions separated over time. We make the following
assumptions regarding the setup:
• the UAV camera is mounted in a near nadir view and

there is sufficient overlap between consecutive images;
• the field is roughly planar in a local region (i.e., our

approach may not work in wine yards);
• a ground sampling distance so that plants span over

several pixels in the image, but this ground sampling
distance does not need to be known nor be constant;

• the crops are planted in rows, the row positions and
plant spacing, however, is unknown (c.f. Fig. 1).

To register images over multiple sessions, i.e., different
UAV flights over the crop season, into a common reference
frame, we perform the registration based on four consecutive
steps: (i) computing a point based geometric representation
for the images exploiting the crop arrangement on the field.
This leads to a detection of points, which remains mostly
static over different sessions. (ii) We exploit this information
to encode the local geometry around each detected point
in the image using a scale invariant descriptor. (iii) We
then compute point correspondences between overlapping
images in a data association step. (iv) Finally, through
bundle adjustment followed by a dense matcher, we compute
the optimized camera poses and spatially aligned 3D point
clouds of different sessions in a common reference frame.
The comparison of the point clouds allow us on the one



hand to qualitatively check the registration accuracy and on
the other hand to derive crop growth parameters which serve
as an application example. In the following, we discuss these
steps in more detail.

B. Step 1: Extract geometry information from UAV images

To capture the structure of the crop field that remains
invariant over time, we need to identify the static aspects
given the images. Once the crops are planted, they do
not move and the stems/centers of the crops remain rather
fixed over time. Therefore, the locations of the crop centers
can be used as a static description of the field. The local
constellations formed by these points can be seen as a
geometric signature of a particular local region covered by
an image. Our current implementation assumes that crops are
planted in rows, which is the case for most crop fields as this
simplifies the computation of features. The row arrangements
is not supposed to be known beforehand but the existence of
crop rows is assumed.

We can compute the crop centers using the following
procedure which is also illustrated in Fig. 3:

1) Compute the vegetation mask exploiting the excess
green index (ExG) given by

IExG = 2 IG − IR − IB (1)

where IR, IG and IB correspond to intensities of the
red, blue and green channels of the original image. We
then apply a threshold θ given by the Otsu’s method
[16] on IExG to get a binarized image (Fig. 3b).

2) Find the lines through the vegetation pixels using the
Hough transform for finding crop rows (Fig. 3c).

3) Compute a histogram of vegetation pixels perpendicu-
lar to the direction of the detected rows. The width w
is taken to be half the inter crop row distance (Fig. 3d).

4) Find the peaks of this histogram to identify the poten-
tial centers of the crops (Fig. 3e).

We observed that instead of crop centers, the missing
crops, i.e., the gaps within the rows, provide an even more
distinctive representation than the crop centers itself. This
is particularly the case in the later growth stages, in which
nearby crops often overlap. Therefore, we use the gaps
instead of the crop centers as the points representing the
geometry in the field based on the images.

To exploit the gaps instead of the crop centers, we follow
the same procedure as for the crop centers, but with the
difference that the gaps correspond to the valleys in the
histogram computed in Step 3 (marked with green crosses in
Fig. 3e). Multiple missing crops occurring consecutively are
represented by a single gap point at the center of the valley.
Further steps of the method are agnostic to the choice of
points or how these points are calculated. Fig. 4 illustrates
an example with the extracted crop centers and gaps overlaid
on the original image.

C. Step 2: Scale-invariant local geometry descriptor

Given the points identified in Sec. III-B, we aim at en-
coding the local geometry around each point as a descriptor
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Fig. 3: Steps for computing crop and gap centers from the image.

Fig. 4: Extracted points (left for crops, right for gaps) for the same
image.

vector in order to facilitate image matching. We exploit the
nadir-view assumption of the UAV and thus can assume that
images taken during different flights may differ in scale,
translational offset, and rotation in the image domain. No
affine transformation needs to be considered because of the
nadir images. To estimate these transformation parameters,
we need a descriptor, which is scale-invariant in addition to
be invariant to translation and rotation. We construct an own
descriptor for each point P using the ratios of distances and
relative angles between the k nearest neighboring points of
P in order to meet this criteria. The number of neighbors
to consider is a user-defined parameter. The smaller the k,
the less expressive/unique is the descriptor of P and the
larger k, the more sensitive is the description with respect
to outlier points. In our implementation and all experiments,



Fig. 5: Computing a scale-invariant descriptor for a point using
local geometry. Left: descriptor computation for two gap points Pa

& Pb with k = 4. Right: visualizes the corresponding descriptors.

we use k = 4, i.e., we consider the four nearest points to
P for the computation. In this work, we chose the value of
k empirically by evaluating the number of matches obtained
for different values of k ∈ [3, 8] and found that k = 4 gave
us the best results for our datasets. Consider Fig. 5 for an
illustration of how to compute the descriptor D for a given
point P , which is defined by the following computations:

1) Given the k nearest points Qk = {q1, . . . , qk} to P , we
compute the so-called reference point R as the point
in Qk with the largest distance to P in the image:

R = argmax
q∈Qk

‖P − q‖. (2)

Without loss of generality, we assume that q1 is the
reference point R in Qk and that Qk is ordered
according to the anti-clockwise angle between the
line Pq1 (dashed line in Fig. 5) and the lines Pqi
with i = 2, . . . , k. Computing all the elements of the
descriptor in this order makes the descriptor rotation
invariant.

2) The descriptor D will be 2(k − 1)-dimensional and
consists of two parts of equal size D = (Ddr , Dang).

3) The first half Ddr of the descriptor vector D consists
of distance ratios from P to the individual point,
normalized by ‖P − q1‖:

Ddr =

[
‖P − q2‖
‖P − q1‖

,
‖P − q3‖
‖P − q1‖

, . . . ,
‖P − qk‖
‖P − q1‖

]
(3)

We chose distance ratios in the descriptor because they
remain invariant to scale.

4) The second half Dang of the descriptor vector D
consists of the angles that each point in Qk has with
respect to Pq1, normalized by 2π:

Dang =

[
∠(q1, P, q2)

2π
,
∠(q1, P, q3)

2π
, . . . ,

∠(q1, P, qk)
2π

]
The ∠(q1, P, qi) refers to the angle between the lines
Pq1 and Pqi. An example illustrating the descriptor
vector computation for two points Pa and Pb is shown
in Fig. 5.

D. Step 3: Data association amongst images

For each image, we compute the set of feature descriptors,
one descriptor per detected point in the image. Our data
association consists of three steps, the first two steps of

the data association are rather standard. First, we compute
a pair-wise matching of the descriptors of I1 and I2 and
compare them using the L2 norm. In the same spirit as done
by Lowe [12] for SIFT matching, we reject those matches
that have a high distance under the L2 norm as well as
those where the Lbest

Lsecond
> 0.8, where Lbest and Lsecond are the

scores for best and the second best match for a descriptor
respectively. Second, we compute similarity transformations
in a RANSAC loop to identify and remove outliers from the
set of corresponding points.

The third step deviates from standard data association
approaches. Given that the crop arrangement on the field is
highly repetitive, i.e., has a high visual aliasing, a comparably
large number of correspondences get eliminated by Lowe’s
ratio test. In this step, we consider to re-add correspondences
in case they are compatible with the transformation found
by RANSAC. Thus, the first two steps provide the initial
alignment from a potentially quite small set of correspon-
dences, which is typically free of gross errors. Then, we
refine the alignment estimate by re-adding those correspon-
dences, which are consistent with the initial guess. These
are locally distinct but potentially ambiguous with respect
to the descriptor globally and thus were eliminated before.
In order to ensure high-quality, one-to-one correspondences,
we use the Hungarian method [15] for data association in
this recovery step. This step allows us to recover more
correspondences that were not obtained directly by descriptor
matching by making use of the transformation estimated in
RANSAC step. The Hungarian method has a complexity of
O(n3) and thus is computationally expensive, but given that
the number of possible associations with low distances that
are compatible with the transformation is typically not too
large, this does not turn out to be a computational bottleneck
in practice. Fig. 6 depicts the correspondence between two
images after each step of the matching.

E. Step 4: Point cloud computation using bundle adjustment

In this last step, we perform a pairwise matching between
all overlapping images, both spatially and in time across
different sessions. Here, we have two options. If we have
a low quality GPS information available, we can generate a
candidate set of overlapping images from that. This allows
for increasing the speed as only a subset of the images
must be tested for correspondence. If no GPS information
is available, all image pair combinations are tested.

We compute the possible matches between all the po-
tentially overlapping images and feed them into a bundle
adjustment procedure [9]. This algorithm combines the pair-
wise matches to object points with multiple observations
and generates approximate values for the camera poses and
3D object points, which serves as an initial guess for the
subsequent optimization. After the adjustment, we obtain
a set of optimized camera poses in a common reference
frame. For each session separately, we can then compute
a dense point cloud using these poses. Any dense matcher
can be used here, we applied the patch-based multi-view
stereo reconstruction technique (PMVS) by Furukawa and



(a) Initial descriptor matching

(b) After RANSAC step

(c) After recovery step

Fig. 6: Stages of data association procedure. The details regarding
each stage is discussed in Sec. III-D
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Fig. 7: 3D reconstruction pipeline showing steps for computing
temporally aligned point clouds from different sessions.

Ponce [6]. The individual point clouds from each session
are already aligned to a common reference frame since the
used poses are the result of a common adjustment in the
previous step. The complete pipeline is illustrated in Fig. 7.

IV. EXPERIMENTAL EVALUATION

The experiments in this section are designed to illustrate
the capability of our image registration approach for field
monitoring tasks in agriculture and to support the claims
made in the introduction of the paper.

A. Data

We recorded several datasets 1 of sugar beet crops span-
ning over multiple weeks for two different fields, referred

1The datasets used in the paper can be downloaded from here:
www.ipb.uni-bonn.de/data/uav-sugarbeets-2015-16/

TABLE I: Overview of the datasets

Field Ses. Date # of images crop size weather

A

1 May 20 45 7 cm cloudy
2 May 27 175 10 cm sunny
3 June 17 121 15 cm overcast
4 June 22 140 20 cm cloudy

B 1 May 8 99 5 cm sunny
2 June 5 95 15 cm cloudy

TABLE II: Matching statistics across the crop season

Field Ses. pts per
img pair

# of matches res err
(px)Lowe test RANSAC Recovery

A
1-2 58 27 11 42 4.21
2-3 55 20 7 38 4.38
3-4 57 24 9 40 4.35

B 1-2 74 39 15 56 4.91

as A and B here. For the field A, we recorded the datasets
across four sessions using a DJI MATRICE 100 UAV. The
flight altitude for each session is between 8 m to 12 m above
the ground. We recorded the images using the Zenmuse X3
camera with an image resolution of 4000 × 2250 pixels
having a ground sampling distance of 4 mm per pixel at a
height of 10 m. For the field B, we used a DJI PHANTOM 4
UAV across two sessions recorded almost one month apart.
The UAV was equipped with a GoPro camera set up to take
an image every second at a resolution of 3840× 2880. The
flight altitude for the two sessions varied between 10 m and
18 m above the ground having a ground sampling distance
of 9 mm per pixel at 15 m height. As the GoPro uses a wide
angle lens, we first undistort the images before applying the
registration pipeline. The average plant sizes in the fields
range from 5 cm to 20 cm in diameter across the crop season.
Furthermore, the images were taken under different weather
and soil conditions. Tab. I provides an overview. The most
challenging datasets are Ses. 2-3 (A) and Ses. 1-2 (B) due
to the large time gap of 3-4 weeks between them whereas
Ses. 3-4 (A) is the easiest being only 5 days apart.

B. Matching images across the crop season

The first experiment is designed to show that our approach
is able to match images across the crop season having
large difference in visual appearance. We perform matching
between images within individual sessions and then across
sessions. As described in Sec. III, we compute the gap
points and construct our geometric descriptor for each of
the images. We compute descriptors with k = 4 neighboring
points to encode the local geometry. Tab. II summarizes the
overall statistics for matching images across the sessions. It
lists the average number of common gap points per image
pair, the number of correspondences after the Lowe-ratio test,
RANSAC, and recovery steps as well as the average residual
error. We observe that around 30% of the initially matched
points survive the RANSAC step and correspondences for
roughly 70% of the points are re-established in the recovery
step. Overall for field A, we observe an average residual
error of 4.3 pixels, which corresponds to a ground distance

www.ipb.uni-bonn.de/data/uav-sugarbeets-2015-16/


(a) Field A: Ses. 1 - Ses. 2 (1 week apart)

(b) Field A: Ses. 2 - Ses. 3 (3 weeks apart)

(c) Field A: Ses. 3 - Ses. 4 (5 days apart)

(d) Field B: Ses. 1 - Ses. 2 (4 weeks apart)

Fig. 8: Matching between image pairs from consecutive sessions.

of less than 2 cm. We have similar residual errors for field B
at 4.9 pixels. While this accuracy does not match up to the
usual sub-pixel accuracy of visual matching methods such
as SIFT applied in non-changing environments, it is still a
very good performance given the fact that physical growth of
the plants and their changing appearance limits the accuracy
with which the crop centers or the gaps can be detected.
Fig. 8 shows example results from consecutive sessions for
both fields. In all examples, visual matching using SIFT fails
to find any reasonable set of correspondences.

C. Comparison against SIFT, ORB, and BRIEF

This experiment is designed to compare the matching
performance of our approach against visual matching proce-
dures using different descriptors. We perform the comparison
between overlapping image pairs between each consecutive
session for both the fields. In addition to the standard

TABLE III: Evaluation against visual descriptor matching

Field/
Ses.

SIFT / SIFT-gaps / ORB / BRIEF / Our approach
% pairs matched max matches % inlier

A/1-2 26/15/10/0/89 10/8/10/–/42 19/29/15/–/41
A/2-3 16/40/5/0/85 4/12/4/0/38 10/34/8/–/35
A/3-4 84/75/80/65/86 103/22/75/70/40 67/65/65/55/38

B/1-2 9/15/0/0/87 4/9/–/–/56 7/21/–/–/39

TABLE IV: Evaluation against ground truth

Field Ses. % of est
matches

res. err (cm)
(est/ref)

registration. err
(trans/rot/scale)

A
1-2 91.67 1.47/0.98 3.19 px/0.38◦/0.31%
2-3 84.86 1.75/0.77 4.54 px/0.60◦/0.42%
3-4 85.19 1.74/0.86 4.07 px/0.42◦/0.32%

B 1-2 87.22 3.93/2.16 3.94 px/0.47◦/0.35%

SIFT matching procedure using the default detector, we also
compute the SIFT descriptor at the gap points computed by
the detector in our approach. The intuition for doing this
is that the gap regions are the least affected regions due
to the movement of the tractor etc. on the field. Therefore,
it provides the possibility of matching the texture of soil
in these regions across different sessions. Tab. III provides
a comparison of the matching performance using standard
SIFT, SIFT at gap points, ORB, BRIEF and our approach.
The table lists the percentage of image pairs matched suc-
cessfully, maximum matches found for an image pair, and the
inlier percentages for the matches computed by the three ap-
proaches. We consider image pairs having at least 4 matches
resulting in a correct transformation as a successful match.
For both fields A and B, we see that for most challenging
datasets, i.e, Ses. 2-3 (A) and Ses. 1-2 (B), visual matching
using the SIFT descriptor only matches between 9% to 16%
of the image pairs successfully. Even for the successfully
matched image pairs, the number of matches are very few
and the percentage of inlier matches is only around 10%
indicating that the matches are not reliable. The percentage
of successful matches obtained with ORB and BRIEF is even
worse. For example, they are not able to match any pairs form
the dataset Ses. 1-2 (B). The SIFT descriptor computed at
the gap points slightly improves the percentage of successful
matches for Ses. 2-3 (A) while providing no improvement
for other cases. However, for the relatively simpler dataset,
i.e., Ses. 3-4 (A), both the visual approaches perform well as
these images were captured only five days apart and are vi-
sually very similar. In comparison, our approach consistently
matched around 85% of the image pairs with higher inlier
percentages for each of the sessions including the challenging
datasets of Ses. 2-3 (A) and Ses. 1-2 (B). This is because of
the fact that our approach exploits the the geometry rather
than relying on the visual appearance of the field.

D. Ground truth evaluation

This experiment is designed to evaluate the accuracy of our
the matching results against the ground truth. To perform this
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Fig. 9: Descriptor robustness under varying noise levels assessed
in terms of percentage of correct matches (true positives) and false
matches (false positives + false negatives).

analysis, we compare our results with ground truth parame-
ters for 10 image pairs between each sessions. All the eval-
uation parameters are summarized in Tab. IV. The ground
truth parameters are computed based on control points,
which have been provided manually. Using these control
points, we compute the reference ground truth registration
parameters under a similarity transform. We further manually
establish unique correspondences between the image pair
points under these registration parameters and consider them
as the ground truth correspondences. We provide a measure
of the quality of matching in terms of the percentage of
correspondences estimated by our method as compared to
the ground truth correspondences. On average, our method
is able to recover up to 90% of all possible correspondences.
We also compute the residual error based on the estimated
correspondences and compare it to the residual error of the
manually generated ground truth. For field A, we obtain
an average residual of around 1.6 cm as compared to the
ground truth residual close to 1 cm. This is only slightly
worse than the ground truth results using manually measured
control points, which indicates that the estimated parameters
are correct. The residual error for field B is in the same
range as that of field A. The absolute value of the error is
higher only due to the lower ground resolution of 9 mm per
pixel for this flight. Further, we evaluate the accuracy of
the registration parameters by computing the average errors
(translation, rotation, and scale) with respect to the ground
truth parameters. We observe an average translation error of
close to 4 pixel. We also obtain an average rotational error
of 0.5◦, and a scale error of less than 0.5% with respect to
the ground truth parameters.

E. Descriptor performance under noisy detections

This experiment is designed to show the robustness of
the descriptor under noisy detection conditions. We per-
form this analysis by simulating two kinds of noise, (i)
a Gaussian noise affecting the location of the points, and
(ii) missing/spurious detection of the points i.e., outliers or
gross errors. We assess the performance of descriptors by
computing the percentages of correct matches (true positives)
and the false matches under varying levels of noise. The
false matches includes both false positives, i.e., the points
that are incorrectly matched and false negatives, i.e, the
matches which were missed. For the noise of type (i), we

low

high

Fig. 10: Temporally aligned 3D point clouds. Top: 3D reconstruc-
tion for a portion of the field from the same viewpoint for Ses. 2
(left) and Ses. 3 (right). Bottom: cross section of a part of the
point cloud from Ses. 3. The color of the point cloud represents
the difference between the point clouds from the two sessions, i.e.
Ses. 2 and Ses. 3. The portion close to ground does not change
much between the sessions and therefore has a small difference
indicated with blue color. In contrast, the top parts of the crops
are colored green/yellow/red indicating bigger differences between
the point clouds from the two sessions. This is due to the physical
growth of the plant between the two sessions.

vary the noise up to 15 pixel. The typical noise level for
the gap detection procedure for our images is around 5
pixel. In Fig. 9, we observe that even for high noise levels
(15 pixel), about 30% of the correspondences are identified
correctly whereas the false matches are below 20% after
the performing the Lowe’s test. We observe a similar trend
under missing/spurious points noise. We are able to identify
up to 20% of the matches even when one fourth of the
points are wrongly detected. These correspondences provide
sufficient information for our data association procedure to
match the images successfully. Furthermore, the RANSAC
step eliminates the wrong correspondences resulting from
incorrect descriptor matching and we finally recover only the
consistent but initially ambiguous correspondences during
the recovery step. This further supports the claim that we are
able to perform matching robustly under substantial noise.

F. Time aligned 3D point clouds

This experiment is designed to show that our reconstruc-
tion pipeline allows us to compute temporally aligned 3D
point clouds of the field (Sec. III-E) and thus support our
second claim. The top two point clouds in Fig. 10 illustrate
the result by rendering a portion of the field from the exact
same camera position both for Ses. 2 and Ses. 3 respectively.
This allows us to monitor the evolution and the changes on
the field over time. To assess the quality of the alignment, we
visualize the difference between the two aligned point clouds.
The bottom part of Fig. 10 shows a cross-section view of
the point cloud from Ses. 3, where the color signifies the
difference between the point cloud from Ses. 2 and Ses. 3.
The difference increases as the color changes from blue to
red. We see that the alignment of the point clouds looks
qualitatively correct as the space in-between the crop rows
has a small difference indicated by the blue color. We also
observe that the lower portions of the crops have a smaller
difference as this portion overlaps with the crops from Ses. 2,
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Fig. 11: Monitoring crop growth parameters. Left: Same crop
identified in the bounding box over different sessions using our
registration results. Right: plot of leaf cover over time at five
different sites in the field.

whereas portions at the top have a larger difference reflecting
the crop growth between the two sessions.

G. Monitoring crop growth parameters

To support our third and last claim, we show in the
following experiment that our registration results allows us to
monitor growth parameters at a per plant level. We manually
provide bounding boxes around crops in the first session
and compute the locations of the new bounding boxes in
the corresponding images from different sessions using our
registration results. Fig. 11 shows an example where the same
plant is identified through different sessions. To monitor the
growth of the plant, we compute the total leaf area (from top
view) for the plant in each of the sessions. We compute this
area by first extracting a vegetation mask inside the bounding
box using the excess green index (ExG) and compute the
area under it. Fig. 11 shows the plot of the total leaf area
for individual plants at five different sites on the field over
all the sessions. As it is expected, we see a general trend
of increasing leaf area with time. For the plant shown in
our example , the leaf area increases from about 150 cm2

in Ses. 1 to 430 cm2 in Ses. 4. The growth on the sites is
consistent with the BCCH growth scale index for sugar beets.
This experiment illustrates that our registration results are
accurate enough for monitoring growth parameters at per a
plant level. However, it should be noted our main goal here is
not to analyze crop growth, but to facilitate such analysis by
registering images taken over time to a common coordinate
frame. Other works such as [10], [17] address the issue of
analyzing crop growth in more detail.

V. CONCLUSION

In this paper, we presented a novel approach to register
UAV images of agricultural fields that show large variations
in the visual appearance over the crop season. Our method
utilizes the inherent geometry of the crop arrangement in the
field by exploiting the negative information about missing
crops, i.e., gaps in the crop rows and uses this informa-
tion for matching. This allows us to successfully register
images even in situations where matching based on common
visual descriptors such as SIFT, ORB, or BRIEF fail. The
experiments suggest that our approach provides a robust
and efficient alignment, which in turn allows us to obtain

temporally aligned 3D point cloud and to monitor individual
plants. Our work is an important step for UAV-supported
precision agriculture applications that require temporally
aligned models of whole fields up to an individual plant level
such as in-field phenotyping, continuous yield forecasting, or
similar.
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