
Agricultural Robot Dataset for Plant Classification,

Localization and Mapping on Sugar Beet Fields

Nived Chebrolu 1, Philipp Lottes 1, Alexander Schaefer 2, Wera Winterhalter 2, Wolfram

Burgard 2 and Cyrill Stachniss 1

Abstract

There is an increasing interest in agricultural robotics and precision farming. In such domains, relevant datasets are

often hard to obtain, as dedicated fields need to be maintained and the timing of the data collection is critical. In this

paper, we present a large-scale agricultural robot dataset for plant classification as well as localization and mapping

that covers the relevant growth stages of plants for robotic intervention and weed control. We used a readily available

agricultural field robot to record the dataset on a sugar beet farm near Bonn in Germany over a period of three months

in spring 2016. On average, we recorded data three times per week, starting at the emergence of the plants and

stopping at the state when the field was no longer accessible to the machinery without damaging the crops. The robot

carried a 4-channel multi-spectral camera and an RGB-D sensor to capture detailed information about the plantation.

Multiple lidar and GPS sensors as well as wheel encoders provided measurements relevant to localization, navigation,

and mapping. All sensors had been calibrated before the data acquisition campaign. In addition to the data recorded

by the robot, we provide lidar data of the field recorded using a terrestrial laser scanner. We believe this dataset will

help researchers to develop autonomous systems operating in agricultural field environments.

The dataset can be downloaded from http://www.ipb.uni-bonn.de/data/sugarbeets2016/
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Introduction

Recently, there has been a growing interest in robots

for precision agriculture, as they have the potential to

significantly reduce the need for manual weed removal, or

to lower the amount of herbicides and pesticides applied to a

field. Unlike traditional weed eradication approaches, which

treat the whole field uniformly, robots are able to selectively

apply herbicides and pesticides to individual plants, thus

using resources more efficiently. In order to increase the

yield further, sustainable farming uses innovative techniques

based on frequent monitoring of key indicators of crop

health. Here, robots can serve as autonomous platforms

for continuously collecting large amounts of data. In this

context, this dataset aims at providing real-world data to

researchers who develop autonomous robot systems for

tasks like plant classification, navigation, and mapping in

agricultural fields.

We collected the dataset on a sugar beet farm over an entire

crop season using the agricultural robot depicted in Figure 1.

The key idea was to observe a typical operational cycle of

the robot: It starts in the garage, reaches the field, drives

along the crop rows in the field, and finally returns back

to the garage. The collected data amounts to approximately

5 TB. It includes visual plant data captured by an RGB-

D sensor and a 4-channel camera which, in addition to

RGB information, also measures light emissions in the near-

infrared (NIR) spectrum. The data related to navigation

comprises of wheel odometry, lidar scans, and two types

of Global-Positioning-System (GPS) measurements: Precise

Point Positioning (PPP) and Real Time Kinematic (RTK)

Figure 1. Field robot BoniRob operating on the field. Left: data

acquisition three days after plant emergence. Right: data

acquisition five weeks after emergence.

information. In addition to the sensor data, we provide the

intrinsic and extrinsic calibration parameters for all sensors,

as well as development tools for accessing and manipulating

the data, scripted in Python. Furthermore, we provide an

initial set of ground truth data for plant classification, i.e.

labeled images captured by the 4-channel multi-spectral

camera. The label classes comprise sugar beet plants and

several weed species. In addition to that, early in the season,

we used a terrestrial laser scanner to obtain a precise 3D point

cloud of the field. This point cloud is also part of the dataset.
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Figure 2. Agricultural field robot BoniRob with all sensors. The

JAI camera is mounted inside the shroud under the robot

chassis and looks straight downwards.

The main contribution of this paper is a comprehensive

dataset of a sugar beet field that covers the time span

relevant for crop management and weed control: from the

emergence of the plants to a pre-harvest state at which

the field is no longer accessible to the machines. The

primary objective is to push developments and evaluations

of different applications for autonomous robots operating in

agricultural field environments. These applications can range

from crop and weed classification to localization, mapping

and navigation on fields with plants at different growth states.

(Tellaeche et al. 2008; Lottes et al. 2016b; Ball et al. 2016;

Underwood et al. 2015; Hall et al. 2015)

The Agricultural Robot Platform: BoniRob

The BoniRob platform is a multi-purpose robot by Bosch

DeepField Robotics. BoniRob is developed for applications

in precision agriculture, i.e. for mechanical weed control,

selective herbicide spraying, as well as for plant and soil

monitoring. It provides mounts for installing different tools

for these specific tasks. BoniRob is equipped with four

wheels which can be steered independently of each other,

which allows for flexible movements and navigation on

rough terrain.

Sensor Setup

Figure 2 illustrates the locations of all sensors mounted on

the BoniRob. They deliver (i) visual, (ii) depth, (iii) 3D laser,

(iv) GPS and (v) odometry data. In the following subsections,

we give a brief overview over these sensors and describe their

function concerning the perception system of the agricultural

robot.

JAI AD-130GE camera: This camera is a prism-based 2-

CCD multi-spectral vision sensor, which provides image

data of three bands inside the visual spectrum (RGB) and

observes one band of the near-infrared (NIR) spectrum. As

plant leaves exhibit high reflectivity in the NIR spectrum

due to their chlorophyll content (Rouse et al. 1974), the

NIR channel is useful for separating vegetation from soil

and other background data. Figure 3 depicts some example

RGB and NIR images. The Bayer mosaic color CCD and

the monochrome CCD of the JAI camera, both of size
1

3
”, provide an image resolution of 1296 pixel × 966 pixel,

respectively. One key feature of this camera system is its

Figure 3. Sugar beets and weeds captured with the

JAI AD-130GE multi-spectral camera. The left column shows

RGB images, the right one the corresponding NIR images. The

NIR channel shows a higher reflectivity for the vegetative parts.

The image data in this dataset contains sugar beet data from its

emergence (first row) up to the growth stage at which machines

are no longer used for weed control, because their operation

would damage the crops (last row).
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Figure 5. Section of a scan resulting from a single revolution of

the 16 laser diodes of the Velodyne VLP-16 sensor. The 3D

point cloud shows two people walking close to the robot.

prism-based design: As the optical paths of the RGB and

of the NIR channel are identical, the RGB and NIR data

can be treated as one 4-channel image. We mounted the

camera to the bottom of the robot chassis at a height of

around 85 cm above soil, looking straight downwards. Using

a Fujinon TF8-DA-8 lens with 8 mm focal length, this setup

yields a ground resolution of approximatively 3 px/mm and

a field of view of 24 cm × 31 cm on the ground. The

main purpose of the JAI AD-130GE camera is to capture

detailed visual information of the plants for the crop and

weed perception system of the robot as proposed in our

previous work (Lottes et al. (2016a) and Lottes et al. (2016b))

and for detailed visual monitoring of the plant growth by

extraction of key indicators for phenotyping applications. In

order to be independent of natural light sources, we built an

opaque shroud mounted on the bottom of the robot chassis

and used controlled high-performance artificial light sources,

see Figure 2.

Kinect One (Kinect v2): The Kinect is a time-of-flight

camera by Microsoft, which provides RGB and depth

information of the scene. We mounted the Kinect sensor to

the front of the robot, outside the shroud, and tilted it towards

the ground. The main reason for positioning it outside the

shroud was the interference with the JAI camera particularly

in the NIR spectrum. In the dataset, we provide the rectified

RGB, NIR, and depth images. As their pixels correspond to

each other, they can be used for creating 3D point clouds.

Figure 4 illustrates some examples of Kinect sensor data.

Velodyne VLP16 Puck: This 3D lidar sensor provides

distance and reflectance measurements obtained by a rotating

column of 16 laser diodes. Thus, the sensor has 16 scan

planes, each of which provides a 360
◦ horizontal field of

view and a 30
◦ vertical field of view with a horizontal

resolution of 0.4◦ and a vertical resolution of approximately

2
◦. The sensor provides measurements up to a range of

100m at a frequency of 20Hz for a full 360◦ scan. Figure 5

illustrates a section of a single scan. The BoniRob is

equipped with two of these sensors, one in the front right

top corner of the chassis and the other in the rear left top

corner. They are slightly tilted toward ground to better detect

objects close to the robot. The main purpose of the Velodyne

sensors is to provide data for creating a 3D map of the

environment, for localization, and for navigation tasks like

obstacle detection.

Nippon Signal FX8: The FX8 is a 3D laser range sensor by

Nippon Signal that provides distance measurements up to a

maximum range of 15m. It has a horizontal field of view of

60
◦ and a vertical field of view of 50◦. The data is provided

at a rate of 4Hz with a resolution of 97 pixels × 61 pixels.

Typical images look like the one in Figure 6. The sensor is

mounted on the front of the robot and tilted slightly towards

the ground. It can be utilized for obstacle avoidance and to

detect plant rows when navigating the field.

Leica RTK GPS: In order to track the robot’s position,

we employ a Real Time Kinematic (RTK) GPS system

by Leica, which provides accurate position estimates. The

RTK GPS receiver tracks the signal of the satellites and

additionally obtains observations from a nearby base station

with known location. With this information, the receiver

computes corrections of the standard GPS signal and

improves the position estimation to an accuracy of only a

few centimeters. For details on this approach see Grewal

et al. (2013). We recorded the position of the GPS antenna

mounted on the robot with respect to the World Geodetic

System 1984 (WGS84) at a frequency of 10 Hz. As an

example, Figure 7 depicts all recorded paths during the data

acquisition campaign.

Ublox GPS: In addition to the rather expensive RTK GPS

solution by Leica, we used the low-cost Ublox EVK7-P GPS

receiver to track the robot’s position. The sensor’s underlying

principle of position estimation is Precise Point Positioning

(Grewal et al. 2013). The advantage of this approach is its

low price and the need for only one receiver. We tracked the

position with this sensor at 4Hz with respect to the WGS84.

Figure 6. Left: range image obtained using the FX8 laser

scanner. Right: side view the of corresponding point cloud

provided by the FX8.

Figure 7. Determined paths by the GPS sensor of the entire

data acquisition campaign at the Campus Klein Altendorf.

Different colors refer to recordings of different days. Best viewed

in color.
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Figure 4. Examples of the data recorded by the Kinect sensor. From left to right: rectified RGB image, IR image, and processed

point cloud by exploiting additional depth information.

Computer Setup

The BoniRob has an onboard PC with a dual core

i7 processor and 6 GB DDR3 memory; its operating system

is Ubuntu 14.04. Apart from the Kinect, all sensor drivers

are run on this PC, using the popular Robot Operating

System (ROS) as a middleware. The two Velodyne scanners,

the JAI camera, and the FX8 scanner are connected to the

onboard computer via an Ethernet hub. Due to the high data

bandwidth required by the Kinect, we connected that sensor

to a separate computer which was software synchronized via

network with the main PC before recording.

Data Acquisition Campaign

In the spring of 2016, we started to conduct a two-month

data acquisition campaign at Campus Klein Altendorf, a farm

near Bonn in Germany. Specifically, we collected data on a

sugar beet field during a crop season, covering the various

growth stages of the plants, see Figure 3. On average, we

acquired data on two to three days a week, leading to 30

days of recordings in total. In a typical day’s recording, the

robot covers between four to eight crop rows, each measuring

400m in length. We controlled the robot manually during

the data collection process, keeping its average speed at

300mm/s. We recorded about 5 TB of uncompressed data

during the whole data acquisition campaign: high-resolution

images of the plants, depth information from the Kinect, 3D

point clouds of the environment from the Velodyne and FX8

laser scanners, GPS positions of the antennas, and wheel

odometry.

The data collection process was phased over time to cover

the different growth stages of the sugar beet crop starting at

germination. Our intention was to capture the key variations

of the field during the time relevant for weed control and

crop management. The robot visited several regions of the

field multiple times during the data collection period. The

dataset also captures different weather and soil conditions

ranging from sunny and dry to overcast and wet. However,

no collection was made during heavy rain, as the robot’s tyres

would have sunk into the wet soil. In addition to the on-field

recordings, we provide the data captured by the sensors while

the robot drives from the garage to the field and back.

Sensor Calibration

The dataset contains a complete set of calibration parameters.

This involves intrinsic, i.e. sensor-specific calibration

parameters for an appropriate interpretation of the sensor

data, and a set of static extrinsic calibration parameters,

which encode the relative poses of the sensors with respect

to the robot’s coordinate frame base link. This information is

essential to fuse the measurements obtained by the different

sensors. The base link frame is defined as the center of the

bottom plane of the robot chassis, as illustrated by Figure 8.

Extrinsics: In order to allow for fusion of measurements

of different sensors, we provide the 3D transformations

from the robot frame base link to the coordinate system

of each sensor in Table 1. The positions of the sensors on

the robot are depicted in Figure 2. We determined the pose

of each sensor in the following manner: First, we built a

3D model of the robot using the FARO X130 terrestrial

laser scanner and extracted the poses of the sensor casings

from it. Second, we derived the reference pose of the sensor

(for example the projection center of the camera) from the

mechanical drawings provided by the manufacturer. For both

Velodyne scanners and the FX8, we additionally performed

a high-precision alignment procedure based on sensor data:

We positioned the robot in a structured environment with

multiple walls and then used the overlap of the fields of

view of the front Velodyne and of the FX8 or of the rear

Velodyne, respectively, to accurately align the scans based on

scan matching. The pose corrections computed by the scan

matcher resulted in the final calibration poses. Following

this procedure, the inter-sensor rotations obtained have an

uncertainty in the order of 1◦ and the translations between

sensors have an uncertainty of around 1 cm.

Intrinsics: The JAI camera provides two types of images,

an RGB image and an NIR image. For both images, we

included the camera calibration parameters based on the

pinhole model in the dataset. We estimated these parameters

using the OpenCV camera calibration library (Bradski 2000)

by registering images of checkerboard patterns. As far as

the Kinect calibration is concerned, the dataset comes with

camera parameters for the color and the NIR image, for

the relative orientation between those two, and a depth

correction parameter. In order to obtain these parameters,

we used the procedure described by Wiedemeyer (2015).

The Kinect data provided is already registered and modified

according to the depth correction. Therefore, no further

correction is required by the user. For the Velodyne data,

we specify the distance correction and the offset parameter

values for each of the 16 laser diodes. As with the Kinect,

we have already applied these corrections to the point clouds

in the dataset.
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Figure 8. Left: illustration of the robot’s coordinate frame, called base link : The x-axis is colored red, the y-axis green, and the

z-axis blue. Right: reconstructed 3D model of the field robot. The sensor coordinate systems were determined by measuring the

poses of the sensor casings in this model and then looking up the sensor coordinate system with respect to the casing in the data

sheets.

Table 1. Extrinsic parameters for the transformation from the robot’s coordinate frame base link to the frame of each sensor. The

translation is given by x, y, and z; the rotation is given by the quaternion q.

Sensor x [m] y [m] z [m] qx qy qz qw

JAI AD-130GE 0.081 0.138 -0.073 -0.698 0.716 0.008 0.008

Microsoft Kinect v2 0.876 0.040 0.152 0.712 -0.702 0.019 -0.022

Velodyne VLP-16 (front) 0.690 -0.612 0.977 0.168 -0.183 0.968 0.015

Velodyne VLP-16 (rear) -0.705 0.528 0.972 -0.070 -0.253 -0.638 0.724

Nippon Signal FX8 1.073 -0.086 0.473 0.845 -0.005 0.535 0.010

Leica GPS -0.861 -0.081 -1.146 — — — —

Ublox GPS -0.685 -0.053 -0.764 — — — —

Data Description

In this section, we describe the structure of the dataset,

all types and the data formats used, and how to access its

individual parts.

Dataset structure

The whole dataset is divided into multiple folders, each of

which contains the data recorded on a certain day of the

acquisition campaign. Furthermore, we divided each day’s

recoding into smaller chunks of data. We originally recorded

the dataset using rosbag, the standard tool for data recording

provided by ROS. The resulting so-called bag files (*.bag),

which contain all recorded data, were split whenever they

reached the file size limit of 4 GB. We converted them to

standard raw formats for portability. The chunks of raw data

correspond to the split bag files. In order to accommodate

both users familiar and unfamiliar with ROS, the dataset

contains both the original ROS bag files and the converted

raw data files. The chunks can be downloaded as individual

zip archives. All calibration parameters are provided in

a separate zip file. They are valid for all the recordings

provided in the dataset.

The chunks are further subdivided: Each sensor modality

like image data, laser data, odometry measurements, and

GPS positions, has its own folder. The camera folder consists

of data from the JAI camera and the Kinect, the laser

folder holds Velodyne and FX8 data, the gps folder contains

the GPS positions read from the Ublox and Leica GPS

receivers, and the odometry folder contains wheel odometry

estimates. An overview over the folder hierarchy of a chunk

is illustrated in Figure 9.

Some of the chunks do not contain all sensor information.

During the first days of the campaign, we experienced some

issues with the GPS hardware. We also recognized crashes of

the drivers for the Kinect and the rear Velodyne sensor. A list

of all missing sensor measurements per chunk is provided in

the file missing measurements.txt.

Data Types and Formats

In this section, we briefly describe the file formats of the raw

data for each sensor.

Camera Data: All camera images have been stored in

losslessly compressed PNG files. The files are named

according to the following convention:

camera/<sensor>/<type>/<type> <index>.png,

where sensor is either jai or kinect, type is rgb or nir

for the JAI camera and color, ir, or depth for the Kinect,

and index is the image index. The Kinect image depth is

16 bit. The timestamps folder provides the timestamps of the

individual images. We have taken care to synchronize the

timestamps of all images for a given camera. The intrinsic

and extrinsic calibration parameters are provided separately

in the calibration folder. Note that for the JAI camera, the

RGB and the NIR images are captured through a prism.

Therefore their relative orientation is identity. For the Kinect,

the point cloud can be generated from the given raw data

using the generate kinect pointcloud function in

the development tools.

Laser Data: The laser data has been logged using two

Velodyne laser scanners (front and rear) and a Nippon Signal

FX8 scanner. The resulting point clouds are in a binary

format containing the fields [x, y, z, intensity, ring]. The first

three fields yield the position of the detected point in [m].

intensity is a value in [0, 255]; higher values denote higher

Prepared using sagej.cls
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bonirob <date>

camera

jai

nir

nir <index>.png

rgb

rgb <index>.png

timestamp

timestamps.txt

kinect

ir

ir <index>.png

color

color <index>.png

depth

depth <index>.png

timestamp

timestamps.txt

laser

velodyne

front

scan <index>.bin

timestamps start.txt

timestamps end.txt

rear

scan <index>.bin

timestamps start.txt

timestamps end.txt

fx8

scan <index>.bin

timestamps.txt

gps

ublox

gps.txt

leica

gps.txt

odometry

odom.txt

Figure 9. Folder structure for each chunk of data. The term

<date> refers to the date and time of the acquisition of a

certain chunk, while the term <index> identifies each piece of

data within a chunk.

reflectance. For the Velodyne VLP-16, each ring number

corresponds to a certain laser diode. In sum, each of the 16

laser diodes measures a profile on a certain scan plane. This

yields a 3D point cloud even when the robot is not moving

around. The ring value is set to −1 for all FX8 scans, as

this information is not applicable. Furthermore, the intensity

values of the point cloud correspond to the IR reflectance.

The binary files are stored as

laser/<sensor>/scan <index>.bin,

where sensor is velodyne/front, velodyne/rear, or fx8, and

index is the scan index in a chunk. Again, the timestamps

Figure 10. Left: special extra-high tripod equipped with a FARO

X130 terrestrial laser scanner. Right: part of the registered point

cloud of the sugar beet field. The black lines show false

measurements.

folder holds the timestamp of each scan in [s]. Note that for

the Velodyne laser scanners, both the start and end times

of each scan are provided. This allows for interpolation

of the timestamps for the individual laser diode firings

(see Velodyne manual for details). The intrinsic calibration

information is already applied to all laser scans. We provide

functions to access the resulting point cloud data in the

software tools that come with the dataset.

GPS Data: GPS data was logged using two devices, a Leica

RTK system and a low-cost Ublox EVK7-PPP. This data is

saved as text files in

gps/<sensor>/gps.txt,

where sensor is either leica or ublox. Each line in the GPS

log file corresponds to a position. This position refers to

the WGS84 system and is formatted [timestamp, latitude,

longitude, altitude]. latitude and longitude are specified in

[deg], while the altitude measurements are given in [m].

The Leica RTK measurements were logged at 10 Hz, the

Ublox measurements at 4 Hz. We noticed that the RTK

GPS receiver occasionally lost its signal, particularly when

the robot was moving along the border of the field close

to trees. Please note that the Leica RTK GPS data are

unfiltered raw measurements, whereas the Ublox driver

provides filtered data only, without explicitly specifying the

underlying algorithm.

Odometry Data: The wheel odometry data was saved to the

text file

odometry/odom.txt.

Each line in this file corresponds to an odometry

measurement. The measurements are formatted [timestamp,

ẋ, ẏ, ż, ω, x, y, φ]. The dotted variables and ω refer to

the translational velocity in [m/s] and the rotational speed

around the z-axis in [rad/s], respectively, whereas x, y, and

φ denote the position in [m] and the heading in [rad] of the

robot. The position information is obtained by integrating the

velocities from the beginning of the data acquisition session

on that day. Thus, the robot position with respect to the

position at the beginning of a chunk can simply be obtained

by subtracting the position of the first measurement of the

chunk from each new measurement. Note that wheel slippage

varies throughout the dataset depending position of the robot

on the field and on the dampness of the soil.
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Figure 11. Left: RGB image captured by the JAI camera. Right:

corresponding ground truth image encoding sugar beet (red)

and several weed species (other colors).

TLS Data: In addition to the data captured by the robot, we

collected 3D laser scans of the sugar beet field with a FARO

X130 terrestrial laser scanner mounted on a stationary tripod.

We scanned the field on May 10, 2016, when the plants were

small. Localizing a robot in such an environment without

relying on GPS would be a challenging task. See Figure 10

for an illustration of the TLS data. We recorded several scans

from different view points to cover almost the whole sugar

beet field. In order to obtain a complete 3D scan of the

field, we registered the individual scans using checkerboard

targets on the field and an ICP procedure. Finally, leveraging

the TLS’ GPS, compass, and inclinometer, we computed the

pose of the registered point cloud with respect to the WGS84.

The scans were stored in a text file, which contains the x,

y, and z coordinates of each point in [m] along with the

intensity values.

Ground Truth Data for Plant Classification: For a small

portion of the JAI images, we provide labeled ground truth

data. Figure 11 depicts an RGB image captured by the JAI

camera and its corresponding ground truth annotation. The

ground truth data does not only encode vegetative (colored)

and non-vegetative (black) parts, but distinguishes different

classes of the former: sugar beets (red) and several weed

species. In sum, we manually labeled around 300 images

as accurate as possible, identifying sugar beets and nine

different types of weeds. In the future, further labeled data

will be made available on the website.

Software Tools

Along with the raw data, we provide a basic set of Python

tools for accessing and working with the dataset. After

loading the dataset into memory, its hierarchical structure

is mapped to a nested object in Python, which can easily

be accessed using the dot operator. The tools use the same

naming convention as the one employed for storing the data

in various folders on the disk. For example, after loading

the camera data by calling dataset.load camera()

images from all cameras are stored in dataset.camera.

If we are interested in the JAI camera data, we access it

using dataset.camera.jai. Going further down the

hierarchy, RGB and NIR images from the JAI camera

are represented by dataset.camera.jai.rgb and

dataset.camera.jai.nir, respectively.

In addition to these basic methods to access the

data, we provide further utility functions. For exam-

ple, the generate kinect pointcloud method com-

putes the point cloud from Kinect raw data, and

save kinect pointcloud as ply saves these point

clouds as standard PLY files. The latter can be processed by

tools such as Meshlab, MATLAB, etc. Along with the tools,

we provide an example script that explains how to use the

various methods. The development tools can be downloaded

from the dataset website as well.

Summary

We present a large-scale agricultural robot dataset for

development of plant classification systems as well as robot

localization and mapping applications on agricultural fields.

To the best of our knowledge, no comparable, publicly

available dataset exists. The data was collected during one

crop season, capturing the various changes in the field

as the crops grew. In sum, we collected 5 TB of data

from vision, laser, GPS, and odometry sensors. We also

provide a basic set of software tools to access the data

easily. Furthermore, we annotated a subset of images for

classification. The main intention of this work is to provide

researchers with a challenging real-world dataset that helps

develop autonomous capabilities for field robots.
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