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Abstract—Simultaneous localization and mapping are essential
components for the operation of autonomous vehicles in unknown
environments. While localization focuses on estimating the vehi-
cle’s pose, mapping captures the surrounding environment to
enhance future localization and decision-making. Localization is
commonly achieved using external GNSS systems combined with
inertial measurement units, LiDARs, and/or cameras. Automotive
radars offer an attractive onboard sensing alternative due to
their robustness to adverse weather and low lighting conditions,
compactness, affordability, and widespread integration into con-
sumer vehicles. However, they output comparably sparse and
noisy point clouds that are challenging for pose estimation, easily
leading to noisy trajectory estimates. We propose a modular
approach that performs radar-inertial SLAM by fully leveraging
the characteristics of automotive consumer-vehicle radar sensors.
Our system achieves smooth and accurate onboard simultaneous
localization and mapping by combining automotive radars with
an IMU and exploiting the additional velocity and radar cross-
section information provided by radar sensors, without relying
on GNSS data. Specifically, radar scan-matching and IMU
measurements are first incorporated into a local pose graph
for odometry estimation. We then correct the accumulated drift
through a global pose graph backend that optimizes detected
loop closures. Contrary to existing radar SLAM methods, our
graph-based approach is divided into distinct submodules and all
components are designed specifically to exploit the characteristics
of automotive radar sensors for scan matching and loop closure
detection, leading to enhanced system performance. Our method
achieves state-of-the-art accuracy on public autonomous driving
data.

Index Terms—Odometry, Mapping, Localization, SLAM, Au-
tonomous Vehicle Navigation

I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM) plays
a crucial role in the operation of autonomous vehicles

within unknown environments. Estimating the pose of an
autonomous car with respect to its surroundings is necessary
for path planning, and collecting the surrounding information

Manuscript received: Dec 20, 2024; Revised: Feb 6, 2025; Accepted: Mar
21, 2025. This paper was recommended for publication by Editor Javier
Civera upon evaluation of the Associate Editor and Reviewers’ comments.
(Corresponding author: Daniel Casado Herraez.)

D. Casado Herraez and M. Zeller are with CARIAD SE, 38440 Wolfsburg,
Germany, and also with the University of Bonn, 53113 Bonn, Germany (e-
mail: dcasadoherraez@gmail.com).

D. Wang is with the Department of Informatics XVII Robotics, Julius
Maximilians-University Wuerzburg 97070, Germany.

J. Behley is with the Center for Robotics, University of Bonn, 53113 Bonn,
Germany.

M. Heidingsfeld is with the CARIAD SE, 38440 Wolfsburg, Germany.
C. Stachniss is with the Center for Robotics, University of Bonn, 53113

Bonn, Germany, and also with the Lamarr Institute for Machine Learning and
Artificial Intelligence, 44227 Dortmund, Germany.

Fig. 1: Qualitative results of our radar-inertial SLAM framework on
the SNAIL-Radar dataset [21]. (left) Radar point cloud map (purple)
projected into a Google Maps satellite view of the location of the
dataset. (right) Different sections of the created map are shown with
corresponding colored boxes in the left image with a visualization of
the estimated trajectory (blue).

helps to localize and make more informed decisions when a
place is being revisited. Pose estimation is commonly carried
out using GNSS sensors. However, GNSS requires satellite
visibility, making it unreliable in GNSS-denied areas like park-
ing lots and tunnels. In such situations, autonomous vehicles
must rely on other onboard sensing, typically LiDARs and/or
cameras, to estimate their pose over time [41] [42]. These
sensors can struggle under adverse weather or are dependent
on good lighting conditions [4]. Several approaches leverage
inertial measurement units (IMUs) [11] as they are economic
high-frequency sensors accurate in short periods of time [13],
but considered alone, they drift substantially.

Automotive radars are robust to bad weather and low
lighting conditions, and their production costs are significantly
lower than those of a LiDAR [8]. Additionally, they have been
proven as successful alternatives for performing odometry and
localization [6] [8]. A combination of automotive radars and
IMUs can exploit the advantages of both sensing modalities
while being cost-effective and, as we will show, offering the
potential for high accuracy in SLAM.

However, as a result of the radar’s working principle, the
output point cloud of the sensor is sparse and noisy compared
to LiDAR, leading to low performance of methods designed
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for LiDARs when directly applied to radar. This limitation is
evident in some radar SLAM approaches that adopt LiDAR
techniques for loop closure detection [21] [49]. Moreover, au-
tomotive radars also provide additional information including a
measurement of the point’s relative radial velocity and a radar-
cross section (RCS) related to the target’s reflectivity and angle
of incidence that can be exploited for scan-matching and place
recognition [6] [8] [32].

The main contribution of this work is a novel radar-inertial
SLAM system for autonomous vehicles that fully leverages the
characteristics of automotive radars for odometry estimation
and loop closure, see Fig. 1. We formulate the problem in a
modular manner, with three distinct components: a local pose
graph, a global pose graph, and a loop closure detector. The
local pose graph integrates local information from the IMU
and radar scan registration, leveraging the Doppler velocities
for scan matching. This serves as an initial pose estimate
for the global pose graph. Global pose graph optimization is
performed including the loop closures from our loop detec-
tor. Our system is open-source1 and achieves state-of-the-art
performance in radar-inertial SLAM using public autonomous
driving data.

In sum, we make three key claims. Our approach
(i) achieves state-of-the-art results in radar-inertial SLAM for
autonomous driving on publicly available data; (ii) introduces
a two-layered system structure for radar-inertial SLAM, com-
prising a local graph and a global graph leading to enhanced
accuracy; (iii) exploits the velocity and radar cross-section to
improve SLAM accuracy in sparse and noisy radar scans.

II. RELATED WORK

We present an overview of relevant approaches in odometry
and SLAM, focusing on point cloud-based methods. Our
discussion covers existing LiDAR and radar techniques, as
well as methods that combine these sensors with IMUs.

LiDAR-based odometry and SLAM techniques estimate
the relative pose of the vehicle using onboard LiDAR sensors
while simultaneously creating a map of the environment.
Methods that rely only on LiDAR scans usually perform
iterative alignment between point clouds to estimate the trans-
formation between them. The most popular approaches in
this domain are based on point-to-point matching [16] [41],
plane feature extraction and matching [10] [12], or a com-
bination of both [29]. LiDAR-only odometry may degrade
in featureless environments [40], which can be addressed by
introducing additional pose information from an IMU. The
high-frequency accelerometer and gyroscope readings can be
integrated over time [13] to provide an additional constraint
during odometry. Some approaches exploit this by combining
the LiDAR and IMU measurements with an iterated Kalman
filter [47] to estimate the pose of the robot. Others employ pose
graphs [30] [37] [38] combining IMU and LiDAR odometry
information that can be jointly optimized within a single graph.
A major disadvantage of single-factor graph approaches like
LIO-SAM [38] is that in their implementation, they do not
combine the IMU and radar odometry information within

1https://github.com/PRBonn/RaI-SLAM

the global pose estimation. Instead, they use the IMU as a
source of high-frequency odometry but construct the backend
graph containing only the estimated poses from LiDAR scan
registration. More recent approaches propose to integrate a
local submap and a global map [26] [27] maintaining global
consistency. Grisetti et al. [15] also propose a hierarchical op-
timization method that combines multiple graphs and enables
accurate odometry. Nevertheless, although LiDAR scans are
dense and high resolution, the sensors are affected by adverse
weather and are hard to pack within consumer autonomous
vehicles. Moreover, due to the sparse and noisy properties of
radar point clouds, applying LiDAR methods to radar scans
reduces pose estimation performance. These challenges call
for SLAM techniques specifically designed for radar data.

Radar-based odometry and SLAM use radar sensors to
estimate the relative pose of the vehicle and construct the
environment map. It is important to differentiate between two
radar categories, scanning and automotive radars. Scanning
radars provide a 2D intensity image of the vehicle’s surround-
ings. While some authors extract features from the intensity
images and match them over time [2] [18], others perform
signal processing techniques to directly estimate the motion
from the radar image scans [46]. Full SLAM approaches with
loop closure have also been proposed proving successful in
adverse weather scenarios [1] [20] [43]. However, similar to
LiDARs, scanning radars are bulky and too expensive to be
mounted in consumer vehicles. In contrast, automotive radar
sensors are smaller, more affordable, and provide a sparse
and noisy 3D point cloud that also contains the Doppler
velocity and RCS information of each point. The earliest
work in the automotive radar domain directly computes the
ego-pose based on the Doppler velocities of the points and
the kinematics of autonomous cars [24] [33]. Others have
adapted LiDAR methods to work with radar velocities [33]
or modeled the uncertainty in radar measurements leading to
an enhancement in odometry performance [?]. Another way
of handling sparsity and uncertainty in radar point clouds is
using the normal distribution transform [18], using scan-to-
map matching [8] and/or filtering the scans based on RCS
information [7] [32]. More recent approaches employ scan-
matching between radar frames [8] [28] [44] or use semantic
features from the environment [22] to estimate the change
in pose over time. Full automotive radar SLAM approaches
have also been proposed optimizing a pose graph with loop
closures [17] [19] [31] [36] [49]. The noisyness of radar scans,
however, can lead to noisy trajectory estimates, which can
be improved using additional input from an IMU. Several
methods that combine automotive radar and IMU informa-
tion use Kalman filters [3] [11] [50] or continuous-time
optimization [34] to estimate the pose of the vehicle over
time. Recent research has shown how graph-based methods
are advantageous in terms of accuracy and simplicity of the
system [14] [44]. However, they rely on a single global factor
graph that contains all the measurement information and utilize
LiDAR techniques for loop closure limiting their performance.

In our method, we propose a full SLAM framework spe-
cific for automotive radars taking inspiration from LiDAR
approaches that maintain multiple pose graphs [26] [27] and

https://github.com/PRBonn/RaI-SLAM
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Fig. 2: Structure of our RaI-SLAM system. It consists of three main
modules. The odometry estimation module optimizes the local graph
for radar-inertial odometry and filtering of the point clouds. The
mapping module optimizes the global graph containing odometry
information and loop closures. The loop detection module recognizes
revisited places and adds them to the global graph.

leverage hierarchical pose graph optimization [15]. Our system
is composed of a radar-inertial odometry frontend with a
loop detection and loop closure backend, and leverages the
additional Doppler velocity and RCS information provided by
radars for scan matching and loop closure detection.

III. OUR APPROACH FOR RADAR-INERTIAL SLAM

Our approach estimates the pose of an autonomous vehicle
over time and simultaneously constructs a map of the environ-
ment. Our system architecture comprises three core modules
for odometry pose estimation, loop detection, and global
optimization, see Fig. 2. Furthermore, having a double-graph
structure enables our system to effectively incorporate short-
term and large-scale information, as shown in Fig. 3. In the
odometry estimation frontend, the local factor graph collects
the most recent information from the IMU and radar scan-
matching and marginalizes nodes outside of a fixed window to
maintain computational efficiency. In the backend, the global
factor graph collects the optimized data from the local pose
graph, verifies loop detections, and integrates loop closure
information, improving large-scale consistency. This reduces
odometry drift and performs global optimization by combining
all available data.

We employ incremental smoothing and mapping [23] to
optimize the local and global graphs that compute the state
of the vehicle. The optimization problem for a single factor
graph can be expressed as

x∗ = argmin
x

∑
k

∥fk(xk1
,xk2

, ... ,xkM
; ok)∥2Σk

, (1)

where x∗ represents the optimal solution to the optimization
problem, Σk is the information matrix associated to the kth

factor, and fk(xk1
,xk2

, ... ,xkM
; ok) represents the residual

function for the kth factor involving states xk1
,xk2

...,xkM

and the observed measurement ok. In the following, we will
represent states and observations from the local and global
graphs using superscripts l and g, respectively.

A. Local Factor Graph

The goal of the local factor graph is to estimate the pose
of the vehicle by combining scan-matching information with

Fig. 3: Diagram of the local and global graph in our system. The scan-
matching and IMU information is collected within the optimization
window. The global graph incorporates this data and performs loop
closure optimization within the estimated poses.

pre-integrated accelerometer and gyroscope measurements. We
exploit the robustness of the scan matcher while leveraging the
short-term accuracy provided by high-frequency IMU sensors
employing two separate factors.

1) Scan-Matching: : In our framework, the main source of
odometry is derived from estimating the relative transform
between radar scans using scan-to-map registration. However,
an incorrect alignment of one single radar scan can lead to
an incorrect absolute trajectory estimate. We mitigate this by
utilizing additional sources of information beyond the radar
point coordinates for scan alignment. One approach is to
employ the Doppler velocities during ICP registration [8].
However, this is sensitive to sensor calibration. We expand
on Radar-ICP [8] relying only on the Doppler velocities as an
initial prior for scan registration, and as a pre-filtering step to
remove dynamic object outliers.

Following Kellner et al. [24], given the azimuth angle of
each measurement θi and its measured Doppler velocity vi,
we first estimate the velocity of the automotive radar sensor
vs = [vs,x, vs,y]

⊤ as a least squares problem of the form: v1
...
vN

 =

 cos(θ1) sin(θ1)
...

...
cos(θN ) sin(θN )

[
vs,x
vs,y

]
. (1)

Assuming an autonomous vehicle with no vertical and
lateral movement, the linear velocity vc ∈ R3 and angular
rate ωc ∈ R3 can be computed as

vc = Rc
s vs − ωc × tsc, (2)

where Rc
s ∈ SO(3) and tsc ∈ R3 are the rotation and

translation from the car to the sensor.
Given the time difference ∆t between the current and

previous scan, the estimated ego-motion is given as

Tinit =

[
exp

(
[ωc]×∆t

)
Jvc∆t

0⊤ 1

]
, (3)

where [ωc]× is the skew-symmetric matrix of ωc, and J is the
left Jacobian of SO(3) [39].
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We use Tinit ∈ SE(3) as the initial estimate for ICP and
perform scan-to-map matching, which helps to handle the
sparsity of radar scans. The scan-to-map factor contains its
corresponding odometry measurement olodomi

associated to the
ICP transformation estimate Ti according to

f l
odom(x

l
i; o

l
odomi

) = f l
odom(x

l
i;Ti). (4)

2) IMU Preintegration: : While we consider scan-matching
as our main source of information within the global graph,
the accelerometer and gyroscope readings from the IMU help
to smooth the trajectory and provide high-frequency pose
estimation in environments with few geometric features. The
raw measurements from the sensor are given as

ω̃t = ωt + bgt + ηg
t , (5)

ãt = R⊤
t (at − g) + bat + ηa

t , (6)

which consist of the true gyroscope and accelerometer mea-
surement ωt,at ∈ R3 an added white noise ηg

t ,η
a
t ∈ R3, an

added bias bgt , b
a
t ∈ R3, the gravity vector g ∈ R3 and the

rotation of the IMU in the world frame Rt ∈ SO(3) [13].
Using the IMU measurements, we estimate the rota-

tion Rt+∆t ∈ SO(3), velocity vt+∆t ∈ R3, and posi-
tion pt+∆t ∈ R3 after a time increment ∆t following the
integration of IMU measurements over time [13]:

Rt+∆t = RtExp ((ω̃t − bgt − ηg
t )∆t) , (7)

vt+∆t = vt + g∆t+ Rt(ãt − bat − ηa
t )∆t, (8)

pt+∆t = pt + vt∆t+ (g + Rt(ãt − bat − ηa
t ))

1

2
∆t2. (9)

The estimate of the relative motion of the sensor ∆Ri,j ,
∆vi,j , and ∆pi,j measured by the IMU between two radar
measurements at times i and j is given by:

∆Ri,j =

j−1∏
k=i

Exp ((ω̃k − bgk + ηg
k)∆t) , (10)

∆vi,j =

j−1∑
k=i

∆Ri,k (ãk − bak − ηa
k)∆t, (11)

∆pi,j =

j−1∑
k=i

[
∆vi,k∆t+∆Ri,k(ãk − bak − ηa

k)
1

2
∆t2

]
.

(12)

The relative motion information estimated from the IMU
is added to the local factor graph as an additional constraint
for the optimization, in a similar manner to LIO-SAM [38].
Our approach, however, is adapted to incorporate radar data
that is optimized together with the IMU factors. Following
the formulation in Eq. (1), this results in the following factors
with the corresponding observations of the rotation olRi,i−1

,
velocity olvi,i−1

, and position olpi,i−1
:

f l
IMU(x

l
i−1,x

l
i; o

l
Ri,i−1

) = f l
IMU(x

l
i−1,x

l
i; ∆Ri,i−1) (13)

f l
IMU(x

l
i−1,x

l
i; o

l
vi,i−1

) = f l
IMU(x

l
i−1,x

l
i; ∆vi,i−1) (14)

f l
IMU(x

l
i−1,x

l
i; o

l
pi,i−1

) = f l
IMU(x

l
i−1,x

l
i; ∆pi,i−1). (15)

We jointly optimize the local graph that contains scan
matching factors from Eq. (4), and the IMU factors from

Eqs. (13), (14), (15) in a windowed manner, following Eq. (1).
All the factors outside the marginalization window are ex-
cluded from the optimization, keeping a bounded size of the
optimizable graph.

B. Global Factor Graph

The global factor graph corrects for the drift accumulated in
the local factor graph by performing loop closure optimization.
Two key processes are performed in the global graph, as
illustrated in Fig. 3. First, we transfer the information from the
local to the global factor graph. This results in a global factor
graph with implicit factors that contain information about the
IMU and scan registration. We, then, include loop closure
factors into the graph to correct odometry drift.

1) Transfer from Local to Global Graph: : The data transfer
from the local to the global graph is performed on the latest
node of the windowed optimization. It serves as an initializa-
tion of the global poses before loop closure [15]. We create
an implicit factor containing the relative pose measurement ogi
between the current and the previous scan coming from both,
scan-to-map matching and IMU, following

f(xg
i−1,x

g
i ; o

g
i ) = f(xg

i−1,x
g
i ;T

l−1

i−1Tl
i), (16)

where Tl
i−1,Ti ∈ SE(3) are the poses of the previous and

current frames in the local graph, respectively.
2) Loop Closure: : Including the implicit factors in the

global graph does not solve the problem of a drifting trajectory.
We introduce loop detection and closure to correct the accumu-
lated errors. We employ three criteria for loop closing. First,
a radar place recognition model [6] finds a matching location
and returns a similarity score. Then, an odometry distance
measurement estimates the feasibility of the loop closure in
space. Finally, we propose an intuitive point correspondence
metric that replaces the common ICP distance score to measure
the matching quality [38].

The place recognition module identifies locations that
have been visited in the past. While other works use
ScanContext [44] [45], learning-based approaches [6] have
shown superior place recognition performance. We employ
SPR [6] as our scan encoder, which captures point-neighbor
information from the radar scan and an overall RCS distribu-
tion of the point cloud. We match two radar scans if

∥Xquery − Xmatch∥< δPR, (17)

where δPR is a predefined threshold and Xquery,Xmatch ∈ R256

are the SPR encodings of the query and matching scans.
The odometry distance metric is inspired by TBV-SLAM [1]

and verifies that the position of the query frame tquery ∈ R3

and matching frame tmatch ∈ R3 are within a reasonable spatial
threshold δodom proportional to the accumulated length of the
current trajectory dlength:

∥tquery − tmatch∥
dlength

< δodom. (18)

After a loop candidate has been detected based on sim-
ilarity and odometry distance, we use ICP to estimate the
transformation Tq

m ∈ SE(3) between the match and the
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Fig. 4: Pose estimation (shown in red) and mapping results for automotive sequences of the SNAIL-Radar [21] and HeRCULES [25] datasets.
Snapshots (b) and (d) show segments with loop closures. Movement in the vertical direction has been omitted for the map plots.

20240113/3 20240113/1 20240115/2 20240123/2 20240123/3 Mean

RTE [m] RRE [◦] ATE [m] RTE [m] RRE [◦] ATE [m] RTE [m] RRE [◦] ATE [m] RTE [m] RRE [◦] ATE [m] RTE [m] RRE [◦] ATE [m] RTE [m] RRE [◦] ATE [m]

LIO-SAM (lidar) 0.014 0.066 52.6 0.015 0.131 0.3 0.019 0.084 48.5 5.983 0.786 57.6 0.013 0.080 5.9 1.209 0.229 33.0

KISS-ICP (radar) 0.240 0.155 68.4 0.118 0.179 4.4 0.232 0.134 147.1 0.269 0.117 167.8 0.222 0.155 45.9 0.216 0.148 86.7
Radar-ICP 0.238 0.156 18.2 0.120 0.174 3.9 0.229 0.131 31.6 0.252 0.112 37.5 0.221 0.151 7.9 0.212 0.145 19.8
4DRadarSLAM 0.737 1.170 53.2 0.460 1.074 8.9 0.663 1.179 491.2 0.864 0.901 454.5 0.503 0.983 142.1 0.645 1.061 230.0
Graph-RIO - - - 0.169 0.172 9.5 0.195 0.172 763.4 - - - 0.266 0.168 497.0 0.210 0.170 423.3
RIV-SLAM 0.213 0.142 30.2 0.113 0.171 4.1 0.219 0.128 33.1 0.224 0.101 35.5 0.201 0.140 6.1 0.194 0.137 21.8

Ours 0.242 0.147 4.7 0.115 0.164 3.4 0.220 0.117 7.9 0.256 0.104 8.4 0.219 0.139 3.5 0.210 0.134 5.6

TABLE I: Comparison to state-of-the-art radar and LiDAR odometry and SLAM approaches on the SNAIL-Radar dataset [21].

Mountain Day 1 Library Day 1 Sports Complex Day 1 Parking Lot 3 Night Street Day 1 Mean

RTE [m] RRE [◦] ATE [m] RTE [m] RRE [◦] ATE [m] RTE [m] RRE [◦] ATE [m] RTE [m] RRE [◦] ATE [m] RTE [m] RRE [◦] ATE [m] RTE [m] RRE [◦] ATE [m]

KISS-ICP (LiDAR) 0.064 0.068 21.9 0.057 0.065 8.4 0.057 0.084 8.3 0.077 0.146 2.1 - - - 0.064 0.091 10.2

KISS-ICP (radar) 0.057 0.067 113.3 0.046 0.061 8.7 0.046 0.069 8.2 0.065 0.101 2.5 0.033 0.044 5.5 0.049 0.069 27.7
Radar-ICP 0.055 0.067 118.6 0.049 0.064 10.2 0.049 0.071 7.1 0.058 0.089 3.4 0.022 0.028 11.7 0.029 0.064 30.2
RIV-SLAM 0.077 0.084 206.9 0.014 0.064 4.2 - - - 0.020 0.075 2.4 0.010 0.042 10.7 0.030 0.066 56.0

Ours 0.019 0.024 11.2 0.019 0.021 2.1 0.020 0.023 3.9 0.022 0.033 2.2 0.008 0.005 11.5 0.018 0.021 6.2

TABLE II: Comparison of the best-performing odometry and SLAM methods on the HeRCULES dataset [25].

query frames. However, we observe that the distance score
used in LiDAR approaches is not a reliable matching quality
measure in automotive radars. While in LiDAR a low average
distance between point correspondences indicates a good scan
alignment, this is not always the case in sparse and noisy radar
point clouds. Good alignments may still return high average
distance values due to noise outliers, bad alignments may still
return reasonable average distance values, and if two radar
scans are taken at different times, the amount of noise and
reflection outliers may vary.

To address these limitations, we propose a new scoring
method for loop-matching quality. Instead of using the mean
distance of corresponding points, we measure that the number
of points after ICP registration that have a correspondence
within a radius r is greater than a threshold δd. This gives
an intuitive and reliable estimate of the matching quality. The
comparison of the score with δd is given as: 1

|C|
∑

(q,m)∈C

I{∥q−m∥< r}

 > δd, (19)

where (q,m) ∈ C is the set of correspondences between
query q and matching scan m, and I{c} is the indicator
function, returning 1 if condition c is true, and 0 otherwise.

Once the three criteria have been verified and the transfor-
mation between query and match Tq

m has been computed, we
express the final loop factor with the corresponding observa-
tion ogloopi

following

f(xg
q ,x

g
m; ogloopi

) = f(xg
q ,x

g
m;Tq−1

m ). (20)

The global graph containing the implicit factors from
Eq. (16), and the loop factors in Eq. (20), is optimized indepen-
dent of the local graph, following the procedure in Eq. (1). We
optimize the global graph including all transferred and loop
factors as a backend in a separate thread.

IV. EXPERIMENTAL EVALUATION

The main focus of our research is to develop a radar-
inertial SLAM system for autonomous vehicles that exploits
the information provided by radar sensors for large-scale
pose estimation and mapping. We present our experiments to
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Fig. 5: Qualitative comparison of our approach to the state of the art
on the SNAIL-Radar dataset [21].

show the capabilities of our method, called RaI-SLAM. The
results explicitly support our key claims that our approach:
(i) achieves state-of-the-art results in radar-inertial SLAM for
autonomous driving on publicly available data; (ii) introduces
a two-layered system structure for radar-inertial SLAM, com-
prising a local graph and a global graph leading to enhanced
accuracy; (iii) exploits the velocity and radar cross-section to
improve SLAM accuracy in sparse and noisy radar scans.

A. Implementation Details and Experimental Setup

We implement RaI-SLAM using ROS2 for communication
between modules and a GTSAM [9] factor graph optimization
framework, employing a fixed-lag smoother for the local
graph frontend and assuming constant covariance values for
odometry and loop closure. We evaluate our approach on
the SNAIL-Radar [21] and HeRCULES [25] datasets, as
other existing datasets have either short sequences without
loop closures [5] [35], inaccuracies in the ground truth [48],
or no IMU sensors [31]. Within the SNAIL-Radar dataset,
we select sequences 20240113/3, 20240113/1, 20240115/2,
20240123/2, and 20240123/3, which cover the entire area of
the dataset and are recorded using an SUV vehicle. From
the HeRCULES [25] dataset, we select five diverse sequences
containing loop closures, “Mountain Day 1”, “Library Day 1”,
“Sports Complex Day 1”, “Parking Lot 3 Night”, and “Street
Day 1”. For the loop closure module with SPR [6], we train
the model on the 4DRadarDataset [31], which also uses a
different radar sensor as the SNAIL-Radar dataset, indicating
the generalizability of our system. We use the ARS548 radar
for the evaluation of all methods except in the comparison with
4DRadarSLAM [49] whose parameters have been optimized
by the original authors for the Oculii Eagle. We evaluate all
trajectories on the plane, discarding all vertical movement.

Fig. 6: Qualitative comparison of our approach to the state of the art
on the HeRCULES dataset [25].

20240115/2 Library Day 1

RTE [m] RRE [◦] ATE [m] RTE [m] RRE [◦] ATE [m]

Scan matching 0.247 0.258 112.4 0.087 0.361 18.47
Scan matching with vel. prior 0.244 0.252 40.04 0.085 0.346 17.03
Local graph with IMU 0.222 0.145 39.90 0.024 0.210 16.99
Local and global without IMU 0.252 0.253 5.642 0.087 0.362 3.652

Local and global with IMU 0.229 0.146 5.726 0.024 0.210 3.389

TABLE III: Ablation studies on sequence 20240115/2 from the
SNAIL-Radar dataset [21] and “Library Day 1” from the HeR-
CULES [25] dataset.

The metrics used for evaluation consist of the relative transla-
tion (RTE) and rotation (RRE) error between pose estimations
measuring short-term accuracy, and the absolute trajectory
error (ATE) to estimate absolute performance. The best and
second best results on automotive radar sensors are bolded
and underlined, respectively.

B. Comparison with the State of the Art

The first experiment evaluates the performance of our
method and demonstrates that it achieves state-of-the-art re-
sults in publicly available automotive radar-inertial SLAM
data. We compare our method against other approaches in
the SNAIL-Radar dataset [21], and then compare the best-
performing methods in the HeRCULES dataset [25]. Quanti-
tative results are shown in Tabs. I and II, and qualitative results
are presented in Figs. 4, 5 and 6.

The baseline methods employed in the comparison are RIV-
SLAM [44], which leverages a single graph integrating all
sensor data; Graph-RIO [14], which uses a factor graph but ex-
cludes scan-matching and loop closure; 4DRadarSLAM [49],
which relies solely on the Oculii radar data without IMU
information; Radar ICP [8], a state-of-the-art radar odometry
method; KISS-ICP [41], a LiDAR odometry approach applied
directly on radar and LiDAR point clouds; and LIO-SAM [38],
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a LiDAR-inertial odometry system used in this work to bench-
mark sensor performance.

As it can be observed in Fig. 5 and Fig. 6, LiDAR ap-
proaches like KISS-ICP applied to radar point clouds have an
increased drift, sometimes leading to failures in scenarios with
few geometric features like in the long road from sequence
2024123/2. Odometry-only Radar-ICP has less drift but lacks
loop closure to correct it, visible in sequences like “Mountain
Day 1”. RIV-SLAM achieves high overall relative and absolute
accuracy but accumulates drift over longer sequences. It relies
on intensity ScanContext [45] and the regular ICP distance
score, failing to detect certain loops and correct accumulated
errors. Our method, which relies on a radar-oriented loop
detection procedure, identifies the loops and effectively in-
tegrates local and global information, leading to a lower mean
ATE while maintaining competitive accuracy for relative pose
estimation. RIV-SLAM also fails in sequence “Sports Complex
Day 1”, where an incorrect point cloud alignment leads to
an inconsistent trajectory. This is prevented with our velocity-
based ICP initialization. Additionally, our radar-inertial SLAM
technique is on par with LiDAR approaches. Specifically, it
presents an advantage in the highly dynamic scenario from
“Street Day 1”, where the LiDAR odometry approach fails to
complete the sequence due to the high amount of point outliers
corresponding to moving objects.

C. Ablation Studies
The second experiment evaluates how our two-layered graph

structure and how exploiting the characteristics of radar point
clouds for odometry and loop closure contribute to the fi-
nal accuracy. We perform the evaluation on the sequence
20240115/2 [21] and “Library Day 1” [25] as good examples
of long trajectories that include loops. The main components
are the velocity prior for scan-matching, the local graph
with and without IMU, and the global loop closure for drift
correction. The results are shown in Tab. III.

Employing the estimated ego velocity as the prior for
ICP results in a notable improvement of the absolute errors.
Without the velocity prior, a wrong match between the current
scan and the local map would lead to an incorrect trajectory for
the following measurements, affecting the absolute trajectory
error. Furthermore, adding the IMU measurements reduces
relative errors between scans but preserves a similar absolute
error due to the way the local factor graph is constructed.
Adding the loop closure additionally improves the global
results, resulting in a system with reduced local and global
trajectory errors.

Based on the results of pose graph optimization with
constant covariances in sequence “20240115/2”, however, we
often see that well-aligned local pose estimates can get mis-
aligned in the global optimization. Therefore, the estimation
of realistic pose and loop closure covariances is a promising
avenue of future research that could potentially increase the
consistency of the resulting trajectory and map.

V. CONCLUSION

In this paper, we presented a system for radar-inertial SLAM
that exploits the advantages of automotive radars and deals

with their sparse and noisy output point clouds without relying
on external GNSS information. We proposed a novel system
composed of a local and global pose graph that incorporates
IMU and radar information. Our odometry frontend keeps a
low local translation and rotation error and our loop closure
procedure reduces drift in the absolute trajectory. We imple-
mented and evaluated our approach on real-world scenarios
supporting all claims made in this paper. The experiments
suggest that our method achieves high performance for es-
timating the global pose of the vehicle by solely relying on
onboard radar-inertial sensing, with each component of the
system contributing to the final pose estimation accuracy.
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