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Abstract— Odometry is crucial for the navigation of au-
tonomous vehicles in unknown environments. While cameras
and LiDARs are commonly used to estimate the ego-motion
of a vehicle, these sensors face limitations under bad lighting
and severe weather conditions. Automotive radars overcome
these challenges, but radar point clouds are generally sparse
and noisy, making it difficult to identify useful features within a
radar scan. In this paper, we address the problem of ego-motion
estimation using a single automotive radar sensor. We propose
a simple, yet effective, heuristic-based method to extract the
ground plane from single radar scans and perform ground
plane matching between consecutive scans. Additionally, we
perform a windowed factor-graph optimization of the poses
together with the ground plane, improving the accuracy of
the pose estimation. We put our work to the test using the
4DRadarDataset. Our findings illustrate the state-of-the-art
performance of our odometry approach compared to existing
alternatives that use radar point clouds.

I. INTRODUCTION

Odometry is a fundamental pillar of autonomous driv-
ing. It involves estimating the vehicle’s ego-motion over
time using onboard sensors. This is especially important in
environments with challenging GNSS conditions, such as
cities with tall skyscrapers, tunnels, and parking garages.
Motion estimation is traditionally achieved using cameras or
LiDARs, which are sensitive to lighting or can be affected by
bad weather conditions, respectively. Furthermore, LiDARs
are often challenging to fit in end-user vehicles and have a
significantly higher price than cameras or radar sensors.

In this paper, we explore the task of automotive radar
motion estimation, without relying on GNSS, wheel odome-
ters, or other external sensors. Radars are compact, low-cost,
and robust to adverse weather, making them increasingly
common in consumer vehicles. Radars also provide Doppler
velocity values and radar cross-section (RCS) information,
with RCS being related to material properties and the angle
of reflection. However, the sparse and noisy nature of radar
scans presents significant challenges for radar odometry.

Early radar ego-motion estimation approaches rely on
geometric relationships between the radar measurements and
the vehicle [19]. Other approaches use positional information
of the point measurements [1] [13] or a combination of both,
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Fig. 1: Ground segmentation on sparse and noisy 3D radar scans
employed in our radar odometry approach. The top image displays
50 aggregated scans for a clear visualization of the segmented
ground plane. We use this information for odometry estimation
of the vehicle. Below we show a graphic description of the
environment captured by the radar, with the ground points in red.

velocity and positional information [7], leading to improve-
ments of the estimation accuracy. To mitigate the sparsity of
radar point clouds, some approaches try to transform radar
scans to resemble LiDAR point clouds [22] [39]. Addition-
ally, due to the sparse nature of radar scans, extracting scene
features like planes and edges becomes a challenge, which
is not the case with LiDAR [42]. Although some researchers
group radar point measurements into clusters [45], little work
has been done leveraging information from the ground plane,
a feature commonly present in automotive radar measure-
ments, see Fig. 1.

The main contribution of this paper is an effective radar
odometry approach that exploits the ground plane within
individual scans of a single automotive radar sensor, without
relying on any additional sensors. We propose a simple, yet
effective, heuristic-based ground segmentation method, used
in our system to improve the vehicle’s relative pose estima-
tion. We achieve this by removing points that do not belong
to a feasible ground region, leveraging the RCS information
provided by the radar, extracting the ground plane from the
scans, and matching it across consecutive frames in a point-
to-ground-plane manner. We also use windowed optimization
within a factor graph including a ground plane vertex, which
leads to an improvement in our radar-only odometry results.



In sum, we make three key claims: Our approach
(i) achieves state-of-the-art performance in automotive radar
odometry; (ii) exploits the RCS feature of automotive radars
to estimate the ground plane from single radar scans; (iii) im-
proves odometry accuracy by leveraging the ground plane
through scan-to-map matching during scan registration, and
across multiple scans via pose graph optimization.

II. RELATED WORK

We provide an overview of current odometry methods and
ground plane segmentation techniques. First, we discuss the
latest strategies for camera and LiDAR odometry, highlight-
ing their applicability and limitations in the radar domain.
Then, we present odometry approaches based on automotive
radars. Lastly, we summarize existing LiDAR ground plane
segmentation and detection methods and analyze their short-
comings when applied to radar data.

Sensor-based odometry approaches estimate the relative
pose of the vehicle over time using onboard sensors, often
employing cameras or LiDARs. Visual information from
cameras can be used with keypoint feature extraction and
local bundle adjustment [6]. This keypoint-landmark concept
was adopted by Huang et al. [17] and applied to radar
sensors. In contrast, LiDARs generate a 3D point cloud con-
taining depth information of each measured point [9] [31].
Numerous LiDAR odometry approaches [28] [42] [44] ex-
tract multiple surface plane and/or edge features from the
point clouds. This is only feasible in sparse radar point
clouds if the surface is large enough, like a flat ground
plane. Other techniques project the LiDAR point cloud into a
range image before performing feature extraction [35] [36].
LeGO-LOAM [36] additionally extracts the ground plane
from the range image to perform matching over multiple
frames. However, sparse radar point clouds would lead to a
range image with very few occupied pixels. Other LiDAR
techniques directly minimize the point-to-point error [38]
to obtain an accurate pose estimate. In our approach, we
employ the point-to-point matching strategy used in LiDAR
systems [38] and combine it with a point-to-ground-plane
error metric that includes the ground plane information
present in the radar scans.

Radar-based odometry estimates the relative pose of the
vehicle over time using onboard radars. These sensors are
resilient to environmental conditions and can be divided
into two categories: scanning / spinning radars, and auto-
motive radars. Scanning radars output a 2D image repre-
sentation of the environment, where each pixel indicates
the intensity of the measurement. While some odometry
techniques using these sensors extract keypoints from the
images [2] [3] [25] [27], others perform signal processing
directly on the image [32]. However, the dimensions and
cost of spinning radars make them not well-suited for
self-driving applications. Automotive radars are compact,
inexpensive, and can be mounted behind the bumpers of
consumer vehicles. They provide a point cloud with hundreds
of points representing the scene, including the velocity
and radar cross-section for each measurement. The earliest

approaches to automotive radar odometry [12] [19] [21]
exploit Doppler velocities and geometric constraints of the
vehicle. Improvements in the field have resulted in scan
matching strategies that also exploit positional information
of the points augmenting it with their velocity [7] [40].
Furthermore, combinations of automotive radars with other
sensors have also been investigated, including the usage of
IMUs [4] [5] [16] [45] or cameras [10]. Others leverage
semantically labeled scans to perform scan registration [18]
or extract features like point clusters [45] for pose estimation.

The ground plane, however, is a feature consistently
present in most radar scans when mounted on a vehicle
and can be leveraged as a valuable source of information.
Chen et al. [8], who combine radar with an IMU, exploit the
velocity of the ground points to estimate the vehicle’s ego-
motion. In our radar-only approach, we propose a heuristic
that leverages the radar’s RCS information to extract the
ground plane and match it across scans. We also incorporate
the detected ground plane into a pose graph, matching it
against a ground plane node. This leads to an improved
accuracy with less trajectory drift over time compared to
existing odometry methods.

Ground plane segmentation and detection identifies the
points in a scan that belong to the ground and estimates
the ground plane parameters, commonly using heuristics.
Himmelsbach et al. [15] and Steinhauser et al. [37] fit lines
to point sets within the scan, classifying points as ground
or non-ground based on the properties of the line segments.
More recent work [41] proposes using principal component
analysis (PCA) [11] to estimate the final ground plane.
However, they rely on the assumption that the lowest points
within a scan belong to the ground, which is not true in radar
point clouds due to the high amount of noise and multipath
propagation. Based on the cylindrical geometry of LiDAR
point clouds, other approaches divide the scans into multiple
concentric regions that are segmented separately [23] [26].
Narski et al. [29] leverage the LiDAR ring properties for their
segmentation method. Moreover, Koide et al. [20] present
a RANSAC [11] fitting approach where they include a
horizontal ground plane within a pose graph. Nevertheless,
these methods have been developed for LiDAR sensors,
relying on minimal noise, little multi-path propagation below
the ground, and concentric point clouds from spinning laser
devices. In our work, we adapt concepts from the LiDAR
domain and observe how the ground plane region detected
by radars is limited to a bounded small region in front of the
sensor. Our heuristic method also exploits the RCS property
from radar measurements to estimate the ground points.

In contrast to prior work, we propose an odometry ap-
proach that leverages automotive radars for ground segmen-
tation. Our heuristic, yet effective, segmentation strategy
extracts a ground plane that is matched across frames. We
enhance odometry accuracy by including the ground plane
information into a pose graph optimized using windowed op-
timization. This results in an accuracy improvement, achiev-
ing state-of-the-art results comparable to LiDAR systems.



Fig. 2: Steps of our ground plane estimation approach. First, spatial
filtering discards points outside of predefined physical boundaries.
Then, a normal filtering step keeps individual points that form
a horizontal plane with its neighbors, followed by an RCS filter
that removes points with RCS values outside of an estimated
bandwidth β. Finally, outliers not belonging to the ground plane
are discarded and the ground plane is estimated and validated.

III. OUR APPROACH TO RADAR ODOMETRY

Our approach aims to achieve relative pose estimation of
a vehicle by relying solely on automotive radar sensors. The
process involves leveraging the radar properties to estimate
the ground plane within a scan (Sec. III-A). We use the plane
as a constraint during scan matching (Sec. III-B) and as an
element in pose graph optimization (Sec. III-C).

A. Ground Plane Segmentation and Detection

The sparse nature of radar point clouds poses significant
challenges to extracting meaningful features from radar
scans. However, the combination of the mounting position
and the radar field of view can return multiple points be-
longing to the ground plane. Although LiDAR ground plane
extraction algorithms exist [26] [30], these methods often
do not account for the characteristics of radar scans, which
are noisier, sparser, and contain fewer ground points than
LiDAR scans. We propose a simple, yet effective, strategy
that exploits the properties of the measured ground points,
segmenting them from the rest and extracting the parameters
of the ground plane at the current time, as illustrated in Fig. 2.
Our approach consists of the following five steps:

1) Spatial filtering is dependent on the sensor mounting
height hsensor and discards points that are outside a predefined
region where the ground plane can be detected. Some LiDAR
approaches [41] rely on the assumption that the points with
minimum height within the scan most likely belong to the
ground. Other approaches consider scans that provide a full
360-degree view around the sensor [26].

Radar scans, like those in the 4DRadarDataset [24], often
contain reflections below the ground level due to multi-
path propagation, with most points concentrated in front
of the sensor. Thus, the lowest points cannot be used
for ground plane estimation. To capture ground points,
we propose to use a bounding box that extends within
a range [dmin,x, dmax,x] to the front in the x-direction, a

symmetric range to the sides in the y-direction [−dy, dy]
and a height tolerance range in the vertical direction
[−dz − hsensor, dz − hsensor].

2) Normal estimation and filtering computes the normal
vector of the remaining points. The goal is to remove
points created by noise, clutter, or surrounding objects, and
thus, whose normals are not approximately vertical. We
estimate the normal vector ni of each point by computing
the covariance of all neighboring points within a radius and
performing PCA, similar to Zermas et al. [41]. A point is
retained when the angle θpoint,i between the normal and the
z-axis is below a predefined threshold θpoint,max. Hence, we
keep points where

n>i ez > cos(θpoint,max), (1)

with ez denoting the unit vector in vertical direction.
3) RCS filtering leverages the radar cross-section (RCS)

property measured by the sensor. The RCS is a feature
returned by automotive radars for each point that measures
how detectable an object is by the sensor [14]. It depends
on various properties of the target, including its material,
the incidence and reflection angle, and the size of the target.
During our experiments, we observed that the RCS of the
ground points differs from the RCS of most other objects.
Consequently, we can filter out potentially remaining non-
ground points based on their RCS values. We keep the
points where the RCS value pi,RCS of a point pi is below a
threshold RCSthres such that

pi,RCS < RCSthres. (2)

To further refine this filtering process, we first remove
all points outside a range centered on an estimated RCSmax.
Manually tuning the parameter RCSmax would reduce robust-
ness against RCS variations between scans. Second, using
histograms for estimating the maximum RCS would require
manually defining the bin size and the number of bins. In-
stead, we take a third approach and employ Gaussian kernel
density estimation to compute the continuous probability
density function of the RCS values following

pRCS(x) =
1

N

N∑
i=1

1√
2πσ

exp

(
− (x− pi,RCS)

2

2σ2

)
. (3)

Eq. (3) adds N Gaussians, each one centered at pi,RCS, to
obtain a continuous distribution of the RCS values. We use
Scott’s rule [34] to estimate a suitable standard deviation
σ = N−

1
5 . We then determine the maximum of the proba-

bility density function RCSmax = max(pRCS(x)) and remove
all points outside of a manually set bandwidth β.

4) RANSAC-based filtering and plane estimation are the
final steps to identify a plane within a radar scan. We first
use RANSAC [11] to fit a plane and discard those points that
are over a certain distance γ from the estimation, resulting
in a subset PG ⊂ P to which we refer to as ground points.
However, in contrast to other approaches [20] [24], we do
not use the parameters estimated with RANSAC to determine
the ground plane, as we found that it is less suitable for



radar data. Because of the low number of ground points
covering only a small area, RANSAC tends to estimate the
tilt of the ground plane incorrectly if the threshold γ is not
tuned perfectly. Instead, we use PCA on the remaining point
inliers PG to estimate the normal vector nt of the ground
plane at the current timestep, defined as πt = (nt, dt). The
distance of the plane to the origin dt is given by

dt = −n>t p, (4)

where p is the centroid of PG.
5) Ground plane validation verifies that the estimated

ground plane normal remains within a range with respect
to the vertical axis. Due to the vehicle’s pitch and roll
angles and the road’s slope, small deviations from the vertical
direction are possible. We define the ground plane as valid
if the angle θplane between its normal nt and the unit vector
in z-direction ez is below a threshold θplane,max, i.e.,

n>t ez > cos(θplane,max). (5)

When this condition is not met, we determine that the
ground plane cannot be successfully estimated and exclude
it from scan registration. This may occur due to a low
number of measurements or steep slopes. Note that while
in the normal filtering step described above, the verticality
check was applied to each point, here the final ground plane
parameters are being checked.

B. Ground-ICP: Exploiting the Ground Plane

Rather than relying on the flat world assumption during
scan matching, we leverage the extracted ground plane in
ICP optimization. Our ground-based scan-matching module
combines a point-to-point error metric with a point-to-ground
error to find the transformation that aligns the current radar
scan to the previous radar scans in the local map.

For point-to-point ICP, we adopt the position error residual
from our prior work Radar-ICP [7]. The goal is to obtain the
transformation T ∈ SE(3) between the current scan P =
{p1,p2, ...,pM} and a local map Q = {q1,q2, ...,qN}.
We do this iteratively by extracting the closest point cor-
respondences M = {(p,q)1, (p,q)2, ..., (p,q)N} from the
transformed current scan to the local map and estimate T by
minimizing the point error function

EP2P(T) =
∑

(p,q)∈M

ρ(||q− Tp||), (6)

with the Geman McClure kernel ρ to potentially reduce the
effect of outliers [38].

Our point-to-ground ICP error function EP2G differs
from traditional methods that establish point correspon-
dences [33]. Instead, it minimizes the distance between a
ground point pG ∈ PG from the current scan, and the ground
plane of the previous scan πt−1 = (nt−1, dt−1) following

EP2G(T) =
∑

pG∈PG

ρ(||n>t−1(TpG) + dt−1||). (7)

The final Ground-ICP objective function is defined as

E(T) = (1− α) · EP2P(T) + α · EP2G(T), (8)

Spatial filtering

sensor height hsensor 0.663 m

min. x-value dmin,x 0.5 m

max. x-value dmax,x 9.0 m

y-range dy 2.0 m

z-range dz 0.2 m

Normal filtering point vertical threshold θpoint,max 15.0°

RCS filtering
threshold RCSthres -35.0 dB

bandwidth β 20.0 dB

Outlier removal RANSAC threshold γ 0.02 m

Ground plane validation plane vertical threshold θplane,max 1.0°

Graph optimization sliding window size n 20

Ground-ICP weighting factor α 0.993

TABLE I: Hyperparameters of our ground segmentation and odom-
etry method for the 4DRadarDataset [24].

and combines the point-to-point with the point-to-ground
residual using a hand-tuned weighting parameter α ∈ [0, 1].

C. Ground Plane Pose Graph Optimization

The previous section explained how Ground-ICP reduces
the error between ground points PG in the current scan and
the ground plane πt−1 in the previous scan. We now add
an additional constraint to our framework that considers a
global ground plane over an entire sequence, similar to the
LiDAR approach by Koide et al. [20]. This turns out to be
more reliable than having no ego-motion estimation in the
vertical direction.

To achieve this, we create a pose graph that links the
pose estimations using odometry edges and connect the
estimated ground plane at each pose with a global horizontal
ground plane node. We assume that the trajectory has no
significant variations in slope and that the overall terrain is
mostly flat. This assumption is reasonable for many man-
made environments, such as parking lots. Consequently, the
normal of the global ground plane coincides with the vertical
z-direction ez and the distance to the origin is the sensor
mounting height hsensor, such that

πG = (nG, dG) = (ez, hsensor). (9)

The odometry edge residual of the pose graph, given
between the current and previous pose Pt,Pt−1 ∈ SE(3),
respectively, is defined as

eodom(Pt−1,Pt,T) = Log(Pt)− Log(TPt−1), (10)

with the logarithmic mapping Log: SE(3)→R6.
For plane-to-plane edges, the plane-to-plane residual be-

tween the global ground plane πG and the local ground plane
observation πt is given by

eground(πG,πt) = τ (πG)− τ (πt), (11)

where τ (π) =
(
arctan

(
ny

nx

)
, arctan

(
nz

‖nx‖2

)
, d
)>

.



Fig. 3: Ground segmentation (shown in red) results for “Campus 1”, “Campus 2” and “Campus 3” of the 4DRadarDataset [24]. Points
below the ground plane have been removed for better visualization.

Campus 1 Campus 2 Campus 3 Campus 4

REtrans [%] RErot [◦/m] ATE [m] REtrans [%] RErot [◦/m] ATE [m] REtrans [%] RErot [◦/m] ATE [m] REtrans [%] RErot [ ] ATE [m]

LeGO-LOAM (LiDAR) [36] 1.96 0.020 2.27 3.19 0.012 2.57 2.68 0.010 3.33 - - -

4DRadarSLAM [43] 16.0 0.103 60.5 39.1 0.115 351.5 36.0 0.096 205.7 42.0 0.127 949.3
4DRaSLAM [24] 2.32 0.021 2.28 3.13 0.020 3.79 3.06 0.024 3.83 - - -
4DRaSLAM (Odom.) [24] 2.52 0.025 4.14 3.84 0.019 10.2 3.29 0.027 9.08 - - -
Radar-ICP [7] 1.56 0.013 6.50 2.80 0.012 40.0 2.86 0.017 16.9 8.91 0.041 118.3
KISS-ICP (Radar) [38] 1.55 0.014 3.71 2.00 0.010 11.6 2.06 0.013 14.7 6.95 0.039 71.6

Ours 1.52 0.014 1.78 1.92 0.009 7.29 1.91 0.013 1.69 6.86 0.039 13.4

TABLE II: Comparison of our system to state-of-the-art radar and LiDAR odometry and SLAM approaches on the 4DRadarDataset [24].

We use windowed optimization considering the last n
scans to optimize the pose graph with a cost function:

E(X ) =

t−1∑
k=t−n+1

‖eodom(Pk−1,Pk,T)‖2Ωodom

+

t∑
k=t−n+1

‖eground(πG,πk)‖2Ωground
,

(12)

where X is the set of all vertices, and Ωodom and Ωground refer
to the odometry and ground plane estimation information
matrices. In the cases when the estimated ground plane at
time t is invalid, the ground plane edge is not considered
and only the odometry edge is added to the pose graph.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is an automotive radar
odometry method that exploits the ground plane information
as an additional feature for pose estimation. We present our
experiments to show the capabilities of our method. The
results support our key claims that our approach (i) achieves
state-of-the-art performance in automotive radar odometry;
(ii) exploits the RCS feature of automotive radars to estimate
the ground plane from single radar scans; (iii) improves
odometry accuracy by leveraging the ground plane through
scan-to-map matching during scan registration, and across
multiple scans via pose graph optimization.

A. Implementation Details and Experimental Setup

For the evaluation of our approach, we run experiments on
the publicly available 4DRadarDataset [24]. Its radar sensor
is mounted on the front bumper of the car, where part of the

output points belong to the ground. In our evaluation, rather
than measuring the ground segmentation accuracy, we focus
on the relative errors from the odometry task. Our approach
for ground segmentation has multiple hyperparameters that
also depend on the vehicle and sensor setup. The chosen
parameters for the 4DRadarDataset [24] are listed in Tab. I.
Note that a high value of α helps to compensate for the small
amount of ground points in a single scan. In our experiments,
we first compare our approach against the state-of-the-art
radar and LiDAR odometry, defining as our ground truth
the differential GNSS measurements provided by the dataset.
We also show qualitative results of the estimated trajectories
and the segmented ground planes within each sequence. Our
second experiment performs an ablation study of our system,
demonstrating how each component contributes to the final
odometry estimation result and to the runtime.

B. Comparison with the State-of-the-Art

The first experiment evaluates the performance of our
method and demonstrates that it achieves state-of-the-art
results in automotive radar odometry comparable to LiDAR
approaches. We compare our method against the LiDAR
feature matching odometry method LeGO-LOAM [36] ap-
plied to LiDAR scans, the point-to-point matching tech-
nique KISS-ICP [38] on radar point clouds, two radar
SLAM frameworks 4DRadarSLAM by Zhang et al. [43]
and 4DRaSLAM by Li et al. [24] with and without loop
closure, and the radar odometry approach Radar-ICP [7].
For LeGO-LOAM [36] and 4DRaSLAM [24] we get the
results directly from Li et al.’s work [24]. We measure
the relative errors using the relative translation (RTEtrans)
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Fig. 4: Comparison of the trajectories in the x-y plane (left) and
the z-movement over time (right) from the 4DRadarDataset [24]. In
the right-hand plots, the trajectory of 4DRadarSLAM is scaled by
0.1 to improve visualization of the other methods along the z-axis.

and rotation (RTErot) KITTI metric. We also include the
absolute trajectory error (ATE) over the entire sequence. The
experimental evaluation is shown in Tab. II.

Our method improves the translation accuracy for all
sequences and achieves comparable performance for relative
rotation and absolute trajectory error. Notably, as shown
in Fig. 4 we observe a big improvement in vertical drift
thanks to leveraging the additional information obtained from
the ground plane. In our experiments, conventional point-
to-point ICP approaches employed in our method [7] [38]
yield better results than NDT [24] and adaptive generalized
ICP [43]. Our approach outperforms the other methods in
terms of ATE for ”Campus 1”, ”Campus 3”, and ”Campus 4”.
Likewise, our method shows comparable performance in
most scenarios to using a 3D LiDAR sensor. We also show
qualitative results of the ground plane segmentation in Fig. 3.

C. Ablation Studies

The second experiment evaluates how each component of
our system contributes to the final accuracy. We perform
the evaluation on the sequences “Campus 1”, “Campus 2”

Campus 1 Campus 2 Campus 3

REtrans [%] ATE [m] REtrans [%] ATE [m] REtrans [%] ATE [m]

P2P-ICP 1.55 3.71 2.00 11.6 2.06 14.7
P2P-ICP with z = 0 1.81 1.97 2.27 7.83 3.32 3.11

Ground-ICP 1.52 3.09 2.11 8.70 2.07 8.22
P2P-ICP + Graph 1.52 1.75 1.95 7.62 1.92 3.31

Ground-ICP + Graph 1.52 1.78 1.92 7.29 1.91 1.69

TABLE III: Comparison of the influence of different components
of our ground-based ICP using the 4DRadarDataset [24].

P2P-ICP Ground-ICP Ground-ICP + Graph

Scan Matching 17.1 ms 16.5 ms 16.5 ms
Ground Plane Estimation – 1.4 ms 1.4 ms
Pose Graph Construction

& Optimization – – 0.7 ms

Total 17.1 ms 17.9 ms 18.6 ms

TABLE IV: Comparison of the runtimes per frame of our radar
odometry system in different configurations. The measurements
are averaged over all frames of the sequence “Campus 1” of the
4DRadarDataset [24]. The pose graph construction and optimization
are only performed every 10 frames, so the corresponding runtimes
in the table are averaged over these intervals.

and “Campus 3”, as “Campus 4” contains some jumps in
the ground truth data. The results are presented in Tab. III.
We additionally measure the impact on the runtime of each
system component in Tab. IV.

The baseline method, point-to-point ICP (P2P-ICP), is
based on KISS-ICP [38] applied to radar data. We also
provide evaluation results when the poses are restricted to
the horizontal plane (P2P-ICP with z = 0). When we add
ground plane detection and optimization to ICP, we refer to
this as “Ground-ICP”. If we include the ground plane as a
node in the pose graph for P2P-ICP, this method is labeled
as “P2P-ICP + Graph”. Combining the “Ground-ICP” with
the ground plane as an additional pose graph node is termed
“Ground-ICP + Graph”.

We observe that removing the z-component from the poses
leads to the worst performance, as it fails to account for
minor movements in the vertical direction in areas where the
ground is not perfectly planar. In contrast, the combination
“Ground-ICP + Graph” achieves the highest average accu-
racy showing how the different components help to improve
the final result. Moreover, our runtime analysis shows that
these enhancements come with a minimal increase in the
runtime of the system.

V. CONCLUSION

In this paper, we presented a novel approach to estimate
the ego-motion of a vehicle using only a single automotive
radar sensor. We proposed a method that leverages the sensor
properties to segment ground points and use it for radar scan
matching and pose graph optimization. We implemented and
evaluated our approach on a real-world dataset and provided
comparisons to other existing techniques, supporting all
claims made in this paper. The experiments suggest that our
ground-aware odometry approach enhances pose estimation
performance, achieving LiDAR-level accuracy using a single
automotive radar. In future work, we aim to evaluate our
method in more diverse datasets with uneven terrains to
assess its limitations in such scenarios.
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