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SPR: Single-Scan Radar Place Recognition
Daniel Casado Herraez Le Chang Matthias Zeller Louis Wiesmann
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Abstract—Localization is a crucial component for the naviga-
tion of autonomous vehicles. It encompasses global localization
and place recognition, allowing a system to identify locations
that have been mapped or visited before. Place recognition is
commonly approached using cameras or LiDARs. However, these
sensors are affected by bad weather or low lighting conditions. In
this paper, we exploit automotive radars to address the problem
of localizing a vehicle within a map using single radar scans.
The effectiveness of radars is not dependent on environmental
conditions, and they provide additional information not present
in LiDARs such as Doppler velocity and radar cross section.
However, the sparse and noisy radar measurement makes place
recognition a challenge. Recent research in automotive radars
addresses the sensor’s limitations by aggregating multiple radar
scans and using high-dimensional scene representations. We,
in contrast, propose a novel neural network architecture that
focuses on each point of single radar scans, without relying on
an additional odometry input for scan aggregation. We extract
pointwise local and global features, resulting in a compact scene
descriptor vector. Our model improves local feature extraction
by estimating the importance of each point for place recognition
and enhances the global descriptor by leveraging the radar cross
section information provided by the sensor. We evaluate our
model using nuScenes and the 4DRadarDataset, which involve
2D and 3D automotive radar sensors. Our findings illustrate
that our approach achieves state-of-the-art results for single-scan
place recognition using automotive radars.

Index Terms—Localization, SLAM, Autonomous Vehicle Nav-
igation

I. INTRODUCTION

GLOBAL localization is a central pillar in autonomous
mobility navigation stacks. After a map is created,

the ability to recognize previously visited locations enables
precise pose estimation and accurate loop closure for SLAM
in GNSS-denied environments, such as parking garages and
indoor scenes. Until now, the main sensors employed for
place recognition have been cameras and LiDARs. Cameras
are compact to fit within an end-user vehicle. However, their
performance degrades depending on the lighting conditions.
LiDARs are much less affected by lighting conditions, but
their laser ranging capabilities underperform in bad weather
scenarios like fog, snow, or heavy rain.

In this work, we explore the challenge of place recognition
using only automotive radars, eliminating the reliance on
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Fig. 1: Radar place recognition. The query scan is encoded by our
network and compared to the map database using the L2 distance
metric. Place recognition is performed by identifying the closest
matching descriptor from the database.

GNSS or other supplementary sensor data during operation.
We focus on the problem of obtaining a compressed yet
informative scene descriptor, as in Fig. 1. We achieve this
employing automotive radars, that are already integrated into
consumer vehicles today. They are popular sensors as they
are compact, affordable, and resilient to adverse weather
conditions. They also provide supplementary signals that can
support scene understanding [9] [57] [58]. These include the
Doppler velocity of the radar targets, and the radar cross
section (RCS). The Doppler velocity provides an estimate
of the relative radial velocity of the measurement, proving
a useful cue for dynamic object detection [9]. RCS provides
information about the detectability of an object and depends
on its materials and point of view, making it a valuable feature
for our network. Nonetheless, the noise from clutter and multi-
path propagations, along with sparse output scans, makes radar
place recognition a complex undertaking.

Due to the high amount of noise, it can be challenging to
discriminate between direct measurements of objects and those
coming from clutter or reflections. The difficulty becomes
even larger due to the low number of points per scan, as it
can be hard to identify objects and structural elements in the
environment. Some solutions rely on machine learning [31]
or geometric models [22] [30] to discern between direct
measurements and surface reflections. Other methods aim to
approximate radar scans to LiDAR point clouds using occu-
pancy grids [32] [50]. However, the sparse and noisy nature of
radar scans makes it difficult to directly apply LiDAR solutions
for radar place recognition [8]. To mitigate the challenges of
sparsity in radar point clouds, some place recognition methods
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use radar scan aggregation to create denser sub-maps of the
scene [8]. This relies on having an additional odometry input
such as an IMU, wheel encoder, or another means of pose
estimation [9]. Other current methods also provide localization
solutions of radar over a map collected using a different type of
sensors [34] [42] [49] [55]. Most approaches, however, come
primarily from scanning radars [1] [16] [56], which are larger
and harder to mount in end-user vehicles.

The main contribution of this paper is a novel solution
for place recognition using single scans of automotive radars,
without relying on an additional odometry input. Our focus
encompasses a deep learning model that handles sparsity by
processing the scan in a pointwise manner. It leverages the
point coordinates and the RCS information provided by the
sensor to collectively enhance the capabilities of radar-based
place recognition. Our model is based on a point encoder that
extracts features from the original point clouds, a network
that encodes the RCS values, a point scoring module that
estimates the importance of a point for place recognition, and
a global descriptor extractor for spatial clustering of the global
descriptor vectors. Our method achieves state-of-the-art results
for 2D and 3D automotive radar place recognition using a
comparably smaller scene descriptor.

In sum, we make three key claims: Our system (i) achieves
state-of-the-art performance on automotive radar single-scan
place recognition while keeping a compact scene representa-
tion, (ii) provides a novel procedure to utilize RCS information
to describe the scene improving accuracy, and (iii) enhances
feature extraction by estimating the importance of points
within the scan for place recognition.

II. RELATED WORK

We present an overview of state-of-the-art approaches for
place recognition. We divide it into two main categories,
general place recognition and radar-based place recognition.

General place recognition estimates whether the current
location has been visited before. The goal is to find the closest
matching query in a database, as illustrated in Fig. 1. However,
storing and comparing images or scans directly would be inef-
ficient and computationally expensive. Camera-based solutions
encode the images into handcrafted features like ORB [36],
learned features such as NetVLAD [2], or enhance their
system exploiting image sequence information [35] [46] [47].
LiDAR approaches commonly compress the scan into a more
compact representation based on geometric or learned features.
LiDAR geometric approaches usually transform the point
cloud into a polar representation, as seen in ScanContext [25]
and its multiple variations [13] [21] [24] [48], or in density
grid maps, as shown by Gupta et al. [19]. The main concern
with such methods is that they rely on structural assumptions
about the environments like height, intensity or contours.
Advances in LiDAR place recognition show that enhancing
those classical approaches with learning-based solutions yields
higher recognition recall, like DiSCO [53] and the method by
Kim et al. [26]. Another group of approaches discretize the
space into a voxel grid [10] [29] [41] [52], which may lead
to a loss of information considering the low number of points

in a radar scan. Other methods like PointNetVLAD [45] and
KPPR [51] consider each individual point by using a pointwise
feature encoder, which is more appropriate for our task of
sparse radar scan place recognition. They aggregate their local
point features into a global VLAD descriptor representative of
the scene. Finally, some methods incorporate LiDAR intensity
information [12]. A more extensive review of LiDAR methods
for place recognition can be found in the recent survey by
Yin et al. [54]. In terms of autonomous driving, bad weather
conditions and difficult packaging are the main concerns when
incorporating these sensors in end-user vehicles. Moreover, as
shown by Cai et al. [8], adapting LiDAR methods [25] [28]
directly for automotive radars can lead to a decrease in
performance due to the sparsity and high amount of noise
present in their output point cloud.

Radar-based place recognition estimates whether the
current location has been visited before based on radar
scans. Several methods employ spinning radars for this
task using handcrafted features [1] [11] [20], learned fea-
tures [5] [15] [40] [44], or contrastive learning [16] [56].
They use the intensity image provided by the spinning radar,
encoding it into a descriptor that represents each place. Al-
ternatively, solutions exist where the robot carrying a radar
localizes over maps collected using different sensor types,
such as LiDARs [34] [37] [55], satellite images [42], and
binary maps [49]. This is particularly useful in locations where
data can be previously collected with high-accuracy sensing
techniques, but these maps are not always available. New
existing approaches also combine multi-modal sensor fusion
using camera and radars for place recognition [14] [18]. Those
methods that exclusively rely on automotive radar, generally
leverage a variant of intensity ScanContext as an additional
component to their SLAM pipeline [33] [59]. However, their
primary focus is on achieving a complete radar SLAM system,
with minimal emphasis on the place recognition component.
Notably, TransLoc4D [39] and Autoplace [8] aim for high-
accuracy place recognition using automotive radars. Auto-
place, however, imposes limitations on geometric understand-
ing between the points and restricts the features to a planar
space. Additionally, it relies on point cloud aggregation, which
requires an additional odometer and the availability of radar
sub-maps for place recognition. Autoplace’s resulting descrip-
tor vector is also high-dimensional, making it less compact for
storage in a database.

In contrast to previous methodologies, this paper introduces
a new approach for odometer-free single-scan place recog-
nition using only automotive radars. It proposes a way of
leveraging the radar point coordinates to capture the geometric
features of the environment into a compressed, yet informative,
descriptor. Our model exploits the additional RCS information
provided by the sensor and handles the radar noise and
sparsity by focusing on points that are important for place
recognition. Our approach is capable of operating with 2D
and 3D radar sensors in real-world scenarios, all substantiated
by experimental evidence.
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Fig. 2: System description diagram of our network architecture. The 3D radar scan point information is encoded resulting in Fe ∈ RN′×D .
The contribution of each downsampled point for place recognition Fv ∈ RN′×D is computed with our point importance estimator module.
The feature vector is then transformed using NetVLAD to a global descriptor, and combined with the output of our RCS network module.
The resulting descriptor can then be stored in the database during the first pass, or queried from the database for place recognition.

III. OUR APPROACH

Our approach aims to achieve odometer-free single-scan
radar place recognition. The process involves comparing scans
stored in a database with current scans during navigation,
see Fig. 1. Initially, radar sensors capture the environment
during the robot’s first pass at a location. We convert each
scan into a place descriptor using our neural network (Fig. 2),
which combines local and global point information from the
measured point cloud. Then, we store the descriptor in a
map database. During navigation, we query the database with
current measurements converted into descriptors using the
same encoder-descriptor network from Fig. 2. This allows
us to identify locations with high similarity according to our
scoring function. Our approach utilizes the Doppler velocity
provided by the radar in order to filter dynamic point outliers.
We leverage point convolutions to capture local information
together with a scoring method to estimate the contribution of
each point for place recognition. Additionally, we incorporate
global point information within the scan through RCS data
and a NetVLAD [45] global descriptor.

Dynamic point pre-filtering. A key advantage of automo-
tive radars is the measurement of the Doppler velocity of
the point targets. It represents the relative radial velocity of
the measured point with respect to the vehicle. This velocity
information cannot be used as an additional channel for the
place recognition network, as a vehicle can revisit the same
place at different speeds. Nevertheless, it allows to differentiate
between static and dynamic points [57]. We follow Cai et
al. [8] to focus solely on the static points of the radar scan for
place recognition. The main idea is that static points of the
environment should match the ego-vehicle’s velocity. Points
with a different velocity are likely to correspond to moving
objects, and thus, are considered outliers. We preprocess all the
scans resulting in filtered point clouds containing only points
of the scene likely to be static.

Scan encoder. The main goal of the scan encoder is to
obtain a feature space representation Fe ∈ RN ′×D of the
filtered static radar point cloud X ∈ RN×3. In the case of
2D radars, we assume the z dimension to be zero. The encod-
ing should contain spatial data descriptive enough for place
recognition, which involves capturing contextual information
of points at different scales. Autoplace [8] achieves this by
projecting its radar point cloud into a 2D image and encoding
it with a convolutional neural network. As a consequence,
most vertical and geometric information is lost. Similar to
KPPR [51], we focus on capturing 3D contextual information
of individual points directly from the radar scan using rigid
kernel point convolutions (KPConv) [43]. For a point xl

i from
point cloud Xl = [xl1, xl2, ..., xln]⊤ at layer l, the convolution
of features Fl−1 ∈ RNl−1×Dl−1 with kernel gl is given as:

(Fl−1 ∗ gl)(xl
i) =

∑
xlk∈N l(xl)

g(xl
k − xli)

lf l−1
k , (1)

where N l(xl
i) = {xl

k | ∥xl
k − xli∥< rl} denotes the neighbor

points of xli in a radius rl ∈ R.
Our encoder is composed of a sequence of five convolutional

and downsampling layers that capture local features Fl at
different levels with different radii. We use grid downsampling
at different scales, and contrary to KPConv [43], we find that
downsampling before computing convolution helps process
contextual information of the points. We also increase the
radius of N l(xli) in every new convolution-downsampling
block for an extended receptive field. We also test adding an
additional channel to the input point cloud accounting for the
RCS information of each point.

Point importance estimator. Due to the sparsity and
high amount of outliers coming from noise and multi-path
reflections in radar point clouds, it is crucial that the place
recognition network is able to identify useful anchor points
within the scan. Knowing that noise can randomly appear and
disappear between single scans, we propose a point importance
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Fig. 3: Point importance estimation module. (left) During training,
those query points that have a correspondence in the positive frame
within a radius δ, represented as a circle, are considered as valuable
for place recognition. Those that do not have a correspondence can
be highly inconsistent between scans, thus their predicted importance
should be reduced. Although all points are checked, we only display
the radius on a small subset for clear visualization. (right) Resulting
probabilities of our point importance estimation module. Those areas
with higher densities and geometric line patterns are considered as
more important than random points located far away from the sensor.

estimation module to guide the training of the network,
focusing on points that are relevant for place recognition.
As a result of finding valuable measurements, this module
also helps focusing on those points that we are more certain
that exist, such as high-density locations, patterns in the
environment, and the point distribution within the scans, as
shown in Fig. 3. We achieve this by adding an additional
feature to our network architecture that outputs the probability
of a point being important for place recognition.

Using a subsampled scan X′ = [x′1, x′2, ..., x′n]⊤ ∈ RN ′×3

to estimate the importance of their corresponding encoded
local features, we encode the probability of a point x′

j ∈ R3

being valuable into a feature vector fvj ∈ RD using an
MLP with three learnable layers, ReLU activations and layer
normalization such that

fvj = MLPv(x′j). (2)

The importance probability of a point is within the range
[0, 1]. It indicates how valuable the point is for place recogni-
tion. It is estimated as

P (x′j) = sigmoid
(
ϕ
(
fvj

))
, (3)

where ϕ indicates a linear projection of the feature vector from
RD to R. We use this scoring later in Eq. (9) to compute the
loss during training between points that only exist in one of
the scans that are being compared.

The encoded probabilities fv of all downsampled points
are stacked into Fv ∈ RN ′×D, and added to the output of the
embedding, resulting in:

Fe+v = Fe + Fv, (4)

where Fe+v ∈ RN ′×D. Rather than multiplying the proba-
bilities as weights, we add them to the normalized features
from the encoder in order to enhance the feature embeddings
corresponding to those points that are more valuable for place
recognition.

Radar cross section network. To maximize the potential
of radar sensors, we propose an additional module that uses
radar cross section information to enhance the final feature
descriptor. RCS measures how detectable an object is by
the radar based on the object properties themselves and the
measurement angle. It provides additional information for each
point in X about the properties of a specific location, making
it a valuable attribute for place recognition. However, unlike
research in object detection [38], our experiments show that
adding the RCS as an additional channel minimally enhances
place recognition performance.

Instead, we propose a RCS network module that learns the
RCS feature representation of the entire radar scan f RCS ∈ RD

and is permutation invariant. This enhances the global descrip-
tor vector making it more informative than a descriptor only
containing point information.

To capture the RCS information σ ∈ RN from the scan, we
propose to use a two layer MLP encoding the RCS value of
each point σi into a feature encoding fσi

∈ RD such that

fσi
= MLPr(σi). (5)

We then aggregate and normalize the features from all points
over the feature dimension making the result permutation
invariant following

f RCS =

∑N
i=1 fσi

∥
∑N

i=1 fσi
∥2

. (6)

The resulting f RCS acts as a global descriptor containing
the distribution of RCS values for that particular scan. While
Autoplace [8] uses an additional stage that performs histogram
re-ranking after their network prediction, we integrate our
RCS network module inside the model avoiding the additional
postprocessing step.

Global descriptor database. The descriptor extraction
layer aggregates local features into a single global descriptor
vector. We exploit a NetVLAD layer [45] to aggregate the local
features Fe+v from Eq. (4) into K learnable cluster centers,
resulting in f VLAD ∈ RD. These learnable centers represent
points calculated from groups of similar local descriptors. We
combine the VLAD descriptor with the RCS descriptor leading
to the final global descriptor vector f scene following

f scene =
f VLAD + f RCS

∥f VLAD + f RCS∥2
. (7)

The resulting descriptor vector represents the location mea-
sured by a radar scan. It contains the local information
obtained from the point encoder and the point importance
estimator, as well as the global features extracted using the
RCS network and NetVLAD.

During the map recording process, every scan is stored as
a different descriptor vector f m

scene ∈ RD in a KDTree [6] map
database M = {f m

scene1 , f m
scene2 , ..., f m

sceneM }. The query scan
is also encoded as the feature descriptor vector f q

scene, and
compared to those stored in M using the L2 distance metric.
We use superscript “m” to indicate that the feature vector
belongs to the map database.
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Fig. 4: Comparison of the place recognition recalls at each location of
the nuScenes for single radar scans for (left) our network and (right)
Autoplace without temporal encoding.

Metric learning for place recognition. The goal of training
is that the network learns a useful and compressed represen-
tation of the environment. For a query descriptor f q

scene, the
feature descriptor vector must be similar for places that are
alike, named positive samples f pos

scene, and dissimilar for those
that are very different, denoted as negative samples f neg

scene.
Positive and negative samples are defined during training based
on GNSS distance information. However, during inference,
GNSS is no longer required for the operation of our place
recognition network.

Positive samples are defined as those within a radius dis-
tance R1 to the query measured with the GNSS location. Fur-
thermore, due to occlusions or different viewing perspectives,
the positive samples taken from a close geo-location may look
very different from the queries themselves. Therefore during
training, the selected positive samples are those within R1

that have the lowest L2 distance between descriptors. We also
observe an increase in performance when training on multiple
positives for the same location, as the network learns that the
same location can be measured in multiple ways and from
different view points.

Negative samples are those that are farther away from a big-
ger radius R2 such that R2 > R1. However, as the dataset may
contain very different scans from different locations, randomly
selecting negative samples may lead to low discrimination and
generalization capabilities. As proposed by Uy et al. [45], we
use a hard negative mining strategy to find the most similar
negative sample to the query descriptor f q

scene in the feature
space. This helps the network learn to discriminate challenging
scenes where a wrong database match closely resembles the
query scan.

We leverage the triplet margin loss by Balntas et al. [3]
minimizing the distance of the query to a positive sample
dpos = L2(f q

scene, f pos
scene), and maximizing it with respect to

the H hardest negative samples dnegh = L2(f q
scene, f negh

scene). The
triplet margin loss for a constant margin α is given as:

Lt =

H∑
h=1

max(dpos − dnegh + α, 0). (8)

Additionally, to account for the estimated value of the points
from our point importance module (Sec. III), we propose
to measure the nearest point correspondences between the
query and its associated positive scan. First, we align both
scans by transforming them to GNSS global coordinates.

Then, as shown in Fig. 3, we introduce a radius distance
hyperparameter δ that determines whether a given point in
the query scan has a correspondence in the positive scan. We
consider valuable points for place recognition only those that
demonstrate consistency, thus existing in both scans. Note that
the GNSS signal is only required for computing the loss during
training but is dispensable during operation.

Interpreting this as a binary classification problem, we as-
sign those points in the query scan that have a correspondence
in the positive scan a label P̂ (x′j) = 1, and P̂ (x′j) = 0 to those
without a correspondence. Denoting Pj = P (x′j) for brevity,
the final binary cross-entropy loss is:

Lv = −
N ′∑
j=1

Pj log(P̂j) + (1− Pj) log(1− P̂j). (9)

The final loss is a weighted sum between the triplet loss in
Eq. (8) and the point loss in Eq. (9)

L = Lt + γLv, (10)

where γ is a tuneable parameter.

IV. EXPERIMENTAL EVALUATION

This work aims to achieve odometer-free single-scan radar
place recognition using automotive radars. We present our
experiments to show the capabilities of our system. The
results of our evaluation support our key claims that our work
(i) achieves state-of-the-art performance on automotive radar
single-scan place recognition while keeping a compact scene
representation, (ii) provides a novel procedure to utilize RCS
information to describe the scene improving accuracy, and
(iii) enhances feature extraction by estimating the importance
of points within the scan for place recognition.

A. Experimental Setup

The goal of our approach is to reliably retrieve the position
in a given map based on a single radar scan. On the evaluation
of our method, we run experiments on real-world driving
scenarios, using 2D and 3D radar datasets, nuScenes [7], and
the 4DRadarDataset [33], respectively. These datasets contain
the point cloud output provided by the radar sensors, hence the
result of our point-based method being independent from the
key point extraction algorithm, required for point-based ap-
proaches in NavTech radar datasets [4] [23]. We first evaluate
our work on single-scan radar place recognition and compare
it to state-of-the-art solutions. We provide quantitative and
qualitative results for the comparison. Then, we carry out
an ablation study of our system to analyze the contribution
of each module to the final result, as well as how the new
hyperparameters have an effect on place recognition.

B. Implementation Details

The architecture of our network is described in Fig. 2.
We train the model for 80 epochs using a batch size of 4.
Following KPPR [51], we set the descriptor size D = 256. We
use the Adam [27] optimizer with learning rate 5× 10−6 and
a learning rate decay of 0.95 every 20 steps. We set the triplet
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TABLE I: Comparison with state of the art in nuScenes.

R@1% [%] R@1/5/10 [%] Output dim.

KPPR 88.0 66.1 / 78.1 / 81.6 256
RadVLAD 33.5 1.74 / 6.09 / 10.5 32768
RadVLAD RCS 17.2 0.97 / 3.19 / 4.84 32768
FFT-RadVLAD 16.3 0.29 / 1.74 / 3.29 32768
FFT-RadVLAD RCS 11.2 0.19 / 0.58 / 1.64 32768
ScanContext 24.7 15.3 / 20.8 / 22.2 1200
ScanContext RCS 6.38 3.58 / 4.84 / 5.22 1200

Auto+TE 7 sweep 85.9 78.9 / 83.1 / 84.3 4096
Ours 7 sweep 87.5 78.7 / 82.7 / 83.3 256

Auto 1 sweep 83.0 60.8 / 72.8 / 76.5 9216
Auto+TE 1 sweep 86.4 73.4 / 81.2 / 83.0 4096
Ours 1 sweep 88.2 76.2 / 82.3 / 83.9 256

Fig. 5: Qualitative place recognition results in nuScenes Boston-
Seaport. The first image displays the location where the query
measurement was taken and the predictions. The other images present
the corresponding radar scans to the predicted location of compared
methods for the same query. A green frame indicates correct predic-
tions while a red frame refers to incorrect predictions.

margin loss parameter α = 0.1 We set the KPConv radius at
each layer to r = [3, 6, 12, 24, 48]m and a grid downsampling
of sizes 0.25, 0.5, 1, 2, 4m. Kernel size is set to 5 for nuScenes
and 7 for the 4DRadarDataset. The number of cluster centers
K for NetVLAD is set to 64.

NuScenes provides insight into how our approach behaves
over long periods of time on 2D automotive radars. We follow
a similar procedure to Cai et al. [8], training on the scans from
the “Boston Sea-port” location obtained in the first 105 days.
We split our evaluate : test sets with a 4 : 1 ratio using the
scans after the 105 day threshold. We consider a prediction
correct if it is within R1= 9m of the actual location. During
training, negative samples are taken from outside a R2 = 18m
radius. Moreover, we train on 5 positive samples for each
location for better performance.

The 4DRadarDataset [33] shows the performance of our
method in place recognition for loop closure detection using
automotive 3D radars, as the recordings were taken within a
short time span with minimal variations in the environment.
The dataset is split into four sequences. We use “Campus 1”
and “Campus 4” for training, and evaluate on “Campus 2” and
“Campus 3”. Additionally, we consider a prediction correct if
it is within R1 = 2m. During training, negative samples are
taken from outside a R2 = 4m radius.

TABLE II: Comparison with state of the art in 4DRadarDataset.

R@1% [%] R@1/5/10 [%] Output dim.

KPPR 99.4 95.4 / 99.2 / 99.2 256
RadVLAD 99.3 91.9 / 96.3 / 97.3 32768
RadVLAD RCS 99.3 94.6 / 97.4 / 98.2 32768
FFT-RadVLAD 50.4 20.0 / 26.5 / 30.8 32768
FFT-RadVLAD RCS 57.3 21.5 / 28.8 / 34.2 32768
ScanContext 87.7 79.7 / 86.6 / 87.4 1200
ScanContext RCS 94.7 94.0 / 94.7 / 94.7 1200
Auto 99.9 94.4 / 99.4 / 99.8 9216
Auto+TE* 99.5 97.7 / 99.0 / 99.1 4096

Ours 100.0 97.1 / 99.6 / 99.8 256
TE*: Multi-scan temporal encoding introduced in Auroplace [8].

C. Comparison with the State of the Art

The first experiment evaluates the accuracy and the resulting
descriptor size of our single-scan radar place recognition
system in comparison to other methods in 2D and 3D radar
datasets. Similar to other works, we denote recall as “R” and
measure the R@1/5/10 and R@1% metrics, which represent if
the selected query by the system ranks among the top 1, 5, 10
or 1% candidates in the database. We also display the output
descriptor dimensionality describing the size of the descriptor
being stored in the database. A higher dimensional descriptor
requires higher storage space, while more compressed descrip-
tors require less space and can be stored more efficiently.

We show the comparison of our method with state of the art
approaches in Tab. I and Tab. II, and qualitative results in Fig. 4
and Fig. 5. We evaluate it against the feature-based LiDAR
methods of ScanContext [48] and RCS ScanContext [23],
a learning-based LiDAR method KPPR [51], a frequency-
based scanning radar approach FFT-RadVLAD [17] and a
clustering-based approach RadVLAD [17] with and without
RCS values, and a learning-based automotive radar solution
Autoplace (Auto) [8]. We place special focus on Autoplace [8].
The original implementation is done with 7 aggregated radar
point clouds, and their LSTM-based temporal encoding (TE)
considers 3 consecutive aggregated scans. In addition to the
results in their paper, we show for comparison in nuScenes
their results for 1 sweep with and without temporal encoding.
The top results for 1 and 7 sweeps are displayed bolded and
underlined, respectively.

Our method achieves state-of-the-art results for both
datasets achieving comparable performance to multi-scan ap-
proaches while using a more compact scene descriptor. In
nuScenes, the low number of points per radar scan makes
it difficult for non-learning-based methods to extract use-
ful patterns from the environment. The discrete nature of
projected point clouds also poses a challenge for spinning
radar frequency-based approaches like FFT-RadVLAD. For
the Radar4DDataset, our method on a single scan obtains
a similar R@1 to Autoplace using TE and 3 scans. The
experiment demonstrates how our compact descriptor remains
highly informative for place recognition.

D. Ablation studies

The second set of experiments supports our claim that
integrating RCS into the network and estimating the impor-
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TABLE III: Ablation studies of the network modules on nuScenes.

Encoder RCSN PIM 5 Pos. Aggr. R@1/5 [%] Runtime [ms]

(x, y, z) ✓ ⊕ ✓ ✓ 77.8 / 81.9 269

(x, y, z) 62.7 / 76.8 150
(x, y, z,RCS) 63.2 / 78.0 172
(x, y, z) ✓ 70.7 / 80.8 159
(x, y, z) ⊕ 63.1 / 76.5 159
(x, y, z) ✓ ⊗ 70.9 / 81.0 168
(x, y, z) ✓ ⊕ 73.3 / 82.2 167
(x, y, z,RCS) ✓ ⊕ ✓ 73.9 / 80.1 167
(x, y, z) ✓ ⊕ ✓ 74.3 / 81.6 167

Scan encoder (Encoder) using only point coordinate inputs (x, y, z) and with
RCS as an additional channel (x, y, z,RCS), our RCS network (RCSN),
our point importance module (PIM), our training strategy with five positive
samples per query (5 Pos), and aggregation of seven scans (Aggr.).

tance of each point leads to improved accuracy in place
recognition. We carry out the experiments on nuScenes [7]
test set from Sec. IV-C. In Tab. III, we evaluate how each
component contributes to the final result and how it affects
the runtime performance during inference.

The main modules are the scan encoder, which accepts as
inputs only point coordinates (x, y, z) or point coordinates
with an additional channel for the RCS (x, y, z,RCS), the
proposed RCS network (RCSN), and the point importance
module (PIM). We also experiment with multiplication ⊗, and
addition ⊕ of the features in Eq. (4). Furthermore, we also test
our training strategy where five positive samples are used for
each query. We also show how scan aggregation affects the
runtime performance.

We can observe how much each component contributes to
the final result, with the biggest effect being caused by the RCS
network module. We also observe how addition is preferred
over multiplication of the PIM module, as it enhances the use-
ful points for place recognition without affecting the remaining
point cloud. Moreover, the runtime is minimally affected by
the implementation of the RCS network and PIM modules
(< 20 ms) but greatly increases with scan aggregation. Adding
the RCS as an additional channel leads to a slight improvement
in performance compared to the RCS network module. This
highlights the importance of using the RCS information in
a the context of an entire scan, rather than adding it as an
additional feature to each point.

In Tab. IV, we test the influence of the distance parameter δ
and loss function weight γ introduced by our point importance
estimation module. High radii δ cause wrong correspondences,
while low radii lead to not finding any correspondence, result-
ing in an equal weighting of all points. This demonstrates how
the performance can be improved by focusing on those points
that are important for place recognition and focusing less on
the noise points. Additionally, varying γ shows the influence
caused by the point importance estimator module, and how
the multi-objective loss from Eq. (10) affects the final result.

V. CONCLUSION

In this paper, we achieved place recognition using single
scans from standard automotive radar sensors, without relying
on additional GNSS or odometers. We proposed a novel
point-based neural network architecture that encodes local
and global information of the scene into a single compressed

TABLE IV: Ablation studies on nuScenes for the radius δ and loss
weighting factor γ from our point importance module.

δ [m] R@1/5/10 [%] γ R@1/5/10 [%]

1.0 71.4 / 81.1 / 83.6 0.00 71.0 / 80.0 / 82.6
2.0 71.5 / 80.2 / 82.2 0.10 71.6 / 80.6 / 83.1
3.0 71.7 / 80.6 / 83.0 0.50 73.3 / 82.2 / 84.6
4.0 70.8 / 80.7 / 82.5 1.00 71.4 / 81.1 / 83.6

descriptor. We achieve this by encoding the local information
using point convolution and combining it with the scene’s RCS
data. Additionally, we integrate an additional point importance
estimation module that helps the network learn those measure-
ments that are useful for place recognition. We implemented
and evaluated our approach on different datasets and provided
comparisons to other existing techniques, supporting all claims
made in this paper. The experiments suggest that our method
achieves high performance for estimating the global location
of a car within a map using single automotive radar scans,
while keeping a compact scene representation.
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