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Abstract. Monitoring of crop fields to map features like weeds can be
efficiently performed with unmanned aerial vehicles (UAVs) that, owing
to their privileged perspective and motion speed, can cover large areas
in a short time. However, the need for high-resolution images for precise
classification of features (e.g., detecting even the smallest weeds in the
field) contrasts with the limited payload and flight time that characterises
current UAVs, and requires several flights to uniformly cover a large
field. However, the assumption that the whole field must be observed
with the same precision is unnecessary when features are heterogeneously
distributed, like weeds appearing in patches over the field. In this case,
an adaptive approach that focuses only on relevant areas can perform
better, especially when multiple UAVs are employed at the same time.
Leveraging on a swarm-robotics approach, we propose a monitoring and
mapping strategy that adaptively chooses the target areas based on the
expected information gain, which measures the potential for uncertainty
reduction due to further observations. The proposed strategy scales well
with group size and overall leads to smaller mapping errors than optimal
pre-planned monitoring approaches.
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1 Introduction

Precision farming requires high-quality data from the field in order to support
operational and strategic decisions [11]. In this respect, unmanned aerial vehicles
(UAVs) present a very flexible tool for remote sensing, as they can be deployed
on demand and can quickly monitor large areas [26]. However, the platform
limitations in terms of payload and flight time are often constraining, limiting
the resolution of the acquired images (e.g., in terms of ground-sample distance)
and requiring multiple flights to cover extensive fields. At the same time, the
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heterogeneity of agricultural fields often requires high-resolution data only in
certain areas where relevant features are present, while less interesting areas
could be monitored on coarser resolution. This is often the case, for instance, for
weed-management practices, in which the density of weeds is not uniform across
the field, as weeds appear in patches. In order to support efficient management of
the field, a larger effort should be dedicated only to those areas where relevant
features are actually present. In this way, the limited energy budget of each
UAV is properly allocated avoiding to dissipate it by flying over uninteresting
areas. Given that the feature distribution over the field is a priori unknown,
the monitoring and mapping strategies should be adaptive, responding to the
observed field features in order to determine the best flight pattern, therefore
ruling out predefined mission plans that do not take into account the actual
distribution of relevant features over the field [8, 5].

UAV swarms have been proposed to address the adaptive monitoring and
mapping of extensive fields. A swarm-robotics approach can indeed improve
efficiency thanks to parallel monitoring of the field by different UAVs, reducing
the operation to a fraction of the time required by a single-UAV approach [10, 3,
1]. Additionally, accuracy can be improved thanks to collaboration among UAVs
in their feature-detection task [17]. Finally, self-organised deployment strategies
can be envisaged to leverage the ability of UAVs to estimate which region within
the field is of greater interest (e.g., estimating weed density from high-altitude
flights [15]) and perform accurate monitoring and mapping only where relevant
(e.g., by collecting high-resolution images while flying at low altitude [2]). With
such an approach, UAVs can autonomously decide to enter or leave a given region
on the basis of estimates of the completion level of the monitoring activity and
energy constraints. As a consequence, the monitoring and mapping strategy of a
single region needs to be flexible and scalable to adapt to changes in the actual
number of UAVs that are concurrently operating.

Improving over previous work [3, 1], we propose a fully decentralised strat-
egy to monitor a region or field based on reinforced random walks (RRW [25]),
which maximises the monitoring effort only on areas that likely provide relevant
information. To this end, we exploit the Information Gain (IG), an information-
theoretic measure of the expected reduction in uncertainty from additional ob-
servations of a specific area. The usage of information theory for exploration
and mapping has been demonstrated across application domains [6, 16, 22, 21,
20], and precision agriculture in particular [14, 24]. Here, we exploit IG to sup-
port exploration and coordination among robots. To this end, we build a model
of the weed-density uncertainty in a given area that accounts for detection errors
of a convolutional neural network (CNN) trained on a real dataset. To enable
real-time on-board execution, we reduce the complexity of the neural classifier,
and compensate for increased error by allowing multiple observations of the same
area of the field [17]. On such basis, we compute the expected reduction in uncer-
tainty as the IG from repeated independent observations made by UAVs within
the swarm on a same area. Then, we exploit IG both to prioritize areas of inter-
est to be observed next, and to determine if these areas are likely to be targeted
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by other UAVs within the swarm. These two aspects are combined to guide the
random selection of the next location to visit. Our results with multi-UAV sim-
ulations show that the swarm manages to quickly monitor those areas of the
field that require more attention, minimising the observation error faster than
approaches based on potential fields [3, 1], and better than a baseline approach
based on a predefined flight plan that uniformly covers the entire field.

2 Problem description

We consider a field-monitoring and weed-mapping problem in which areas of
high weed infestation need to be identified, creating a prescription map that
can be exploited for weed control (e.g., variable-rate application of herbicides).
Specifically, we focus on the identification of volunteer potatoes that infest sugar-
beet fields—a common benchmark for precision agriculture [19, 15]—and use
automatic object classification to inform the monitoring and mapping strategy.
Our goal is to deploy a swarm of UAVs that can minimize the error in detection
of weeds within the field. To this end, we exploit a simulated scenario to evaluate
the effectiveness and scalabiltiy of the proposed strategy.

2.1 World model and UAV swarm simulation

We consider the field as divided in small areas forming a grid of cells, and each
cell is fully contained within the camera field-of-view of a UAV hovering over its
centre. Without loss of generality, we consider here a square field divided in a
grid of C×C square cells, each with side lc. Each UAV travels at a cruise speed of
v = 0.1lc m/s at an altitude h sufficient to observe the whole cell given the camera
footprint (e.g., h ≥ lc/2 if the camera aperture is π

2 ). Whenever moving over a
cell, a UAV takes a RGB image used for crop/weed classification, leading to an
estimation of the number of weeds present in the cell (see Section 2.2). After each
observation, the UAV updates its local world representation, that is, a C × C
map of the field (see Section 2.3). Additionally, UAVs can communicate with
each other by broadcasting short messages exploiting a radio link, with range
Rlc. When the communication range is sufficiently large, any UAV can receive
the information shared by any other UAV. Otherwise, UAVs apply a simple re-
broadcasting protocol to maximise the reach of information shared within the
swarm: upon reception of a message, a UAV re-broadcasts the message once and
then puts it in a blacklist, hence avoiding to overload the communication channel.
UAVs exploit communication to share information about the observations made
on visited cells, and to also share their absolute position—available from some
GNSS positioning system—hence allowing collision avoidance (here implemented
using ORCA [4]) as well as collaboration for monitoring and mapping.

While crops are uniformly distributed over the field, weeds mostly appear in
patches. We consider here Cp patches, each extending on a square of np × np
cells, more densely distributed in the center than in the periphery following a
Gaussian distribution. Some isolated weeds are also present within Ci additional



4 Carlos Carbone et al.

cells. Overall, the number of cells with some weed is Cpn
2
p + Ci. Each cell can

contain at most NW weeds, i.e., the maximum value observed over the field.

2.2 Model of weed-classification uncertainty

To build a model of the weed-classification uncertainty, we consider a CNN to
detect individual plants and to label them either as crops or weeds. In other
words, given an input image, the CNN returns a list of bounding boxes that
enclose the detected plants, together with the identified class of the plant. We
use the state-of-the-art framework Faster R-CNN [23], but we limit its com-
putational requirements by employing a shallow backbone (instead of the deep
backbones normally used, such as ResNet-101) to match the constraints im-
posed by the limited power available on UAVs (see Figure 1a). The input image
is passed through a convolutional block followed by 4 residual blocks [9]. The
convolutional block is composed of a 7×7 convolutional layer followed by a 3×3
convolutional layer (represented in light blue in Figure 1a), each layer having
64 filters with stride 2 and ReLU activation functions. Each residual block is
composed of a residual connection and by two 3 × 3 convolutional layers with
ReLU activation functions (represented in orange in Figure 1a). The first resid-
ual block has 64 filters. Afterwards, each block doubles the previous number of
filters. The head of the network is the same as in the original work, predicting
the location, size and class of object detections. We exploit a dataset collected
at Wageningen University, composed of 500 images—400 used as the training
set and 100 as the test set—labelled to represent sugar beets in the crop class
and volunteer potatoes in the weed class (see Figure 1b). We train our network
for 10,000 epochs, using the ADAM optimizer [12] with a learning rate of 0.01.
We evaluate our CNN using the average precision (AP) metric as defined in the
MS-COCO challenge [13] obtaining an AP score of 89.6 for the crop and of 56.1
for the weed. While the AP for the crop class is in line with the literature [7,
18], the lower accuracy for the weed class is mainly due to miss-classifications of
plants as background (Figure 1b).

This model is exploited during a simulation to both obtain a realistic
observation—in terms of detected weeds—every time a UAV processes the infor-
mation of a cell, as well as to update the internal knowledge about the world, as
discussed in the following. Starting from the classification output of the trained
CNN, our model associates a probability distribution to all possible observations
given the actual number of weeds present in a cell. Considering that each cell
can contain a discrete and small number of weeds (from the available data, we
estimated NW = 12 weeds for lc = 4 m), we build a table that associates the
actual number of weeds w with each possible observed number o, and gives for
each combination a probability of occurrence P (o|w). This table is estimated
from the available data exploiting the trained CNN. Specifically, we compare
the number of detected weeds against the true number of weeds. The element
T (o, w) = P (o|w) of the table is the relative frequency of detecting o weeds when
the true number is w. Having several false positive cases, we also consider into
the table the case of detecting more weeds than the given maximum NW , that
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Fig. 1: (a) The Faster R-CNN framework with a shallow backbone was used
while the head of the CNN remained the same as in the original work. (b) a
few samples of CNN classification of volunteer potatoes (red) and sugar beets
(green). (c) Sensor model derived from the CNN detection performance.

is, o ≥ NW +1 , N+
W represents the case in which the number of weeds detected

is larger than NW . The model obtained from the data is presented in Figure 1c:
the CNN results in both false positives and false negatives, with errors becoming
more frequent when the number of weeds is larger, as one would expect.

2.3 Uncertainty reduction from multiple observations

For each cell c, each UAV maintains a knowledge vector pc = [pc(0), ..., pc(NW )]
that represents the expected probability distribution of all possible number of
weeds considered. Taking a conservative approach, when no observation for a cell
has been performed and no prior knowledge is available, the probability distri-
bution is assumed to be uniform, with every element pc(w) = 1

NW+1 . Whenever

a UAV observes cell c at time t, it detects a number of weeds otc that depends
on the actual value of weeds wc present in c. Following the observation otc, the
probability Pc(w|otc) represents the updated knowledge vector for each possible
value w. This can be easily computed exploiting the the Bayes theorem:

∀w, pc(w)← Pc(w|otc) =
pc(w)P (otc|w)

P (otc)
=

pc(w)T (otc, w)∑NW
j=0 pc(j)T (otc, j)

(1)

The residual uncertainty about the weeds present in the cell corresponds to the
information entropy of the knowledge vector:

Hc(W ) =

NW∑
w=0

−pc(w) log(pc(w)) (2)
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The residual uncertainty is updated at every additional observation. We con-
sider that sufficient observations have been performed for a given cell c when
the entropy decreases past a low threshold that we heuristically set at Ĥ =
−NW−1NW

log NW−1
NW

− 1
NW

log 1
NW

, which corresponds to the case in which there
are only two remaining alternatives, one of which is much more likely than the
other. When the threshold is reached, cells are marked as mapped and are not
considered anymore for further observations. Note that observations can also be
shared by other UAVs, allowing to update the residual uncertainty about a cell
also when others have visited it. In this way, UAVs try to maintain aligned their
local representation of the field.

The residual uncertainty of a cell is also the first component for the calcula-
tion of the IG of a cell, which represents the expected reduction in entropy from
any possible additional observation o. A UAV can compute the IG of a cell c as
follows:

IGc(W ) = Hc(W )−Hc(W |O) (3)

where Hc(W |O) is the conditional entropy of the same cell given that additional
observations will be performed next:

Hc(W |O) =−
N+
W∑

o=0

Pc(o)

NW∑
w=0

[Pc(w|o) log (Pc(w|o))] = (4)

=−
N+
W∑

o=0

NW∑
j=0

T (o, j)pc(j)

 NW∑
w=0

[Pc(w|o) log (Pc(w|o))] (5)

Hence, on the basis of the available knowledge, each UAV can compute the IG
for each cell of the field, and use it to quantify the information that could be
gathered from a new observation, that is, the utility of visiting it.

3 Reinforced random walks for monitoring and mapping

A RRW is an exploration strategy that exploits available information to bias
the random selection of the targets. The available information can derive from
world knowledge (e.g., avoid to visit cells that are marked as mapped) or from
other UAVs (e.g., others’ location to avoid interference). A wise combination of
both aspects can produce efficient monitoring and mapping strategies that focus
on relevant areas, minimising the detection error.

3.1 Neighbourhood selection strategy

Whenever a UAV i has to determine the next cell to visit, it considers only those
in its neighbourhood Ni as target, which proved to be the best strategy to avoid
long relocations that may be costly [3, 1]. Additionally, a UAV tries to select
cells that are valid, i.e., not yet marked as mapped and not currently targeted
by other UAVs to avoid interference. We define the neighbourhood N d

i of UAV
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i as the cells at Chebyshev distance d. A UAV first considers the neighbourhood
N 1
i , and only if there are no valid cells available, it considers the neighbourhood
N 2
i . If also this does not contain valid cells, the UAV selects a cell in N 2

i to move
away from the current position, limiting the choice among those cells that are
already marked as mapped. With this strategy, a set of neighbouring cells Vi is
selected for a decision to be taken.

IG-based RRW The selection of the cell to target is based on a utility measure
that is computed starting from the IG. Given a cell ck, each UAV i determines the
IGi

ck
on the basis of the currently available knowledge—different among UAVs in

case of constrained communication—and, independently from any other UAV,
assigns a probability of selecting the cell proportional to the relative IG:

P IG
i,ck

=
IGi

ck
(W )∑

z∈Vi IGi
cz (W )

(6)

To take into account the presence of other UAVs that are concurrently moni-
toring the field, the utility of selecting a cell is computed from P IG

i,ck
considering

the likelihood that the cell is not chosen by other UAVs:

ui,ck = P IG
i,ck

∏
j 6=i

[
1− P IG

j,ck

]
(7)

Here, P IG
j,ck

is computed considering the neighbourhood Vj of UAV j, although
such computation is performed exploiting i’s private knowledge. To limit the
computational complexity of this calculation, the product is extended only to
those UAVs j that could potentially target the cell ck at the same time, that
is, the UAVs within the neighbourhood N d

ck
, d ≤ 2 from cell ck. By reducing

the likelihood of choosing cells that are in reach from other UAVs, the proposed
RRW strategy implements an implicit coordination mechanism that allows UAVs
to share the monitoring burden and efficiently map the relevant areas. Should
UAVs decide to target the same cell, the ORCA method would prevent collisions
and a timeout mechanism allows to resolve possible—albeit unlikely—deadlocks.
Given eq. (7), we propose different heuristics to choose the next cell to visit:
G: a cell ck is chosen greedily selecting the one with highest utility ui,ck . In

case of cells with identical utility, one is chosen at random.
R: a cell ck is randomly chosen proportionally to the utility ui,ck .
Sγ: a cell ck is chosen according to a softmax function of ui,ck with base eγ .

3.2 Baseline strategy based on optimal pre-planned trajectories

As a baseline to confront the proposed strategy, we assume here an optimal
reference point B based on the uniform coverage of the field, i.e., N UAVs visit
each cell of the field a fixed number of times. This optimal benchmark could be
approximated by pre-planning the trajectories of all UAVs, although in reality a
number of factors reduce the ideal performance proposed here. Considering the



8 Carlos Carbone et al.

speed of the UAV and the distance between cells, the time for a single UAV to
fully cover the field is given by T1 = C2lc/v = 10C2. We assume that N UAVs
can optimally partition the field, hence TN = T1/N . To allow for independent
observations of the field by different UAVs, we consider repeated passages that
therefore entail longer times, that is, MTN for M independent passages. After
each observation, the residual uncertainty of a cell c is computed following eq. (2).

3.3 Baseline strategy based on potential fields

In addition, we consider a second baseline BPF that exploits a RRW based on
potential fields (PF). Here, the target cell is selected by UAV i according to
a directional bias given by an attraction vector ~ai toward areas where weed
was detected, and a repulsion vector ~ri from other agents to avoid overcrowding.
This strategy is adapted from previous versions [3, 1] to reduce its computational
demands, limiting the information exploited for the computation of potential
fields. Attraction and repulsion vectors are computed as follows:

~ri =
∑
j 6=i

S(~xi − ~xj , σr), ~ai =
∑
c

ŵc
NW

S(~xc − ~xi, σa), S(~v, σ) = 2ei∠~ve−
|~v|
2σ2 , (8)

where ~x represents the position of an agent/cell, and S(~v, σ) returns a vector in
the direction of ~v with a Gaussian length with spread σ. With respect to [1], we
reduce the number of agents considered to those belonging to the neighbourhood
N 4
i , which are those ultimately considered also for the IG-based RRW. Addition-

ally, we consider attraction to the cells c ∈ N d
i , d ≤ 2 but discounting the force by

the number ŵc of weeds detected in the last observation. Cells are not considered
for attraction when they are marked as mapped. The selection of the next cell
to visit by UAV i is performed randomly using the vector ~vi = ~ri +~ai as a bias.
Specifically, the cell ck ∈ Vi is selected randomly proportionally to the utility
ui,ck , which is computed according to the angular difference θi,ck = ∠(~xck −~vi):

ui,ck = C
(
θi,ck , 0.9

(
1− eβ|~vi|

))
, C(θ, p) =

1

2π

1− p2

1 + p2 − 2p cos θ
(9)

where C(·) is the wrapped Cauchy density function with persistence p. In
this way, the length of the vector—smoothed through an exponential ceiling—
determines the relevance accorded to the bias: the smaller the module, the lower
the effect of the directional bias in the cell choice. This strategy has several
parameters—namely the Gaussian parameters σa and σr, and the exponential
constant β—which depend on the UAV swarm size N and need to be carefully
tuned for appropriate performance [3, 1].

4 Experimental Results

We performed several simulations with a square field of C × C = 2500 cells,
having Cq = 4 square weed patches of np × np = 49 cells randomly positioned
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within the field, plus additional Ci = 40 isolated cells randomly scattered. In
total, less than 10% of the field presents cells containing weeds. As already men-
tioned, we consider NW = 12. At initialisation, UAVs start at random positions
within the field, with no prior knowledge of the weed distribution.1 We focus
on the ability to monitor and map the field minimising the mapping error. We
perform 50 runs for each experimental condition obtained varying swarm size
N ∈ {10, 20, 30, 40, 50}, the communication range R ∈ {10,∞}, the heuristics
exploited for the information gain (G, P and Sγ with γ ∈ {1, 5}) and the pa-
rameters σr, σa ∈ {0, 2, 4, 8, 16, 32}, lc for the PF-based RRW with β = 1. With
ideal communication (R = ∞), each broadcasted message reaches every other
UAV in the swarm.

To evaluate the system performance, we consider an aggregated world map
resulting from the individual UAV maps by considering for each cell c and UAV
i the knowledge vector pc = pc,i with lowest uncertainty Hi(c). Then, the value
w̃c = arg maxw pc is considered as the mapped number of weeds in cell c, and the
mean squared error (MSE) is computed with respect of the real value wc for the
whole field. Figure 2 shows how this error decreases as further observations are
gathered from the field, taking as temporal reference the time MTN necessary
to gather M independent observations for each cell with N UAVs following the
baseline B. When the communication is perfect, all UAVs share the same map
and any new observation contributes in reducing the uncertainty. The mapping
error is initially rather high, but decreases as UAVs discover and focus on the
areas of interest. Notably, all the IG-based strategies scale well with respect to
the swarm size N , and present the best performance when the greedy approach
G is employed. In this case, the MSE gets better than the one of the baseline B
for M ≈ 3—when the error is about 0.15—and continues to decrease of another
order of magnitude with further observations. The baseline BPF is instead less
efficient in reducing the mapping error, and outperforms B only when M > 6,
hence requiring much longer than the best IG-based strategy G. The other
heuristics perform slightly worse, meaning that additional randomness in the
selection of the next cell to visit does not increase performance. Specifically, the
R and the S5 strategies have very similar profiles, and the worst performance is
obtained with the S1 strategy.

The difference in performance among the proposed heuristics is visible also
for the total completion times, shown in Figure 3. Here, we measure the time
TC necessary to fully cover the entire field, by passing over every cell at least
once, scaled with respect to the time TN of the baseline B. The greedy strategy
G performs better than any other strategy, with a coverage time that scales
perfectly with group size and values that roughly correspond to the time required
to have an MSE smaller than B. The other strategies have generally longer
coverage times, with slight improvements for larger group size N although never
being in par with G.

1 We ignore here the initial relocation from a deployment station, and also disregard
the need to return to a predefined location.
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Fig. 2: MSE of the maps generated with different strategies (average and stan-
dard deviation), with respect to the optimal pre-planned monitoring baseline B
and the PF-based RRW strategy BPF. Note that all plots are rescaled in time
with respect to the time TN required by N agents to fully cover the field once.
As a consequence, the average MSEs from the baseline B for all values of N
coincide. The baseline BPF is shown for both R = ∞ and R = 10, and corre-
sponds to the case with β = 1, σa = 2, σr = 8 and N = 50, which is the one
with lowest MSE among all the tested parameters.

The adaptive approach manages to reduce the uncertainty below the opti-
mal pre-planned strategy by mainly focusing on the areas where weed is present,
avoiding to monitor those areas that are devoid of weeds. Indeed, Figure 4 shows
the Pearson’s correlation coefficient between the number of weeds present in a
cell, and the number of independent observations gathered for it. It is possible
to note that, as time goes by, the relationship between these two variables builds
stronger, meaning that more time is spent over areas that require more obser-
vations to substantially reduce the uncertainty, while areas without weed are
quickly abandoned.

The results obtained for a limited communication range tell a different story,
however. First and foremost, the swarm does not reduce the error substantially
below the baseline B (see dotted lines in Figure 2). The monitoring and mapping
performance is substantially worse, due to an inefficient reduction of uncertainty
as the observations from other UAVs are only shared locally, and there is no
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Fig. 3: Coverage time TC relative to TN for the different IG-based strategies, for
R =∞ (left) and R = 10 (right).

mechanism to ensure that UAVs maintain the local maps aligned. The error gets
lower as the group size increases, as an effect of the larger diffusion of messages
thanks to the re-broadcasting communication protocol. Also the coverage time is
positively affected by group size, as shown in Figure 3. Nevertheless, the density
of agents is not sufficiently high to ensure that the communication topology is
always connected, leading to a partial loss of communications. As a consequence,
different UAVs may map areas already sufficiently observed by others, without
any improvement for the collective. This leads also to a reduced correlation
between the number of weeds in a cell and number of observations, especially
for low values of N as shown in Figure 4.

5 Conclusions

This paper has demonstrated that an improvement in performance is expected
when adaptive approaches are employed, leading to a substantial reduction of
uncertainty below what can be achieved through a blind acquisition of informa-
tion by means of pre-planned trajectories. By investing little more exploration
time, the mapping error is substantially reduced despite the low accuracy in the
classification output of single images. Additionally, the best heuristic based on
IG is rigorous and bear no free parameters, being therefore ideal for deploy-
ment in a swarm robotics system notwithstanding the group size or the field
dimensions, as no tuning is needed.

One observed limitation concerns the loss in performance for constrained
communication, which jeopardises the benefits from an adaptive approach with
a UAV swarm. This aspect is worth studying in detail, although it does not
invalidate the results presented for the ideal communication case. In several
scenarios—and in precision agriculture in particular—one can reasonably assume
that a good-enough communication channel can be set up in place, thanks to
long range radio communication or to the upcoming 5G technology. The limited
communication scenario may be addressed by either changing the communication
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Fig. 4: Correlation between the number of weeds present and the number of
observations performed, plotted over time for the different strategies.

protocol in a way to ensure better alignment among UAVs of the local world
representations (e.g., by sharing not just the latest observation, but the entire
word representation), or by explicitly maintaining a high degree of connectivity
within the swarm.

Another limitation of the proposed approach stands in the assumption of
independence between observations, which likely does not hold in real-world sce-
narios, especially for slowly-changing environmental conditions as in crop fields.
Indeed, multiple observations are likely to provide the same errors, if these are
related to specific features of the observed area (e.g., a volunteer potato hiding
between two sugar beets), especially if observations are made from the same
perspective and within a short time-frame. To mitigate this issue and increase
the chances that repeated observations lead to substantial uncertainty reduc-
tion, a possible approach is to vary the observation position relative to the point
of interest, so that different perspectives can lead to more informative observa-
tions. Another complementary approach consists in the usage of already available
knowledge as a prior for the classification, exploiting specially-trained CNNs [17].
The combination of these two possibilities can lead to substantial reduction in
uncertainty that can be modelled an exploited with the approach proposed in
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this paper. Future work will investigate this possibility while tackling real-world
monitoring and mapping tasks.
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