
Fast Range Image-Based Segmentation
of Sparse 3D Laser Scans for Online Operation

Igor Bogoslavskyi Cyrill Stachniss

Abstract— Object segmentation from 3D range data is an
important topic in mobile robotics. A robot navigating in
a dynamic environment needs to be aware of objects that
might change or move. A segmentation of the laser scans into
individual objects is typically the first processing step before a
further analysis is performed. In this paper, we present a fast
method that segments 3D range data into different objects, runs
online, and has small computational demands. Our approach
avoids the explicit computation of the 3D point cloud and
performs all computations directly on a 2D range image, which
enables a fast segmentation for each scan. A further relevant
aspect of our method is that we can segment objects even if the
3D data is sparse. This is important for scanners such as the
new Velodyne Puck. We implemented our approach in C++ and
ROS and thoroughly tested it using different 3D scanners. Our
method can operate at over 100 Hz for the 64-beam Velodyne
scanner on a single core of a mobile CPU while producing high
quality segmentation results. In addition to this, we make the
source code for the approach available.

I. INTRODUCTION

Detecting objects in 3D laser range data is an important
task in mobile robotics. A robot that is navigating in an un-
known environment faces the complicated task of reasoning
about its surroundings [2], [3], [9], [11], [12], [13], [15], [16],
[22], [24], [25], [26]. There might be objects that constrain
the possible actions of the robot or that may interfere with
the robot’s own plans. Thus, the interpretation of the robot’s
surroundings is key for robust operation. A first step in
a standard perception pipeline is often a segmentation of
the environment into individual objects. Therefore, we see
the need for an efficiently computable online segmentation
approach for 3D range scans. This will allow a robot to
directly react to individual objects in its surroundings.

In addition to that, modern robots are able to build accurate
maps using SLAM algorithms while moving through un-
known environments. In dynamic environments such as busy
streets with cars and pedestrians, the maps can be influenced
by wrong data associations caused by the dynamic nature
of the environment. A key step to enable a better reason-
ing about such objects and to potentially neglect dynamic
ones during scan registration for mapping, is segmenting
the 3D range data into different objects so that they can
be tracked [6]. This segmentation should be available in
real time as the robot needs to reason about what it sees
right when the data becomes available in order to react
appropriately.

Laser range sensors also called LIDARs keep gaining
popularity as the price of the sensors keeps dropping. For

Both authors are with Institute for Geodesy and Geoinformation, Univer-
sity of Bonn, Germany.

Fig. 1. Segmentation of typical objects. Here people, cars, and trees
generated from sparse 3D range data recorded with Velodyne VLP-16. The
segmentation runs at over 400 Hz on a mobile CPU. The sensor position is
marked with a coordinate system in the center of the image. Note that even
the cars, people and a tree trunk that are further away from the scanner are
segmented in a meaningful way.

example with recent introduction of an affordable 16-beam
LIDAR by Velodyne, this type of sensors is becoming more
popular and can also be installed on relatively low-cost
platforms and not only on robotic cars. If we compare the
data provided by the 16-beam LIDAR with the ones provided
by the 64-beam variant, we observe a substantial drop in the
vertical angular resolution. This poses additional challenges
to a segmentation algorithm operating on such 3D data.
Sparser point clouds lead to an increased Euclidean distance
between neighboring points even if they stem from the same
object. Thus, such sparse 3D points render it more difficult
to reason about segments. The situation becomes even harder
with increasing distance between the object and the sensor.

The contribution of this paper is a fast and effective
segmentation approach for 3D range data obtained from
modern laser range finders such as Velodyne scanners. Our
approach provides meaningful segmentations and runs mul-
tiple times faster than the acquisition of the scan. Even on
a mobile CPU, we can process 64-beam Velodyne scans at
over 100 Hz. We achieve this by performing all computations

on a cylindrical range image. This has two advantages:
First, the range image is often small, dense, and maintains
the neighborhood information implicitly in its 2D structure.
Second, operating on such range images is substantially
faster than reasoning on the 3D point cloud. Our approach
is also suited for scanners that provide comparably sparse
point clouds. An example of such segmentation is depicted
in Fig. 1 where people and cars are correctly segmented
using data from a Velodyne VLP-16 scanner. At the same
time, we explicitly target low computational demands for
our segmentation approach. We implemented our approach
in C++ using ROS and are sharing the source code.

II. RELATED WORK

Segmenting objects from 3D point clouds is a relatively
well-researched topic. There is substantial amount of work
that targets acquiring a global point cloud and segmenting it
off-line, see for example [1], [9], [11], [12], [25]. These seg-
mentation methods have been used on a variety of different
data such as 3D range sensors or 2D lasers in push-broom
mode. In this work, we focus on the segmentation of range
data that comes from a 3D laser scanner such as a Velodyne
that provides a 360 degree field of view in a single scan and
is used for online operation on a mobile robot.

Segmentation techniques for single scans without requir-
ing additional information can be divided into tree groups.
The first group performs the segmentation in the 3D domain
by defining sophisticated features that explain the data in
3D [7], [8] or by removing the ground plane and segmenting
the clouds with a variant of a nearest neighbor approach [5],
[14]. Feature-based approaches, while allowing for accurate
segmentation, are often comparably time-consuming and
may limit the application for online applications to a robot
with substantial computational resources.

The second group focuses on projecting 3D points onto a
2D grid positioned on the ground plane. The segmentation is
then carried out on occupied grid cells [2], [13], [15], [22].
These algorithms are fast and suitable to run online. Quite
often, however, they have a slight tendency to under-segment
the clouds, i.e. multiple objects may be grouped as being
one object if they are close to each other. This effect often
depends on the choice of the grid discretization and may
need to be tuned for individual environments. Additionally,
some of these approach can suffer from under-segmenting
objects in the z-direction.

The third group of approaches performs the segmentation
on a range image and our approach belongs to this group
of techniques. For example, Moosmann et al. present two
approaches [17], [18] of that type. They use a range image
to compute local convexities of the points in the cloud. In
contrast to that, our approach is easier to implement and
relies on a single parameter only, runs very fast and produces
comparable results. We therefore believe that our approach
is a valuable contribution to a vast and vibrant field of 3D
point cloud segmentation and thus we intend to make our
source code available.

A

B

C

D

Fig. 2. Illustration of our method, best viewed in color. (A) Point cloud
from Velodyne, which is shown for illustration reasons only. (B) We build
up a range image not considering points lying on the ground plane and
(C) perform the segmentation in the range image directly. (D) This allow
us to provide individual small point clouds for the different segments. The
different objects are shown with random colors. Range and label images are
scaled for better visibility.

There are also several works that perform segmentation
on RGBD data acquired from a LIDAR registered with a
camera [20], [23]. Registering one or multiple cameras with
the laser scanner requires more a sophisticated setup and
the segmentation becomes more demanding. Using both cues
may improve the results but it is seldom possible at 100 Hz.
Therefore, we focus on segmenting unknown objects from
pure 3D range data not requiring any additional visual or
intensity information.

Visual information is not the only information that aids
segmentation. Temporal information and tracking are also
shown to be useful to enhance the segmentation perfor-
mance [10], [24]. While the benefit of using the information
about the moving objects is clear, we show that it is possible
to perform a fast and meaningful segmentation on single
scans even without relying on temporal integration.

III. FAST AND EFFECTIVE SEGMENTATION
USING LASER RANGE IMAGES

This work focuses fast 3D range scan segmentation for
online processing on a mobile robot that is equipped with a
rotating scanner such as one of the three popular Velodyne
scanners with 16, 32, or 64 beams. The resolution of the
sensors, especially the vertical one, has an impact on the
difficulty of the segmentation problem. For every pair of

Fig. 3. Robot equipped with a 16-beam Velodyne used for our experiments.

neighboring points, one basically has to decide if the laser
beams have been reflected from the same object or not.

In our approach, however, we avoid the explicit creation
of the 3D point cloud and perform our computations using
a laser range image, in our case a cylindrical one for the
Velodyne scanners. This has two advantage: First, we can
exploit the clearly defined neighborhood relations directly in
the range 2D image and this makes the segmentation problem
easier. Second, we avoid the generation of the 3D point
cloud, which makes the overall approach faster to compute.

Most laser range scanners provide as raw data the individ-
ual range readings per laser beam with a time stamp and an
orientation of the beam. This allows us to directly turn the
data into a range image. The number of rows in the image
is defined by the number of beams in the vertical direction,
i.e., 16, 32 or 64 for the Velodyne scanners. The number of
columns is given by the range readings per 360◦ revolution
of the scanner. Each pixel of such a virtual image stores the
measured distance from the sensor to the object. To speed up
computations, one may even consider to combine multiple
readings in the horizontal direction into one pixel. However,
we do not do this for all the timings reported in this paper.

In our implementation, we use the above described range
images and build them directly from the raw measurements
of the laser scanner. In case, however, a different laser
scanner or a different device driver is used that only provides
a 3D point cloud per revolution and not the individual range
measurements, one can project the 3D points cloud onto
a cylindrical image, compute the Euclidean distance per
pixel, and proceed with our approach. This will increase the
computational demands by up to a factor of 2 for the whole
approach but still allows for a rather fast segmentation.

Throughout this work, we assume that the vehicle moves
on the ground (see Fig. 3 for our setup) and we know the
orientation of the sensor with respect to the wheels. Thus,
we can quickly obtain a estimate of the ground plane by
analyzing the columns of the range image, which can be seen
as an approximation of the ground plane estimation in [13],
[19]. The ground is then removed from the range image.

The key building block of our approach is the ability to
estimate which measured points originate from the same
object for any two laser beams. We present an easy to

people

cyclist

car

sensor

Fig. 4. Top: example scene with two pedestrians, a bicyclist and a car.
Bottom left: Given that the sensor is in O and the lines OA and OB
represent two laser beams, the points A and B spawn a line that estimates
the surface of an object should they both belong to the same object. We
make the decision about this fact based on the angle β. If β > θ, where θ
is a predefined threshold, we consider the points to represent one object.
Bottom right: a top view on the pedestrians from the example scene. The
green lines represent points with β > θ while the red one shows an angle
that falls under the threshold and thus labels objects as different.

implement and fast to compute but yet effective approach
to find the components that belong to one object. To answer
the question if two laser measurements belong to the same
object, we use a measure, which is illustrated in Fig. 4 and
is described in the following paragraphs.

The top image of Fig. 4 shows an example scene with two
people walking close to each other in front of a bicyclist,
who passes between them and a parked car. This scene has
been recorded using our Velodyne VLP-16 scanner. The
bottom left image shows an illustration of two arbitrary
points A and B measured from the scanner located at O
with the illustrated laser beams OA and OB. Without loss
of generality, we assume the coordinates of A and B to be in
a coordinate system, which is centered in O and the y-axis
is oriented along the longer of two laser beams. We define
the angle β as the angle between the laser beam and the
line connecting A and B in the point that is further away
from the scanner (in our example that is A). Intuitively, the
angle β relates the distance in depth that two point on the
same object may have with the distance to the scanned object
and this allows to elegantly capture this information in a
single parameter. In practice, the angle β turns out to provide
valuable information to determine if the points A and B lie
on the same object or not.

Given the nature of the laser range measurements, we
know the distance ‖OA‖ as it corresponds to the first laser

measurement as well as ‖OB‖ (second laser measurement).
We will call these range measurements d1 and d2 respectively
an can use this information to calculate β by applying
trigonometric equations

β = arctan
‖BH‖
‖HA‖

= arctan
d2 sinα

d1 − d2 cosα
,

where α is the known angle between the beams and is usually
provided in the documentation of the scanner. The bottom
right image in Fig. 4 illustrates the computation in the x− y
plane from a top-down view of the scene. The same approach
can be taken in a coordinate system spawned by a projection
of the laser beam to the x−y plane and the z axis. The logic
behind the computations stays intact and both are needed
given the neighborhood relation defined through the pixels
of an (range) image.

The intuition behind the angle β is that it stays relatively
large for most objects and only takes small values if the depth
difference between neighboring points given the range image
is substantially larger than their displacement in the image
plane that is defined through the angular resolution of the
scanner. This insight allows us to define a parameter θ that
acts as a threshold on the angle β. This threshold enables us
to make a decision about whether to separate any two points
in the range image into separate cluster or merge them into
one. If β is smaller than the user-defined value θ, we argue
that the change in depth is too large and make the decision
to separate the points into different segments. Otherwise, the
points are considered as lying on the same object.

A threshold-based criterion on β is clearly a heuristic
but works well in practice as we will illustrate in the
experimental evaluation. A failure case can be a situation in
which the scanner is located close to a wall. For the endpoints
located far away from the scanner but still on the wall, the
angle β will be small and it is therefore likely for the wall to
be split up in multiple segments. This essentially means that
if β is smaller than θ, it is difficult to reason if we look at
points that originate on two different objects or just lie on a
wall nearly parallel to the beam direction. However, despite
this shortcoming, our experiments suggest that the method
is still useful in practice and the aforementioned behavior
occurs rarely and if so, it usually results only in an over-
segmentation of particularly inclined planar objects.

With the separating threshold in mind, we approach the
segmentation directly in the range image. We regard two end-
points as being neighbors stemming from the same objects
if they are neighbors in a the depth image and the angle β
between them is larger than θ. Given this definition of a
neighborhood, we can view the segmentation problem as the
problem of finding the connected 2D components exploiting
the structure of the depth image and the constraint on β.

Alg. 1 depicts the algorithm that we use to find the
connected components. We use a variant of a pass-through
filter with complexity O(N), where N is the number of
pixels, i.e. the number of range readings per scan. The
algorithm guarantees visiting each point in the range image
at maximum twice.

We start in the top left corner of the range image and pass
through every pixel from top to bottom, left to right (line 4–
5). Whenever we encounter a non-labeled pixel (line 6), we
start a breadth-first search from this pixel on (line 7). The
goal of this search is to label every pixel of this component.
For that, the breadth-first search (BFS) uses a queue (line 10–
12) and an N4 neighborhood consisting of the left, right,
lower and top pixels (line 14). The upper pixel does not need
to be considered here given the order in which we process
the image. The decision if a point in the N4 neighborhood
should be added to the queue of the BFS is made based
on the angle β generated by the neighbor and the current
point (line 15–18). This procedure guarantees that the whole
connected component will receive the same label. Once the
queue of BFS is empty, we continue to traverse the range
image sequentially until we reach a new unlabeled point.

This approach yields a fast execution time with an O(N)
worst-case complexity and visits any pixel in the depth image
at maximum twice. The connected components algorithm in
itself, however, is not the main contribution of this work
but its effective application to segmentation through range
images considering the value of β for two neighboring
measurements. For more information on the comparison
between different implementations of connected components
algorithms, we refer the reader to [4].

Overall, our approach yields an easy-to-implement and
fast method with a single parameter that even has a physical
meaning. Therefore, our approach requires only minimal pa-
rameter tweaking to achieve good segmentation performance.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is a fast and easy to im-
plement segmentation approach for 3D range data that runs
at 100 Hz or faster and provides a meaningful segmentation

Algorithm 1 Range Image Labeling
1: procedure LABELRANGEIMAGE
2: Label← 1, R← range image
3: L← zeros(Rrows ×Rcols)
4: for r = 1 . . . Rrows do
5: for c = 1 . . . Rcols do
6: if L(r, c) = 0 then
7: LabelComponentBFS(r, c,Label);
8: Label← Label+ 1;
9: procedure LABELCOMPONENTBFS(r, c,Label)

10: queue.push({r, c})
11: while queue is not empty do
12: {r, c} ← queue.top()
13: L(r, c)← Label
14: for {rn, cn} ∈ Neighborhood{r, c} do
15: d1 ← max(R(r, c), R(rn, cn))
16: d2 ← min(R(r, c), R(rn, cn))
17: if arctan d2 sinα

d1−d2 cosα > θ then
18: queue.push({rn, cn})
19: queue.pop()

TABLE I
AVERAGE RUNTIME AND STD. DEV. PER 360◦ LASER SCAN.

scanner mobile desktop
i5 U5200 2.2 GHz i7 4770K, 3.5 GHz

16 beams 2.4 ms ± 0.5 ms ≈ 416 Hz 1.5 ms ± 0.2 ms ≈ 667 Hz
32 beams 4.4 ms ± 1.2 ms ≈ 227 Hz 2.6 ms ± 0.5 ms ≈ 385 Hz
64 beams 8.6 ms ± 2.6 ms ≈ 116 Hz 4.7 ms ± 1.2 ms ≈ 212 Hz

 1

 32

 1024

 32768

 0 500 1000 1500 2000 2500

ru
n
ti

m
e
 [

m
s]

scan number

Euclidean segmentation (PCL)
our approach

Fig. 5. Timings for segmenting approximately 2,500 scans from a 64-beam
Velodyne dataset with our approach and Euclidean segmentation from PCL.

of the scene into objects so that the robot can exploit
this information online to improve its understanding of the
surroundings. Our experiments are designed to show the
capabilities of our method and to support our key claims,
which are: (i) all computation can be executed fast, even on
a single core of a mobile CPU with at least 100 Hz, (ii) we
can segment typical 3D range data obtained by mobile robots
into meaningful segments, and (iii) the approach performs
well on sparse data such as that obtained from a 16-beam
Velodyne Puck scanner.

We furthermore provide comparisons to a popular grid-
based method for segmentation proposed in [24] as used
for example in [2] and to segmentation through Euclidean
clustering as provided by PCL [21]. We perform the eval-
uations on own datasets as well as on publicly available
ones. Throughout all these experiments, we set the only
parameter of our approach to θ = 10◦ as this provides the
best peformance as shown in Fig. 6.

A. Runtime

The first experiment is designed to support the claim
that our approach can be executed fast to support online
processing on the robot in real time. We therefore tested our
approach on point clouds computed with different Velodyne
laser scanners and processed the data on different computers.
On the robot, we used an Acer notebook with an i5 5200U
2.2 GHz CPU but we also processed the data on a desktop
computer with an i7 4770K 3.5 GHz CPU, in both cases
using only one core of the CPU.

Tab. I summarizes the runtime results for nearly 2,500
point clouds recorded in urban outdoor environments. The
numbers support our first claim, namely that the computa-
tions can be executed fast and in an online fashion. The frame
rate of our segmentation pipeline is more than one order of
magnitude larger than the frame rate of the laser scanner. On
a mobile i5 CPU, we achieve average frame rates of 116 Hz-
416 Hz depending on the scanner and 212 Hz-667 Hz on an
i7 desktop computer.

 0

 0.2

 0.4

 0.6

 0.8

 1

5d
eg

 /
5c

m

 1
0d

eg
 /

20
cm

 1
5d

eg
 /

35
cm

 2
0d

eg
 /

50
cm

 2
5d

eg
 /

65
cm

 3
0d

eg
 /

80
cm

 3
5d

eg
 /

95
cm

40
de

g
/ 1

10
cm

45
de

g
/ 1

25
cm

our approach
Euclidean segmentation (PCL)

grid-based segmentation (Behley’13)

Fig. 6. Precision of our algorithm compared to the grid-based segmentation
from Behley et al. [2] and segmentation through Euclidean clustering as
provided by PCL for varying parameters on 30 different, manually labeled
outdoor 3D scans. On the x-axis, the first value is the parameter θ for
our method and the second one serves as both the cell size for the grid-
based approach and as the distance threshold for the Euclidean clustering
approach.

We also compared the speed of our segmentation pipeline
to Euclidean clustering for segmentation as provided by PCL.
Note that we do not perform any voxelization of space,
neither for our approach nor for Euclidean clustering, as we
aim to maintain all information. Fig. 5 shows the comparison
for the 64-beam Velodyne. As can be seen, our approach
is on average around 1,000 times faster than Euclidean
clustering in the 3D space.

B. Segmentation Results

The next set of experiments in designed to show the
obtained segmentation results of our approach. We consider
the results on sparse (16 beams) and dense (64 beams)
laser range data. For the 64-beam evaluation, we rely on
the publicly available street scenes dataset provided by
Moosmann [17] while we recorded the 16-beam datasets
using our robot in Bonn, Germany.

We evaluate the precision of our method and compare it
to a popular grid- based approach [2] and to segmentation
through Euclidean clustering as provided by PCL. For that,
we have manually segmented 30 point clouds from different
scenes and ran all three methods varying their parameters.
For our method, we have chosen different values for θ, while
for the grid- based approach we have varied the size of the
grid cells. We have chosen values for θ from 5◦ to 45◦

and for the grid cell resolution (grid-based) and the distance
threshold (Euclidean) values between 0.05 m to 1.25 m. We
have evaluated the precision of the algorithms by counting
how many of the manually labeled objects have been found
by the algorithms. For every ground truth cluster, we search
for a found segment with the biggest overlap. We consider
the cluster as correctly found if the point-wise overlap is sub-
stantial. We then count the number of successful matches and
divide them by the number of expected ground truth clusters.
We compute this precision value for every scan and present
the mean and standard deviation of these values with relation
to the chosen parameter in Fig. 6. As can be seen with the
default parameter of θ = 10◦, our method outperforms the

point cloud

carcars bush

tree

cars

our approach

car and bush
under-segmentedmissing cars missing car parts

grid-based

Fig. 7. Top: Point cloud of an outdoor scene taken with a 64-beam Velodyne (shown for illustration only). Middle: Our segmentation that provides correct
segmentation even for distant objects while not under-segmenting the close ones. Bottom: Segmentation provided by a grid-based approach with cell size
set to 0.2. There is a number of cars that are situated further from the sensor missing and one car is merged with a bush. Images are best viewed in color.

missing car

under-segmented people

missing vegetation

missing cars

cars

people

vegetation
cars

tree

truck

cyclist

our approach

grid-based

people

bicycles from top-down view

bicyclestree

car

our approach

Fig. 8. Left Top: Our segmentation of an example outdoor scene taken with a 16-beam Velodyne. Our approach was able to find objects omitted by the
grid-based method while correctly segmenting people that stand close to each other. Left Bottom: Grid-based segmentation result. Some objects are missing
and people on the bottom left are under-segmented. Right: An outdoor scene recorded with a 16 beam Velodyne that shows that our approach is able to
segment even complicated scenes with multiple small objects like bicycles placed very close to each other. The grid-based approach in this scene merged
all the bicycles into two big clusters. The images are omitted for space reasons. Images are best viewed in color.

grid-based approach in terms of segmentation quality in all
parameters settings. In comparison to Euclidean clustering,
our approach shows quality-wise a comparable performance
on the 64-beam datasets, while being around three orders
of magnitudes faster (4 ms vs. 4 s per scan). This nicely
illustrates the benefits of our method for online processing.
A typical example of a segmentation is shown in Fig. 7.

Finally, we aim at supporting our claim that our segmenta-
tion pipeline handles sparse data coming from a scanner with
16 beams in the vertical direction (Velodyne VLP-16) well.
For this, we analyzed the results using data recorded from our
scanner and compared them to manually labeled ground truth
clouds. Example are depicted in Fig. 8. Although this is only
a qualitative evaluation, we can clearly see that our approach
handles the sparse range data better than the approaches that
work in the space of 3D points. We believe that the main
reason for that is the fact that we operate directly on the
range images and thus can better find the neighboring points
that may result from scanning the same object.

In summary, our evaluation suggests that our method pro-
vides competitive segmentation results compared to existing
methods on dense 3D range scans and outperforms them on
sparse scans. At the same time, our method is fast enough
for online processing and has small computational demands.
Thus, we supported all our claims with this experimental
evaluation.

V. CONCLUSION

In this paper, we presented a fast and easy to implement
method for 3D range data segmentation. Our approach oper-
ates directly on the range images and does not need to explic-
itly compute the point cloud in the 3D space. This simplifies
the segmentation of the individual range scans as we can
exploit the neighborhoods relation given by the range image.
This allows us to successfully segment even sparse laser
scans like those recorded from a 16-beam Velodyne scanner.
Our method exploits an efficient computation of connected
components and has only one parameter, which even has
a physical motivation. We implemented and evaluated our
approach on different datasets and provided comparisons to
other existing techniques. On a mobile i5 CPU, we obtain
segmentation results at average frame rates between 116 Hz
and 416 Hz and up to 667 Hz on an i7 CPU.

ACKNOWLEDGMENTS

We thank Jens Behley for fruitful discussions and for
providing his implementation of grid-based segmentation.
Further thanks to Frank Moosmann for sharing his data.

REFERENCES

[1] S.M. Abdullah, M. Awrangjeb, and G. Lu. Lidar segmentation using
suitable seed points for 3d building extraction. Intl. Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences,
40(3):1, 2014.

[2] J. Behley, V. Steinhage, and A. Cremers. Laser-based segment
classification using a mixture of bag-of-words. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2013.

[3] I. Bogoslavskyi, L. Spinello, W. Burgard, and C. Stachniss. Where
to park? minimizing the expected time to find a parking space. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2015.

[4] L. Cabaret, L. Lacassagne, and L. Oudni. A review of world’s
fastest connected component labeling algorithms: Speed and energy
estimation. In In Proc. of the Intl. Conf. on Design and Architectures
for Signal and Image Processing, 2014.

[5] Y. Choe, S. Ahn, and M.J. Chung. Fast point cloud segmentation for
an intelligent vehicle using sweeping 2d laser scanners. In Proc. of
the Intl. Conf. on Ubiquitous Robots and Ambient Intelligence (URAI),
pages 38–43, 2012.

[6] A. Dewan, T. Caselitz, G.D. Tipaldi, and W. Burgard. Motion-based
detection and tracking in 3d lidar scans. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2016.

[7] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros,
P. Morton, and A. Frenkel. On the segmentation of 3d lidar point
clouds. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2011.

[8] B. Douillard, J. Underwood, V. Vlaskine, A. Quadros, and S. Singh. A
pipeline for the segmentation and classification of 3d point clouds. In
Proc. of the Int. Symposium on Experimental Robotics (ISER), 2014.

[9] F. Endres, C. Plagemann, C. Stachniss, and W. Burgard. Unsupervised
discovery of object classes from range data using latent dirichlet
allocation. In Proc. of Robotics: Science and Systems (RSS), Seattle,
WA, USA, 2009.

[10] G. Floros and B. Leibe. Joint 2d-3d temporally consistent semantic
segmentation of street scenes. In Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 2823–2830, 2012.

[11] A. Golovinskiy and T. Funkhouser. Min-cut based segmentation of
point clouds. In Proc. of the Computer Vision Workshops (ICCV
Workshops), pages 39–46, 2009.

[12] M. Hebel and U. Stilla. Pre-classification of points and segmentation of
urban objects by scan line analysis of airborne lidar data. Intl. Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences,
37(B3a):105–110, 2008.

[13] M. Himmelsbach, F. v Hundelshausen, and H. Wuensche. Fast
segmentation of 3d point clouds for ground vehicles. In IEEE
Intelligent Vehicles Symposium, pages 560–565, 2010.

[14] K. Klasing, D. Wollherr, and M. Buss. A clustering method for
efficient segmentation of 3d laser data. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), pages 4043–4048, 2008.

[15] D. Korchev, S. Cheng, Y. Owechko, and K. Kim. On real-time lidar
data segmentation and classification. In Proc. of the Intl. Conf. on
Image Processing, Computer Vision, and Pattern Recog. (IPCV), 2013.

[16] C. Merfels and C. Stachniss. Pose fusion with chain pose graphs for
automated driving. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2016.

[17] F. Moosmann. Interlacing self-localization, moving object tracking
and mapping for 3d range sensors. KIT Scientific Publishing.

[18] F. Moosmann, O. Pink, and Ch. Stiller. Segmentation of 3d lidar data
in non-flat urban environments using a local convexity criterion. In
Proc. of the Intelligent Vehicles Symposium, pages 215–220, 2009.

[19] A. Petrovskaya and S. Thrun. Model based vehicle tracking for
autonomous driving in urban environments. In Proc. of Robotics:
Science and Systems (RSS), volume 34, 2008.

[20] T. Pylvanainen, K. Roimela, R. Vedantham, J. Itaranta, and
R. Grzeszczuk. Automatic alignment and multi-view segmentation
of street view data using 3d shape priors. In Proc. of the Symp. on
3D Data Processing, Visualization and Transmission (3DPVT), 2010.

[21] R.B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In
IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

[22] D. Steinhauser, O. Ruepp, and D. Burschka. Motion segmentation
and scene classification from 3d lidar data. In Proc. of the Intelligent
Vehicles Symposium, pages 398–403, 2008.

[23] J. Strom, A. Richardson, and E. Olson. Graph-based segmentation for
colored 3D laser point clouds. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2010.

[24] A. Teichman and S. Thrun. Tracking-based semi-supervised learning.
In Robotics: Science and Systems, Los Angeles, CA, USA, 2011.

[25] J. Wang and J. Shan. Segmentation of lidar point clouds for building
extraction. In Proc. of the Anual Conf. of the American Society for
Photogrammetry and Remote Senssing, pages 9–13, 2009.

[26] K.M. Wurm, C. Stachniss, and W. Burgard. Coordinated multi-robot
exploration using a segmentation of the environment. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2008.

