
Where to Park?
Minimizing the Expected Time to Find a Parking Space

Igor Bogoslavskyi Luciano Spinello Wolfram Burgard Cyrill Stachniss

Abstract— Quickly finding a free parking spot that is close
to a desired target location can be a difficult task. This holds
for human drivers and autonomous cars alike. In this paper,
we investigate the problem of predicting the occupancy of
parking spaces and exploiting this information during route
planning. We propose an MDP-based planner that considers
route information as well as the occupancy probabilities of
parking spaces to compute the path that minimizes the expected
total time for finding an unoccupied parking space and for
walking from the parking location to the target destination.
We evaluated our system on real world data gathered over
several days in a real parking lot. We furthermore compare
our approach to three parking strategies and show that our
method outperforms the alternative behaviors.

I. INTRODUCTION

Finding a free space for parking a car in a densely
populated area is a bothering task for drivers. Autonomous
cars will potentially face a similar challenge when driving
us through a city: where should they go to maximize the
chance to find a free parking space close to the our desired
destination—this is also important as nearby parking reduces
the time needed to pick us up when we want leave. Rodrigue
et. al. [15] argue that people typically spend up to 20 minutes
looking for a free parking space in the center of a modern
city with more than one million inhabitants and that this
accounts for more than 10% of the local traffic.

There are several aids for supporting drivers in finding
parking spaces. For example, modern garages often provide
information on the garage’s occupancy status by offering
a counter, that shows the number of free parking spaces
available at the moment. Even though these occupancy
counters make it easier to find garage with a free parking
spot, they only provide momentary occupancy information
and are typically only available for large parking garages.
Thus, people often tend to leave their cars in a curb parking
space closer to the target destination.

There are few solutions that provide occupancy informa-
tion of curb parking spaces but they typically do not address
the planning problem of how to maximize the chance to
find one of those free spaces. Examples are the “Parking
on demand” system by Pierce and Shoup [13], [14] that
adapts the price of curb parking spaces in relation to current
occupancy and provides live information on occupancy and
pricing and “ParkNet” by Mathur et. al. [11] that estimates

Igor Bogoslavskyi and Cyrill Stachniss are with Institute for Geodesy
and Geoinformation, University of Bonn, Germany. Luciano Spinello and
Wolfram Burgard are with Institute of Computer Science, University of
Freiburg, Germany.

goal

start

Fig. 1: Where is a free space for parking? The state of the parking
lot is not known and the agent wants to spend a minimum amount
of time for finding a free parking space and walking to the goal
location. This is the problem addressed in this paper.

the positions of the parking spaces with sensors mounted to
city taxis.

This paper aims at going a step further and proposes a
planning system that guides a car given uncertain occupancy
information so as to maximize the chance of finding a free
parking spot quickly. Note that this is a different problem
than the autonomous parking function of modern cars. Such
systems park autonomously given a free parking spot [9].
The task of how to navigate through the environment to
effectively find one, however, is the question that we are
addressing in this work. We address the problem by using an
MDP-based planner that considers route information as well
as the occupancy probabilities of the parking spaces. Using
an MDP to model our problem is the natural choice as it
allows us to take into account the probabilistic nature of the
parking lot occupancy. We use policy iteration to compute a
solution to the MDP which allows for efficient replanning if
individual parking spaces change their occupancy based on
new observations.

II. RELATED WORK

Most of the work in the area of parking has been con-
ducted for detecting other cars and parking spaces, while a
comparably small number of papers focusing on planning
routes to find a parking space. The most prevalent systems
for providing parking spaces occupancy information utilize
overhead cameras to survey the parking lot and infer the

positions of the parked cars and respectively free spaces
through range sensors or cameras, for example, [23], [21],
[22], [7], [8]. These approaches mainly rely on manually
labeled parking spaces and focus on detecting the occupancy
status by classification using different visual features. Wu
and Zhang [23] use color features while True [21] uses
histograms over chrominance channels of the images and
color patches around the corner detector’s region of interest.
Tschentscher and Neuhausen [22] compare the performance
based on the choice of different visual features: color his-
tograms, gradient histograms, difference of Gaussian his-
tograms and Haar features. On the classification side most
of the papers make use of support vector machines classi-
fier [23], [21], [22], [8], some of them focusing on comparing
SVMs to other methods, like k-nearest neighbors [22] or
fuzzy c-means [8].

Fewer works address the problem of in-vehicle parking
space detection. Coric and Gruteser [3] estimate the positions
of parking spaces for on-street parking. They use an ultra-
sonic sensor mounted on the side of cars to estimate the park-
ing possibilities along particular streets using a thresholding
method to distinguish between free and occupied space. All
measurements are incorporated with the GPS measurements
to form a global map of parked cars. Following the focus
on the in-vehicle sensor setup, Schmid et. al. [17] utilize
on-board short-range radars. The measurements from three
radars are stored into a 3D occupancy grid, that represents
the local surroundings of the car. Free parking spaces are
detected in 3D on the given grid. Likewise Suhr et. al. [19]
propose a system that is able to detect parking spaces
from 3D data acquired from stereo-based multi-view 3D
reconstruction. Looking at the problem from a different
perspective, Suhr and Jung [18] present a fully automatic
system for detecting the markings of the parking spaces.

Autonomously parking a car given a free parking space is
available today in new cars, whereas the problem of how to
navigate in order to find a free parking space has not received
a lot of attention in our community. Different authors address
the problem of how to navigate in a parking lot, for example,
for generating paths for an autonomous vehicle in unknown
environments given the destination parking space [5], [1].
This is, however, a substantially different problem and both
works assume to know the location of the free parking space
that the vehicle should reach. In contrast to that, we aim at
computing the path through the environment to minimize the
expected time to park the car and reach the target location.

III. CAR DETECTION AND PARKING LOT MODELING

Our planning approach for effective parking relies on the
ability to detect cars. For this paper, we used a combination
of an onboard camera and a 2D laser range finder. Please note
that our planning approach presented in Sec. IV is indepen-
dent from the detection approach itself—various alternative
methods for car detection can be used without modification
of the remaining parts.

A. Car Detection

We detect cars based on visual features extracted from a
Bumblebee stereo image stream and compute the positions
of the detected cars relative to the vehicle. Our approach
relies on a detector that uses histograms of oriented gradients
(HOG), basically following the work by Dalal and Triggs [4].
We selected HOGs as these are gradient-based features and
comparably stable under illumination and slight rotation and
shape changes. To build a classifier based on the HOG fea-
tures, we use a standard linear support vector machine. The
training is performed using an exiting image database of cars
including self-recorded images during several drives through
our local city environment. We carry out the detection in a
cascade fashion via a sliding window approach.

To compute the relative location of the detected cars,
we exploit our stereo setup. Following the work by Kono-
lige [10], we perform block matching along the epipolar
lines in the stereo image pairs. Knowing the internal camera
parameters, we reconstruct the relative 3D position of each
pixel from the disparity image. As our vehicle is equipped
with a 2D SICK laser range finder, we combine the stereo
depth information with the data from the laser range scanner.
This yields the car’s positions relative to the camera. To
obtain this information in a global reference frame, we
integrate the relative poses of cars with the vehicle’s pose
estimates from a standard graph-based simultaneous localiza-
tion and mapping (SLAM) system, incorporating also GPS
measurements, see [6] for a tutorial. This yields a consistent
map and positions of the detected cars in the GPS coordinate
frame.

B. Parking Space Modeling

Our planning approach for guiding a vehicle to find a
free parking space relies on a graph representation of the
environment. Each parking space is modeled through a node
and as its occupancy status is generally not known, we use
a binary random variable to model it probabilistically.

Throughout this work, we assume that the topology of the
environment is given and that the location of parking spaces
is known, for example, from open street map. Depending on
the level of detail of the map, parking spots may need to
be added. In this case, the vehicle only needs to update the
occupancy state of the parking spaces it observes.

Assuming that the parking lot is static over a short period
of time, we can compute its occupancy probability via a
static state binary Bayes filter as defined in Eq. (1). We
furthermore apply a nearest neighbor data association to
assign the detection to parking spaces.

Let P (xi) be a prior occupancy probability estimate of a
parking space i and z1:t be a sequence of observation of this
space. According to Moravec and Elfes [12], we can apply
the following update rule to calculate P (xi | z1:t):

P (xi | z1:t) =[
1 +

1− P (xi | zt)
P (xi | zt)

1− P (xi | z1:t−1)

P (xi | z1:t−1)

P (xi)

1− P (xi)

]−1

(1)

goal

Fig. 2: Left: Example of a parking lot. Right: Graph representing
the parking area. Blue nodes are the positions for driving, while red
ones denote parking positions. Every parking node is additionally
connected to the goal state.

Eq. (1) relies on the observation model P (xi | zt). Our
observation model is similar to a standard raycast model used
for laser range finders. All parking spaces in the field of view
of the camera are updated up to a given distance. A detection
of a car increases the probability that the parking space is
occupied while no detection reduces the probability. The data
association is done in a nearest neighbor fashion. This allows
us to estimate the current occupancy status assuming that the
parking lot is static for a short period of time.

C. Prior for Parking Space Occupancy

Once we are able to estimate the current occupancy status
of a parking lot based on observations as described above
starting with P (xi) = 0.5, we can easily learn a parking
space specific prior.

Given n data recording sessions, we can use for every
session the maximum likelihood estimate of the occupancy
probability P (xi) for parking space i and count the number
of times the maximum likelihood estimate indicated an
occupied (N i

occupied) or free (N i
free) space. This directly

yields an occupancy prior for each parking space as

Pprior (xi) =
N i

occupied

N i
occupied +N i

free

. (2)

When searching for a free parking space and having not
observed the parking space, this term Pprior (xi) provides us
with the prior probability that we will experience the parking
space with index i as occupied.

IV. ROUTE PLANNING FOR EFFECTIVE PARKING

What is a good or even an optimal path to find a free
parking spot near to a desired target location? The exact cost
function may depend on the application at hand. In this work,
our objective function is the time needed to find a parking
space plus the time needed to walk to the target location.
As the occupancy status of the parking space is not known
beforehand, our approach seeks at minimizing the expected
time that is needed to park the car and to walk to the target
location.

A. Graph-Based Environment Model

We represent the environment as a graph G = (V,E).
Each vertex in v ∈ V represents a point in the plane (R2)
as a possible location of the car. We distinguish three types
of vertices: those that model a parking space (Vp), those that

are used to model the possible locations and intersections
along the path Vm, and (typically one) goal vertex Vg so
that V = Vp ∪ Vm ∪ Vg . Each edge e ∈ E is a function
V → V , that corresponds to the action of moving from one
state to another. A graph example for a parking lot is shown
in Figure 2. The figure also shows the distinct sets of vertices.
The blue vertices are used to model the possible path in the
parking lot, while the red ones are parking spaces. Thus,
only the red vertices have a connection to the goal state (not
shown in middle image).

B. MDP Definition

Inspired by the approach of Tipaldi and Arras [20],
who present a model for spatio-temporal patterns of human
activities that enable robots to blend themselves into the
workflows and daily routines of people, we formulate our
parking problem as a Markov decision process (MDP).
MDPs provide a way to maximize the expected reward given
the current knowledge of the world. Following Bellman [2],
an MDP is defined by the initial state sstart, the transition
function T (s | s′, a) and the reward function R(s, s′, a).
Here, T (s | s′, a) denotes the probability of reaching state s
if action a is carried out in state s′. The transitions in the
model are assumed to be Markovian, i.e., the probability of
reaching s from s′ depends only on s′ and not on the history
of previous states.

Actions: In our parking application, we require only a
small set A of possible actions. We use four movement ac-
tions that correspond to moves in the four cardinal directions
Amove = {↑, ↓,←,→} plus one parking action apark. Thus,
the set A is given by

A = Amove ∪ apark. (3)

Transition Function: For four actions from Amove, we
consider the probability of moving from any state to a neigh-
boring one— given a neighbor exists in the corresponding
cardinal direction—to be equal to 1, except for the action of
moving into a parking space. Here, the probability of being
able to move to this state is equal to the inverse occupancy
probability of the parking space

∀s ∈ (Vm ∪ Vg),∀a ∈ A : T (s | s′, a) = 1

∀s ∈ Vp,∀a ∈ Amove : T (s | s′, a) = 1− P (s),

where P (s) is the probability of the parking space s to be
occupied.

Rewards: We define the reward function such that the
MDP seeks to minimize the expected time that the user needs
to reach the target location.

Let route S be an arbitrary path to the target location (goal
state). This route is effectively described as a sequence of
moves that guide the user to the goal. Given our transition
model, every move of the agent can be described by two
states s1, s2 ∈ V together with an action a ∈ A that brings
the agent from state s1 to state s2 with T (s2 | s1, a) > 0.
The agent starts in the initial state sstart and travels to the

goal state sgoal. Thus, S is a sequence:

S =
〈
(si, si+1, a)

| (si, si+1) ∈ E,∃a : T (si+1 | si, a) > 0
〉goal

i=start

This yields the expected time for the agent to traverse the
sequence of states of

E(tS) =
∑

(si,si+1,a)∈S

T (si+1 | si, a) tsi,si+1 , (4)

where T (si+1 | si, a) is the probability of moving from state
si to si+1, carrying out action a and tsi,si+1 is the time it
takes the agent to travel between the defined states. We seek
to find the route S∗ that minimizes the expected time defined
in Eq. (4):

S∗ = argmin
S

E(tS) (5)

Instead of minimizing the expected time, we can equiv-
alently maximize the negative expected time. Thus, we can
define our rewards function R(s, s′, a) for reaching state s
from state s′ carrying out action a as the negative time that
the agent needs for driving from state s′ to state s. The time
is the distance between these states divided by the speed of
the agent

R(s, s′, a) = −ts
′,s

drive with s 6= s′. (6)

In addition to that, we also penalize staying in one place
by assuming that this takes a constant amount of time twait.
In our system the agent stays in the same state only if he
fails to carry out an action, e.g., apark in case of an occupied
parking space. This yields

R(s, s, a) = −twait. (7)

After a successful parking action, i.e., being in a state
s ∈ Vp, the agent reaches the goal state with probability 1.
The reward for reaching the goal state has two components.
First, as Eq. (6), we consider the time to walk to the target
location from the parking space. Second, the agent receives
a positive reward rmax for reaching the goal state so that

R(s, sgoal, a) = rmax − t
s,sgoal
walk with s ∈ Vp. (8)

In our system, we define rmax as the walking time from
the parking space that is the furthest from the target location,
i.e.,

rmax = max
s∈V

t
s,sgoal
walk . (9)

This reward function minimizes the expected time needed
to find an unoccupied parking space, park the car, and walk
to the target location.

C. Solution to the MDP

The combination of transition and reward function guar-
antees that the agent seeks to minimize driving and walking
times, weighted by the probability of the parking space being
not occupied.

The key building block of an MDP is the utility function,
which is a measure of how good the state is in the long run

Uπ(s) = E

[∞∑
t=0

R(st, st−1, a)

∣∣∣∣∣ π, s0 = s

]
. (10)

Given the utility function, we define the policy as an
expected sum of the rewards obtained, where the expectation
is taken over all possible state sequences that may occur,
given that the policy is executed. This yields the optimal
policy

π∗ = argmax
π

[Uπ(s) | π, s ∈ π] . (11)

This is equivalent to solving Eq. (5) resulting in π∗ being
an optimal decision in the means of minimizing the expected
time that the agent needs to find a parking space and walk to
the target location. However, as time approaches infinity, the
sum in Eq. (10) also tends towards infinitely large values.
To avoid this, we make use of discounted rewards

Uπ(s) = E

[∞∑
t=0

γtR(st, st−1, a) | π, s0 = s

]
, (12)

where γ ∈ [0, 1) is the so-called discount factor.
We solve the MDP using Policy Iteration, see [16] for a

good overview. Compared to Value Iteration, Policy Iteration
terminates as soon as there is no change to the policy without
requiring to compute the exact utility values for all states.
In the policy improvement step, we select the optimal action
using the maximum expected utility principle in each state,
i.e., choose the action that maximizes the expected utility of
the subsequent state. The optimal policy π∗(s) can therefore
be seen as the one that maximizes the expected utility if
followed: π∗(s) = argmaxa

∑
s′ T (s | s′, a)U(s′).

This solution to the MDP guarantees to find a path
that maximizes the expected discounted rewards. Under the
assumption that the discount factor is close to 1, this path is
also the one that minimizes the expected time for searching
for the parking space and walking to the target location for
a given set of parking space occupancy probabilities.

D. Changing Environments and Replanning

The agent carries out an optimal strategy to the point
when it decides to park. Now, consider the situation in which
the optimal parking space is observed to be occupied. From
the point of view of the MDP, the optimal decision would
be to try over and over again to park—this is a clearly
suboptimal behavior given that new knowledge is available
through observations

To take observations into account but avoid a POMDP
formulation, we continuously update the state of the parking
spaces using a Bayes filter and solve the MDP given the
updated occupancy probabilities. As result of the update, the
occupancy probability of the selected parking space in the
previous MDP solution is increased and thus a new policy
which guides the vehicle to a different location.

For all parking spaces that the vehicle observes, its status
is updated given Eq. (1). This makes the assumption that the

occupancy probability

occupied free

observation

prediction

Fig. 3: Occupancy status of the parking space: each inner square
denotes current occupancy state using the recursive update, while
each outer denotes the prior information from the training phase.

state of the parking lot does not change while the vehicle is
observing the scene. In order to consider the fact that cars
leave the parking lot and that new cars arrive, we also update
the probabilities of the unobserved parking areas. This is
performed in the following way.

Let k be the time when the parking space has been
observed the last time. We estimate the state of the parking
space at time t > k based on the estimated state at time k,
i.e., p(xik | z1:k) and the probability that new cars enter and
leave parking spaces.

We model the change in the occupancy variables, i.e.,
the fact that cars leave or park, after the last observation
of that parking space as a Poisson distributed random vari-
able. As a result of that, we can model the probability
for change through the CDF of an exponential distribution.
This expresses the probability for a change at tchange with
k < tchange ≤ t

Pλ(∆t) = P (t− tchange ≤ ∆t) = 1− e−λ∆t, (13)

where λ is the frequency at which an occupancy change of
a parking space takes place and ∆t = t− k.

Based on Eq. (13), we define a simplified model for non-
static parking space occupancy, which is a weighted sum
with Eq. (13) being the weight, of the last known belief and
the parking space-specific prior Pprior (xi) that models the
average occupancy probability for that parking space:

p(xit | xik, z1:k) ≈
(1− Pλ(∆t)) p(xik | z1:k) + Pλ(∆t)Pprior (xi) (14)

Thus, at every time step, the current occupancy probabil-
ities are updated based on Eq. (1) given an observation and
using Eq. (14) if the last observation of a parking space is ∆t
steps old. An example is shown in Figure 3. After updating
all parking spaces, a new policy is computed and executed.

V. EXPERIMENTS

The experiments are designed to illustrate the performance
of our approach to autonomous parking and to compare
the performance of our method to three manually designed
strategies. It is also worth mentioning that the average
execution time for the policy update was around 10 ms
on a regular computer for all experiments presented in this
section.

All our experiments have been conducted on real world
data. We recorded the parking lot of our campus over 21 days

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8

tim
e

to
 re

ac
h

go
al

 [s
]

experiment

our_approach
search-near-goal
search-near-start

lowest-occupancy

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8
experiment

our_approach
search-near-goal
search-near-start

lowest-occupancy

tim
e

to
 re

ac
h

go
al

 [s
]

Fig. 4: Comparison of the performance of our approach to three
heuristic strategies “search-near-goal”, “lowest-occupancy”, and
“search-near-start” in 16 different experiments based on real world
occupancy data. As can be seen, our method, which minimizes the
expected time to reach the target location, outperforms in general
the heuristic solutions—although a heuristic can be better in a
specific instance of the parking lot configuration.

using a Bumblebee stereo camera and a SICK laser range
finder on our vehicle to compute the prior probabilities for
the occupancy. The parking lot has 180 parking spaces and
the outer borders of the parking spaces in Figure 3 illustrate
the results as observed during this period of 21 days. We
then executed multiple runs in different settings in which
our approach had to compute a path for finding a parking
space. The occupancy status of the parking lot according to
the observations can be seen from the inner squares at the
parking space locations.

The first experiment is designed to compare the perfor-
mance of our approach with respect to three alternative
parking strategies. According to our modeling assumptions,
our MDP approach computes the optimal path using policy
iteration, i.e., the path that minimizes the overall time to find
a parking space and to reach the final destination. In order
to quantify the gain in time of our solution, we compare it
to three heuristics.

The first heuristic called “search-near-goal” drives to the
parking space that is closest to the target location and then
searches for the next free parking spot in a random walk fash-
ion. The second heuristic called “lowest-occupancy” drives to
the parking space with the lowest prior probability of being
occupied and then searches for the next free parking spot
in a random walk fashion. The third heuristic “search-near-
start” looks for a free parking space near the current location.
Figure 4 depicts the performance of the three heuristics as
well as the one of our approach. As can be seen, our approach
outperforms the other strategies in the sense that it guides
the user faster to its target location. We also conducted a
paired-sample t-test with a 95% confidence level. The test
shows that our approach produces trajectories that lead to a
significantly shorter time to reach the target location.

occupancy probability

occupied free

Legend:
“up” “right” “down” “left” “park”

Fig. 5: Example of two full trajectories from the bottom left corner
of the parking lot to the goal on the upper right. Both depicted
situations share the same initial occupancy prior (outer squares)
but differ in the actual occupancy status (inner squares). The upper
image shows a situation in which the initial policy of the agent
reaches a free parking space making him able to park there, while
the bottom image shows multiple re-planning steps the agent takes
when the initial optimal parking space is occupied. Eventually, the
agent returned to a previously observed free parking space.

The second experiment is designed to illustrate how our
approach seeks to find parking spaces. Figure 5 shows two
example runs of our method driving to a free parking space
and walking to a target location on the top right.

Although the focus of the paper is on the parking space
and MDP modeling for effective parking, our approach relies
on the ability to detect cars. Using the visual approach
described in Sec. III, we achieve a car detection rate of
approx. 95%. By additionally using the recursive Bayes filter
to integrate the detections over time, we achieve a sufficient
performance for building the describes system for effectively
finding parking spaces, minimizing the expected time to park
and reach the target destination.

VI. CONCLUSION

Quickly finding a free parking spot close to a given goal
location is a desired capability but often hard to achieve,
especially in large cities. This holds for human drivers as well
as for autonomous cars alike. We investigated the problem
of modeling and exploiting the occupancy information of
individual parking spaces during route planning. We pro-
posed an MDP-based planner that considers the occupancy
probabilities of parking spaces to find the path that minimizes
the expected total time spent for searching for an unoccupied

parking space as well as for walking from the found parking
location to the goal location. We evaluated our system based
on real world data gathered with a mobile vehicle over
several days in a real parking lot. We compared our approach
to three other parking strategies and showed that our method
performs significantly better according to a t-test.

REFERENCES

[1] P. Abbeel, D. Dolgov, A.Y. Ng, and S. Thrun. Apprenticeship learning
for motion planning, with application to parking lot navigation. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), Nice, France, 2008.

[2] R. Bellman. A markovian decision process. Indiana Univ. Math. J.,
6:679–684, 1957.

[3] V. Coric and M. Gruteser. Crowdsensing maps of on-street parking
spaces. In IEEE International Conference on Distributed Computing
in Sensor Systems, pages 115–122, Washington, DC, USA, 2013. IEEE
Computer Society.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 886–893, 2005.

[5] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Practical search
techniques in path planning for autonomous driving. In Proc. of the
Int. Symp. on Search Techniques in Artificial Intelligence and Robotics
(STAIR-08), Chicago, USA, 2008.

[6] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial
on graph-based SLAM. IEEE Trans. Intell. Transport. Syst., 2, 2010.

[7] C. C. Huang and S. J. Wang. A hierarchical bayesian generation
framework for vacant parking space detection. IEEE Trans. Circuits
Syst. Video Technol., 20(12):1770–1785, Dec 2010.

[8] H. Ichihashi, T. Katada, M. Fujiyoshi, A. Notsu, and K. Honda.
Improvement in the performance of camera based vehicle detector
for parking lot. In IEEE Trans. on Fuzzy Systems, pages 1–7, 2010.

[9] J.Z. Kolter, C. Plagemann, D.T. Jackson, A.Y. Ng, and S. Thrun. A
probabilistic approach to mixed open-loop and closed-loop control,
with application to extreme autonomous driving. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), pages 839–845, 2010.

[10] K. Konolige. Small vision systems: Hardware and implementation. In
Yoshiaki Shirai and Shigeo Hirose, editors, Robotics Research, pages
203–212. Springer London, 1998.

[11] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue,
M. Gruteser, and W. Trappe. Parknet: drive-by sensing of road-side
parking statistics. In Int. Conf. on Mobile Systems, Applications, and
Services, pages 123–136, 2010.

[12] H. P. Moravec and A. Elfes. High resolution maps from wide angle
sonar. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), volume 2, pages 116–121, Mar 1985.

[13] G. Pierce and D. Shoup. Getting the prices right. Journal of the
American Planning Association, 79(1):67–81, 2013.

[14] G. Pierce and D. Shoup. Sfpark: Pricing parking by demand. ACCESS
Magazine, 2013.

[15] J. P. Rodrigue, C. Comtois, and B. Slack. The geography of transport
systems. Routledge, 2013.

[16] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2 edition, 2003.

[17] M. R. Schmid, S. Ates, J. Dickmann, F. von Hundelshausen, and
H.-J. Wuensche. Parking space detection with hierarchical dynamic
occupancy grids. IEEE Intelligent Vehicles Symposium, 2012.

[18] J. K. Suhr and H. G. Jung. Fully-automatic recognition of various
parking slot markings in around view monitor (avm) image sequences.
In IEEE Trans. Intell. Transport. Syst., pages 1294–1299, Sept 2012.

[19] J. K. Suhr, H. G. Jung, K. Bae, and J. Kim. Automatic free park-
ing space detection by using motion stereo-based 3d reconstruction.
Machine Vision and Applications, 21(2):163–176, 2010.

[20] G.D. Tipaldi and K. O. Arras. I want my coffee hot! learning to
find people under spatio-temporal constraints. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), Shanghai, China, 2011.

[21] N. True. Vacant parking space detection in static images. University
of California, San Diego, 2007.

[22] M. Tschentscher and M. Neuhausen. Video-based parking space
detection. Int. J. of Innovation, Management and Technology, 2012.

[23] Qi Wu and Yi Zhang. Parking lots space detection. Machine Learning,
Fall, 2006.

