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Abstract

Background: This study addresses the importance of precise referencing in 3-dimensional (3D) plant phenotyping, which is crucial
for advancing plant breeding and improving crop production. Traditionally, reference data in plant phenotyping rely on invasive
methods. Recent advancements in 3D sensing technologies offer the possibility to collect parameters that cannot be referenced by
manual measurements. This work focuses on evaluating a 3D printed sugar beet plant model as a referencing tool.

Results: Fused deposition modeling has turned out to be a suitable 3D printing technique for creating reference objects in 3D plant
phenotyping. Production deviations of the created reference model were in a low and acceptable range. We were able to achieve
deviations ranging from —10 mm to +5 mm. In parallel, we demonstrated a high-dimensional stability of the reference model, reaching
only +4 mm deformation over the course of 1 year. Detailed print files, assembly descriptions, and benchmark parameters are provided,
facilitating replication and benefiting the research community.

Conclusion: Consumer-grade 3D printing was utilized to create a stable and reproducible 3D reference model of a sugar beet plant,
addressing challenges in referencing morphological parameters in 3D plant phenotyping. The reference model is applicable in 3
demonstrated use cases: evaluating and comparing 3D sensor systems, investigating the potential accuracy of parameter extraction
algorithms, and continuously monitoring these algorithms in practical experiments in greenhouse and field experiments. Using this
approach, it is possible to monitor the extraction of a nonverifiable parameter and create reference data. The process serves as a
model for developing reference models for other agricultural crops.
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Background

Adapting agricultural crop production to increasingly challeng-
ing environmental conditions is critical for enhancing production
levels and ensuring production security. Farmers face challeng-
ing growing conditions caused by various biotic and abiotic envi-
ronmental factors. Cultivation of an appropriate crop variety is a
successful approach to maintain stable yields and handle climatic
changes [1]. However, plant breeding for novel crop varieties is a
time-consuming process that requires a lot of labor-intensive and
reliable information about the interaction of a crop genotype with
its environment. The process of accessing this information in form
of geometric or physiological properties of the plant is called plant
phenotyping. Traditionally, the acquisition of plant characteristics
is associated with invasive and destructive methods, which is still
the basis of modern plant breeding [2, 3]. Nevertheless, the de-
velopment and now widespread availability of noninvasive mea-
surement technologies has led to a new era in the phenotyping of
plants [4, 5].

In the past decades, 3-dimensional (3D) plant phenotyping was
utilized for assessing geometric properties of plants. Advances in
passive and active optical sensors, coupled with 3D reconstruc-
tion algorithms, provide the basis for precise high-throughput and
high-resolution 3D analysis of above-ground plant structures, ad-

vancing 3D shoot phenotyping research [6, 7]. This research topic
aims to access the intricate 3D structure of plants by measur-
ing various morphological traits and gather data about a crop’s
growth status, ultimately resulting in an enhanced comprehen-
sion of plant growth. Additionally, information about the 3D struc-
ture of a plant is essential for crop modeling [2] and can even be
used to correct other optical sensor data [2, 8]. Combining 3D data
acquisition with advanced analysis techniques enables measure-
ment of diverse morphological growth parameters across various
scales, ranging from the canopy to single plant and organ level [2,
9l.

Based on their research, Scholz et al. [10] concluded that an au-
tomatic morphological parameter assessment using 3D models
can fulfill breeders’ needs for accurate phenotypic data. The 3D
sensor technology has advanced to the extent that close-range,
high-resolution scanning with millimeter accuracy and precision
is becoming increasingly affordable. A digital representation of a
plant’s structure in the form of a 3D model (point cloud or mesh)
can be used to digitize morphological measurements down to
the scale of individual organs [11, 12]. Additionally, digital repre-
sentations offer the potential to develop new 3D characteristics
of plants that cannot be captured by humans like plant volume
or surface area, establishing them as important traits for plant
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breeding [13]. However, this potential has not been extensively ex-
plored. Extracting 3D characteristics of plants in high throughput
and under field or greenhouse conditions presents several chal-
lenges regarding data acquisition with different sensor systems,
as well as processing and analysis of the data [14]. Ultimately, all
sensor types face the problem of validating their measurements.

Validation in high-resolution 3D scanning requires reference
data to produce accurate and reliable results. In 3D plant phe-
notyping, researchers deal with complex structured, small-scale
objects. Many morphological features like plant height or leaf
length can be retrieved from a 3D plant model using custom or
commercially available analysis software like CloudCompare [15].
However, evaluating these feature extractions can be challeng-
ing. The validation of many parameters still relies on manual
measurements or visual scoring by human experts, which is
labor-intensive and has limited precision. The accuracy of visual
scoring is often questioned, for example, in disease assessment.
Nutter et al. [16] documented the impact of human raters on
the final disease score. Scholz et al. [10] used expert scoring as a
reference for 3D assessment of morphological parameters. They
concluded than human scoring is prone to errors and identified
the quantification of small-parameter variations as one of the
greatest weaknesses of human scoring. Moreover, manual refer-
ence measurements have limitations in properly representing the
plant’s 3D structure. Modern sensor technology and advanced pa-
rameter extraction algorithms pose a challenge to the use of man-
ual measurements and visual scoring as reference data.

Additionally, we have identified 3 general categories of 3D pa-
rameters for plants. The first category includes parameters that
can be evaluated by creating reference data through manual
measurements. This is limited to single, easy-to-derive param-
eters, such as plant height or leaf length. Determining precise
data for these parameters is relatively straightforward but time-
consuming and often invasive [2, 17], which precludes the genera-
tion of time-series data. Golbach et al. [17] performed 3D measure-
ments of leaf length and width and stem length and created refer-
ence data using invasive 2-dimensional (2D) scans from a flatbed
scanner. The authors report that physical and computational bias
affect their reference measurements due to the 3D nature of the
measured objects. They also identify the noise of the reference
data as the limiting factor of the accuracy of their 3D measure-
ments. Nguyen et al. [18] used the same referencing method as
Golbach et al. [17] by utilizing 2D scans for leaf length, width,
perimeter, and area to determine the reconstruction accuracy of a
developed 3D scanning system for plant phenotyping. They used a
conventional plastic houseplant to validate their measurements.
However, in order to access the 2D reference data, the plastic plant
had tobe cut, rendering it useless and providing no real advantage
over using a biological plant.

Second, we refer to parameters that are typically accessed
through visual scoring because they cannot be measured man-
ually or only with great difficulty. This process is time-consuming
and lacks high accuracy [10, 16]. An example for this category is
the scoring of leaf attitude, which describes the overall leaf an-
gle of a plant. This requires a considerable amount of work and
often lacks the necessary precision. For instance, trained experts
have scored the leaf angle either absolutely [10] or relatively [19].
However, the leaf angle can also be measured using either a pro-
tractor [20, 21] or a digital inclinometer [22], but this process is
even more time-consuming.

The third category includes parameters that are not measur-
able by humans and can only be retrieved through the combi-
nation of advanced optical sensor techniques and computer al-

Figure 1: The proposed 3D printed reference model for sugar beet in (A)
greenhouse and (B) field experiments.

gorithms. Possible examples of fine morphological and novel pa-
rameters that cannot be captured by human workers include the
convex hull or the shadow cast of a plant. Computerized data ac-
quisition and analysis enable the recording of parameters of all
categories while being noninvasive, comprehensible, and resource
efficient. It is essential to monitor and reference the extraction of
parameters of all categories to provide a reliable data source for
future plant breeding.

Biskup et al. [23] made initial approaches to create a functional
3D reference shoot model. They used soybean leaves, fixed them
to a flat board, and varied the angle of the board relative to a
stereo camera set up to determine the accuracy of the setup for
leaf angle determination. Similarly, Dandrifosse et al. [24] used
plant leaves of known size and fixed them to a flat board to de-
termine the accuracy and precision of leaf area measurements
for different leaf angles. Milller-Linow et al. [25] created a more
comprehensive 3D model of a plant. They used a 3D plant model
made of plywood with 8 adjustable flat leaves to evaluate the leaf
angle estimation of a custom stereo camera system with down-
stream data analysis and reported a good agreement between the
values of the artificial plant model and the measured values. How-
ever, both approaches presented here only deal with the evalua-
tion of a single morphological feature. After all, an artificial plant
model can be used for referencing various morphological param-
eters. Under these circumstances, the need for a new reference
method becomes apparent. Topp et al. [26] used 3D printing to
manufacture a reference model of a simplified root system and
used it to evaluate automatically extracted parameters. Since the
3D printed reference model is based on a digital model of the root
system, extracted parameters can be compared to software-based
reference parameters. Therefore, they emphasized the significant
role of 3D printing in 3D phenotyping.

To address the subject of referencing in 3D shoot phenotyping,
we transfer the idea of Topp et al. [26] of 3D printing reference
structures for phenotyping to above-ground plant structures and
propose a 3D model of a sugar beet plant (Beta vulgaris) that can
be produced using additive manufacturing methods (Fig. 1). The
increasing popularity of 3D printing in recent years has opened up
new possibilities for the scientific community to quickly and eas-
ily create parts and prototypes. Fused deposition modeling (FDM)
was used to manufacture the 3D reference model due to its reli-
ability and affordability. This technique is widely used in various
disciplines and is known for its ease of handling and reproduc-
tion, while maintaining high precision and quality standards [27,
28]. FDM 3D printing is cost-effective and requires minimal finish-
ing work. At the same time, it has low user requirements, making
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it a cutting-edge technique for rapid prototyping and component
production that is accessible to everyone.

The main contribution of this article is an exploration into the
potential of utilizing a 3D printed plant model as a precise refer-
encing tool in 3D plant phenotyping. In this field, using 3D print-
ing for producing reference objects is an innovative approach with
possibilities and limitations yet to be explored. Therefore, we first
analyze the deviations between the underlying computer model
and the 3D printed reference model. Next, we integrate a reference
model into our research activities in field and greenhouse exper-
iments over the course of 1 year. The dimensional stability over
time is assessed using high-precision laser scanning and down-
stream deformation analysis. In order to demonstrate the practi-
cal applications of the reference model and contribute to solving
the referencing problem in 3D plant phenotyping, we present 3
use cases:

(A)Classify the suitability of a 3D sensor for plant phenotyping
by generating precision and occlusion scores

(B)Evaluate the accuracy of a parameter extraction algorithm
under laboratory conditions

(C)Monitor the stability of an automatic parameter extraction
of verifiable and nonverifiable parameters in practical appli-
cations

In addition to providing the 3D model of the reference plant
and a detailed construction manual, we offer benchmark param-
eters for various morphological parameters on both plant and
single-leaf scales, which have been extracted automatically using
software-based approaches and manually using traditional mea-
suring techniques. This enables other scientists to use the 3D ref-
erence model for their research, refine the methods used, and ap-
ply the gained knowledge to create reference models for other im-
portant agricultural crops.

Material and Methods

3D reference model
Data basis

The 3D reference model is based on a real sugar beet plant (Vasco;
SESVanderHave N.V.), cultivated under greenhouse conditions. At
the time of data collection, the plant was approximately at BBCH
19. The workflow for creating the reference model is visualized
in Fig. 2. A light detection and ranging (LiDAR) scanner (Faro Fo-
cus S70; Faro Technologies) was used to create high-precision
3D point clouds from 12 different viewing angles. Using multi-
ple spherical registration targets, the single scans were registered
into 1 occlusion-free 3D representation of the sugar beet plant us-
ing the software Faro Scene. Next, the point cloud was processed
using outlier removal algorithms implemented in the Python li-
brary Open3D (v0.13.0) [29]. The surface of the point cloud was
reconstructed with the help of a ball-pivoting algorithm [30]
and smoothed using moving least squares surface reconstruc-
tion [31] implemented in the open source software CloudCompare
(v2.11.1) [15]. After this, the resulting triangle mesh was loaded in
blender (v2.92) [32] for further manual editing.

Manual editing

To make the leaf blades stable and 3D printable, they were thick-
ened to approximately 3 mm using a solidify modifier. As sugar
beet stems are comparatively delicate and fragile, it is very diffi-
cult to reproduce them in detail in a 3D printable model. It can be
assumed that an accurate reproduced stem cannot withstand the
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stresses that occur, for example, due to transport of the printed
model. For this reason, all stems were thickened using different
sculpting tools available in blender, resulting in stronger stems
that are more suitable to resist ordinary stresses. For the last de-
sign step, the bisect tool was used to split the reference model into
3D printable pieces. This step was mainly performed to control the
layer orientation while 3D printing, since they strongly influence
tensile force properties of 3D printed parts [33, 34]. Following this
idea, the model was split into leaves and beet body, which was
again split into 3 pieces. Other benefits from splitting the model
into multiple parts are a lower printing failure rate due to multi-
ple smaller prints and the possibility to print the reference model
on 3D printers with a small build volume. The cut surface was de-
signed in a V-shape in order to minimize deviations between the
digital and the 3D printed model when assembling the individual
parts later. After completing the manual editing steps, the indi-
vidual parts were exported in .stl format.

3D printing

To produce the reference model via 3D printing, the individ-
ual model parts were loaded into the slicer software PrusaSlicer
(v2.4.0-betal) [35]. A slicer software takes a 3D object file and gen-
erates G-code instructions for the printer to fabricate the object
layer by layer. A Prusa i3 MK3S+ printer (Prusa Research a.s.) was
used together with the standard printer profile. Supports were ac-
tivated on the build plate, and the 0.15-mm quality profile was
chosen and adjusted to our requirements (perimeters: 3, fill den-
sity: 50%, fill pattern: Gyroid, brim width: 5mm, overhang thresh-
old: 30°).

The orientation of the individual parts on the print bed is a criti-
cal part of the FDM production process, as the connection between
the individual layers is weaker than the material itself [36]. For ex-
ample, tensile forces should always be applied parallel to the lay-
ers, not orthogonal to them [37]. Applied to the reference model,
this means that the stems should be oriented parallel to the print
bed, as shown in Fig. 2. In this way, tensile forces are optimally ab-
sorbed by the layers in a parallel direction, and bending forces are
absorbed orthogonal to the layers. The increase in stability due to
optimal positioning of the individual parts on the print bed is the
main reason for dividing the model into individual parts.

The filament material was chosen considering the need to
withstand the conditions in field and greenhouse trials and ordi-
nary stresses during transport. Essential material attributes, both
in a general sense and for ensuring durability, encompass good
mechanical properties alongside high tolerances for moderate
temperatures, ultraviolet (UV) light, and humidity. Moreover, the
filament should be easy to print and processable by most
consumer-grade 3D printers. Considering this, we have chosen
polyethylene terephthalate glycol (PETG) as the printing filament.
It has a high mechanical resilience, is resistant to UV light and
water, and has has an acceptable tolerance toward temperature
deformation [33, 38]. In contrast to widely used polylactic acid
(PLA), PETG is not biodegradable and therefore more stable over
time, while showing competitive strength, toughness, and elon-
gation properties [38]. Additionally, it is also more flexible and
therefore less likely to break on impact [33, 37]. During printing
with PETG, limited warping deformation and a low shrinkage ra-
tio can be observed [39]. The model was printed out of Geeetech
PETG Green (Shenzhen Getech Technology Co.) using the Prusa
PETG profile in PrusaSlicer. The total time needed for printing all
model parts with the mentioned hardware and slicer settings was
roughly 70 hours.
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Figure 2: Workflow for the creation of the artificial sugar beet reference plant. The intermediate processes are shown in white boxes. Conducted
production steps are highlighted in orange while the used software and hardware are pictured in light red.

For assembly, the individual parts were first cleaned of their
support material. The individual parts were then glued together
with cyanoacrylate adhesive. Finally, a heat set insert with a di-
ameter of 5 mm was melted into the base of the beet body, which
allowed it to be easily mounted to a steel rod and positioned in
any conducted experiment trials (see Fig. 1).

3D printed model inspection

The 3D printed model was scanned immediately after produc-
tion using a high-precision laser triangulation system to create
an accurate digital copy of the model for later analysis. The sys-
tem includes a line laser scanner (Perceptron ScanWorks V5; Per-
ceptron) mounted on a mobile measuring arm (Romer Infinite
2.0; Hexagon AB) and has a sub-millimeter accuracy. It was used
in multiple studies regarding different high-accuracy 3D pheno-
typing approaches [9, 40—-44|. The system’s scanning and recon-
struction accuracy underwent evaluation and was found to be of
excellent quality [40]. We have used antireflection spray (AESUB
orange; Scanningspray Vertriebs GmbH) to further improve the
quality of the resulting point cloud. The generated point cloud al-
lows for a precise description of the deviations between the com-
puter model of the reference model and the 3D printed model due
to the production process. Scans performed later allowed for the
monitoring of dimensional stability over a longer period of time.

Registration

To compare the point clouds, their respective coordinate systems
had to be aligned and registered to minimize systematic errors. To
achieve this, the 3D scans of the printed model were first manu-
ally aligned with the digital model as accurately as possible using
CloudCompare. As there were no 3D correspondence points avail-
able, a point-to-plane iterative closest point (ICP) algorithm [45]
was employed as a final registration technique. Only the beet body

and the petiole base of the point clouds were utilized for the final
registration to prevent the ICP algorithm from averaging deforma-
tions of the leaf apparatus, thus biasing the actual deviations. The
region around the beet body is considered robust to deformation
while still offering distinct points and surfaces for precise regis-
tration.

3D point cloud comparison

The multiscale model to model cloud comparison (M3C2) dis-
tance [46] was computed to analyze the production deviations
and structural deformation over time. The M3C2 technique does
not require fixed-point correspondences and, unlike direct cloud-
to-cloud comparison methods, is less sensitive to outliers and
the quality of the point clouds themselves. It retains local struc-
tural features and does not require meshing of the point cloud.
The calculation involves several steps. Initially, the surface nor-
mals are estimated and oriented. Subsequently, the mean surface
change in the normal direction determines the distance between
the 2 point clouds. For a comprehensive explanation of the algo-
rithm, we refer to [46]. The calculation was performed using an
implementation of the algorithm in the Python library py4dgeo
(v0.5.0) [47]. To finally determine the production deviations, the
M3C2 distance between the high-resolution 3D scan immediately
after the production of the printed model and the computer model
was determined. Changes in deformation over time were assessed
by measuring the distance between the initial 3D scan of the ref-
erence model after production and 1 of the 2 further 3D scans
taken after 143 days and 361 days. During this period, the refer-
ence model was subjected to extensive testing in both greenhouse
and field environments and underwent significant mechanical,
temperature, and UV light-related stress. Therefore, the later scan
accurately portrays realistic stresses caused by various measure-
ment applications and long-term use of the model.
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Morphological benchmark parameters

To effectively utilize the reference model in practical applications,
it is necessary to precisely collect the model’s morphological pa-
rameters in a well-defined and comprehensible way. The task is to
gather clear benchmark parameters, which can be used to assess
various sensors and algorithms. Two approaches were employed:
an automatic software-based approach, which offers high preci-
sion and repeatability, and a manual approach, which represents
conventional, manual measurement techniques. Since parame-
ters like convex hull or projected leaf area cannot be measured
manually, the software-based approach includes more parame-
ters.

Automated extraction

The automatic parameters were extracted from the initial high-
accuracy 3D scan of the printed model, taken immediately after
production. We have used Python (v3.10, RRID:SCR_008394) [48]
for an automated parameter extraction, utilizing the libraries
Open3D, NumPy (v1.24.4, RRID:SCR_008633) [49], Potpourri3D
(v0.0.8) [50], Alphashape (v1.3.1) [51], and Descartes (v1.1.0) [52]
besides the Python built-in modules. The following is intended as
a reproducible description of all automatically extracted param-
eters.

On a single-plant scale, the model’'s HEIGHT was determined
by calculating the difference between the highest and the lowest
points of the point cloud. To obtain the wiDTH, the point cloud was
first projected onto the xy-plane. Afterward, the largest euclidean
distance of the point cloud was determined. The calculation of
the CONVEX HULL VOLUME and the CONVEX HULL SURFACE AREA Of
the model was performed by utilizing the Qhull [53] algorithm. To
determine the PROJECTED LEAF AREA, a 2D mesh was generated by
projecting the point cloud onto the xy-plane. Subsequently, the
2D surface area was calculated. The LEAF AREA of the model con-
sists of the surface area of its individual leaves, explained in detail
below.

On single-leaf scale, leaf length (petiole length + leaf blade
length), leaf blade length, leaf blade width, and leaf area param-
eters were assessed according to the European Union measure-
ment guidelines for variety approval [19]. For this purpose, the
point cloud of the model was first manually divided into indi-
vidual leaves by using CloudCompare. The leaves were cropped
as close to the beet body as possible. For a comprehensible mea-
surement, it is essential to determine the coordinates of 3 specific
points: petiole base, leaf blade base, and leaf blade tip. To better
access these points, the longitudinal axes of all leaves were man-
ually aligned with the global x-axis and the transverse axis or-
thogonal to the global z-axis. The petiole base was determined by
identifying the point with the lowest x-axis value, thanks to the
previous transformation. Utilizing the heat method for distance
computation [54], the leaf blade tip was determined as the point
with the greatest distance over the surface of the point cloud to
the petiole base point. The calculated distance represents the LEAF
LENGTH.

To access the leaf base point in sugar beet, a universal defi-
nition that can be applied to all developmental stages of a leaf
must first be established, as to our knowledge there is none. We
suggest defining this spot based on a rapidly increasing leaf width.
For this purpose, the width is measured starting at the petiole base
and moving along the longitudinal axis toward the leaf tip in seg-
ments of 1.0mm by fitting a polynomial curve to the top surface
of the point cloud of a segment. Across all measured segments,
the mean width is continuously calculated by averaging the mean
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of the central 50% of all measurements. If the current measured
width of a segment exceeds the average width by a certain factor,
the midpoint of the leaf base is located within the current seg-
ment. We recommend a factor value of 2.5, since it achieved the
highest level of correlation with manual measurements of sugar
beet leaves in 2D measurements.

After determination of the leaf blade base, the LEAF BLADE
LENGTH was calculated as stated for the leaf length. The width of
the leaf blade was measured orthogonally to the longitudinal axis
of the leaf blade in segments of 1.0 mm using the heat method for
distance computation [54]. The greatest width of all segments was
recorded as the LEAF BLADE WIDTH. To measure LEAF AREA, the leaf
blade was detached from the petiole at the leaf base orthogonally
to the longitudinal axis, and the point cloud of the leaf blade was
meshed using a ball-pivoting algorithm [30]. The sum of all tri-
angles represents the leaf area. The LEAF INCLINATION ANGLE Was
measured for each leaf blade as the angle between the vertical
and a line joining the leaf blade basis and the leaf blade tip to
allow for angles <90°.

Manual extraction

In addition to automatically extracting morphological reference
parameters, conventional measurements were also taken for pa-
rameters that allowed manual extraction using the 3D printed
reference model. For single-plant parameters, a folding rule was
used to measure HEIGHT and WIDTH, while the NUMBER OF LEAVES
was counted manually. For the purposes of quantifying SINGLE-
LEAF MORPHOLOGICAL PARAMETERS, the use of a ruler alone is insuf-
ficient as it cannot accurately portray 3D structures. To overcome
this limitation, a narrow strip of tape was affixed to the reference
model to connect 2 specific points of interest within its 3D struc-
ture. Subsequently, this tape was adhered to a flat sheet of paper
where it could then be measured using a ruler. The LEAF INCLINA-
TION ANGLE was measured using a digital inclinometer. The des-
ignated measurement points and methods for manual and auto-
matic measurements remain consistent.

Use cases in plant phenotyping
Evaluation of 3D sensors

The high accuracy and stability of the reference model enables the
evaluation of sensor systems used for 3D phenotyping in the field
in terms of accuracy and completeness of the plants reconstruc-
tion created with those systems. In this work, we evaluate the 3D
reconstructions of a robotic field platform as a use case for the
reference model as it is described by Esser et al. [55]. The robot
is equipped with a multicamera and a laser line scanner-based
phenotyping system consisting of 20 DSLM cameras and 2 laser
line scanners. The multicamera system’s 3D reconstruction is per-
formed using the PermutoSDF method [56], while the laser-based
system uses position information retrieved from the global navi-
gation satellite system (GNSS) and an inertial measurement unit
(IMU) to reference the position of every measurement. For mul-
titemporal phenotyping capabilities, the robot is equipped with
a georeferencing system including 2 GNSS antennas and a real-
time kinematic (RTK) GNSS receiver. Fig. 3 shows the field robot
and the mounted sensors. For a detailed description of the sensor
properties, their configuration, and the methods used for plant re-
construction, we refer to [55].

To evaluate the reconstructions of the camera and the laser
phenotyping system, we first generated a reference scan of the
printed plant in the lab using the laser line scanning system uti-
lized for the 3D printed model inspection. Afterward, the model
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Figure 3: (A) Field robot phenotyping platform equipped with (B) 2 laser line scanners (LMI Gocator 2490) and (C) 20 DSLM cameras (Nikon Z7). More

details about the platform are provided by Esser et al. [55].

was scanned with the camera and laser phenotyping system of
the robotic field platform to generate 3D point clouds for both
systems. For evaluation, we were interested in the accuracy and
completeness of the point clouds. The M3C2 point cloud distance
metric to the reference scan was used to evaluate the accuracy.
To value the completeness of the 3D model, the reference scan
and the reconstructions of the robotic platform were spatially
subsampled to a point distance of 5mm using a voxel grid filter.
Afterward, the differences in the number of points to the refer-
ence were determined, valuing the completeness of the sensor
systems’ plant reconstruction.

Evaluation of parameter extraction algorithms

Another use case for the reference model is the evaluation of au-
tomatic approaches for plant and leaf parameter estimation, as
we provide highly precise reference values for the most common
parameters on a plant and single-leaf basis. To eliminate possi-
ble influences of the utilized 3D sensor, the approaches can be
tested on the digital 3D model of the reference model. Following
this idea, we present a performance evaluation of an approach to
autonomously measure the leaf length, leaf blade length, and the
leaf blade width introduced by Marks et al. [11].

The approach is based on fitting an a priori leaf model to the
3D point cloud of the reference model. The a priori model is de-
fined as a triangular mesh and represents the standard shape of
a sugar beet leaf. This model was then deformed onto the point
cloud in the fitting process, in order to obtain a triangular mesh
that represents the specific leaf (Fig 4). We then extracted the pa-
rameters based on the deformed leaf model. For a more detailed
explanation of the algorithm, we refer to [11].

Continuous parameter extraction monitoring

The reference model can be used to continuously monitor the
stability of an automatic parameter extraction in the combined
system of sensors and algorithms. Therefore, it is necessary to re-
peatedly collect morphological parameters of the reference model
in various test scenarios and environmental conditions. The ap-
proach can evaluate both verifiable and nonverifiable morpholog-
ical parameters and reduce the need for labor-intensive and de-
structive manual reference measurements.

e

Figure 4: Display of leaf models fitted to the point cloud of the reference
model for (A) leaf 7 and (B) leaf 1. The marked lines indicate the
sections used to measure leaf length, blade length, and blade width.
More details about the algorithm are provided by Marks et al. [11].

To demonstrate this use case for the verifiable parameters
plant height and width and the nonverifiable parameter volume
of the convex hull, the reference model was integrated into our
standard process of 3D data acquisition using a LiDAR scanner in
several greenhouse and field trials cultivating sugar beet (Fig. 1).
The reference model was positioned at different angles and loca-
tions relative to the sensor to maximize the variability of struc-
tural influences like distance or angle of incidence as described
by Medic et al. [57]. After generating a 3D point cloud from the
individual scans of the LiDAR sensor, the reference plant was ex-
tracted manually. The parameter extraction algorithms analyzed
the point cloud of the reference model and extracted the height,
the width, and the volume of the convex hull of the reference
model. The distribution of these parameters was examined and
compared with the specified benchmark parameters.

Results

3D printed model evaluation
Production deviations

Even though recent 3D printers achieve high-dimensional accu-
racy in their prints, there may be variations between the computer
model and the final 3D printed reference model due to the assem-
bly of multiple smaller printed parts. In order to evaluate dimen-
sional differences caused by production, the M3C2 distance and
the frequency of deviations were calculated (see Fig. 5). Positive
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Figure 5: Differences of the computer model and the 3D printed
reference model immediately after production, depicted by the M3C2
distance.
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Figure 6: Dimensional stability of the 3D printed reference model
demonstrated by the M3C2 distance between the model immediately
after production and the model after (A) 143 days and (B) 361 days of
intensive use. In segment (B), 1 leaf is highlighted in gray, which was not
included in the analysis because it was damaged by improper handling.

and negative deviations in the direction of the surface normals
are observable. Some leaves exhibit uniform deviation while oth-
ers show both positive and negative deviations on the same sur-
face, indicating torsional distortion of the leaves. Deviation values
range from approximately —10 mm to +5mm. The average devia-
tion measures —2.5mm.

Dimensional stability

To assess the 3D printed reference model’s dimensional stabil-
ity over time, 2 high-precision 3D measurements were conducted
(see Fig. 6). The initial scan was performed immediately after pro-

Table 1: Morphological parameters of the 3D reference model at
plant scale

Parameter Automated Manual
Height [cm] 27.7 28.0
Width [cm] 451 455
Convex hull [cm?] 3,635 —
Convex hull [cm?] 16,107 —
Leaf area [cm?] 809 —
Projected leaf area [cm?] 522 —
Leaf count — 12

duction, while the second measurement was taken after 143 days
(Fig. 6A). The reference model underwent only slight dimensional
deformation, ranging from —2 mm to +4 mm during the examined
period. The average deformation was +0.2 mm. Most surfaces ex-
perienced deformation in the range of 0mm to —1 mm. However,
it is apparent that the deformations are specific to the individ-
ual leaves. It can be observed that the more extreme deformation
values can be assigned to individual leaves that are either low-
ering or raising. These results are also evident in the reference
model’s second scan after 361 days (see Fig. 6B). The dimensional
deformations found in this case were between —4 mm and +4 mm
and thus have only a slightly larger range compared to the pre-
vious scan. The average deformation was —0.1mm. In addition,
it is again evident that the leaves of the reference model do not
deform uniformly. Overall, the average M3C2 distance values sug-
gest a slight trend toward negative deformation in the direction of
gravity.

Morphological benchmark parameters

Morphological reference parameters were extracted at both the
single-plant and single-leaf scales using automated software-
based and manual methods outlined in the section above. Results
for the single-plant parameters are presented in Table 1. There
are only slight differences observed between the digital and man-
ual extraction of a parameter. Extracted parameters for individual
leaves are presented in Table 2, where the differences between the
2 extraction techniques are more noticeable. The average devia-
tion between the 2 methods is 1.2 cm for the leaf length, 1.2cm
for the blade length, 0.6 cm for the blade width, and 3.8° for the
leaf angle.

Use cases in plant phenotyping
Evaluation of 3D sensors

Fig. 7 shows the M3C2 distances of the sensors of the robotic phe-
notyping platform to the reference model for 1 example leaf. The
point clouds of the camera and laser sensor systems are regis-
tered to the reference scan using the ICP algorithm. The M3C2
histograms for both sensor systems are showing distances in the
range of £2mm (Fig. 7). The shapes of the histograms are sim-
ilar to a normal distribution, but systematics can be recognized
if looking at the point clouds colored according to the M3C2 dis-
tances in the upper part of the figure. Since Fig. 7 just shows the
results for 1 example leaf, the standard deviations of the M3C2
distances to the reference model were computed and are summa-
rized in Table 3. Note that results for just 10 leaves are shown here
since occlusions of leaves 11 and 12 result in very incomplete re-
constructions for both the camera and laser scanning system. The
mean standard deviations over all 10 leaves for the laser system
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Table 2: Morphological parameters of the 3D reference model at leaf scale

Automated Manual
Leaflength  Blade length Blade width  Leaf angle Leaf area Leaf length Blade length Blade width Leaf angle

Leaf [em] [em] [em] ] [em?] [em] [em] [em] ]

01 254 14.6 9.1 108.7 100.9 27.6 15.6 9.3 104.0
02 26.4 12.0 8.2 65.7 69.6 25.9 14.2 8.4 63.0
03 27.8 14.8 9.2 87.0 92.9 26.4 155 10.1 85.0
04 29.0 13.5 8.3 423 80.7 29.1 14.4 9.1 42.0
05 27.5 14.3 8.7 21.9 90.7 31.9 16.7 10.5 20.0
06 32.0 16.6 10.2 47.8 121.2 28.4 144 9.4 49.0
07 29.1 14.4 9.3 40.4 90.7 27.6 16.1 9.1 41.0
08 235 11.6 7.2 28.8 60.6 223 111 7.0 30.0
09 224 104 6.8 26.7 51.0 234 11.6 7.8 18.0
10 17.9 8.9 4.8 19.8 30.5 18.0 9.3 4.9 12.0
11 17.9 7.4 2.3 17.4 10.0 17.9 8.0 2.4 10.0
12 14.0 8.1 23 10.8 10.4 131 7.5 1.9 4.0

Table 3: M3C2 standard deviations and number of points per leaf
after subsampling for the robot’s laser and camera systems to ref-
erence scan. The percentage values indicate the deviation from
the reference values.

Table 4: Automatically estimated morphological parameters of
the 3D reference model at leaf scale. The percentage values in-
dicate the deviation from the automatically collected benchmark
values.

oM3C2 [mm] Number of points
Leaf Laser Camera Laser Camera Ref
01 0.24 1.18 363 (~7.6%) 382 (—2.8%) 393
02 0.20 0.57 267 (~14.9%) 306 (—2.5%) 314
03 0.20 0.48 399 (—6.6%) 387 (—9.4%) 427
04 0.22 0.47 297 (—8.9%) 340 (+4.3%) 326
05 0.34 0.28 322 (—14.6%) 366 (—2.9%) 377
06 0.32 0.32 354 (—4.1%) 355 (—3.8%) 369
07 0.77 0.29 321 (~15.1%) 362 (—4.2%) 378
08 0.12 0.20 204 (—2.9%) 205 (—2.4%) 210
09 0.37 0.32 226 (~7.0%) 229 (~5.8%) 243
10 0.07 0.36 110 (-10.6%) 106 (-13.8%) 123
Mean 0.28 0.45 9.23% 5.19% —

and camera systems are valued at 0.28 mm (laser) and 0.45 mm
(camera) at a maximum of 0.77 mm (laser) and 1.18 mm (camera).

These results show that both systems deliver reconstructions
with an accuracy on the order of millimeters in most cases. Ta-
ble 3 also shows the number of points after subsampling the point
clouds of the reference, laser, and camera reconstruction. The dif-
ference in the number of points and their percentage to the ref-
erence is used to value the completeness of the reconstructions
(occlusion factor). For the laser point cloud, the mean point dif-
ference over all 10 leaves is 9.23% at a maximum of 15.1% for leaf
7. The results for the camera system show more complete recon-
structions at a mean point difference of 5.19% at a maximum of
13.8% for leaf 10.

Evaluation of parameter extraction algorithms

We used the point cloud of the reference plant collected by a
high-precision laser scanner to validate the template-fitting ap-
proach presented in [11]. The results are reported in Table 4. The
approach performed particularly well for leaf length and blade
width estimation, where the mean errors are 4.1% and 4.2%, re-
spectively. There appears to be a slight trend toward higher algo-
rithmic errors for smaller leaves located in the center of the plant.
The blade length estimation with a mean error of 10.9% was more

Leaf length Blade length Blade width
Leaf [em] [em] [cm]
01 26.1 (+2.8%) 15.6 (+6.8%) 9 (+8.8%)
02 27.7 (+4.9%) 14.4 (+20.0%) 3 (+1.2%)
03 29.3 (+5.4%) 17.8 (+20.3%) 2 (+0.0%)
04 305 (+5.2%) 15.9 (+17.8%) 8 (+6.0%)
05 28.1 (+2.2%) 14.6 (+2.1%) 7 (+0.0%)
06 33.1 (+3.4%) 16.7 (+0.6%) 10 1 (~1.0%)
07 29.5 (+1.4%) 14.2 (—1.4%) 5 (+2.2%)
08 23.7 (+0.9%) 10.4 (—10.3%) 2 (+0.0%)
09 23.4 (+4.5%) 12 1 (+16.3%) 3(=7.4%)
10 19.5 (+8.9%) 0 (+1.1%) 7 (=2.1%)
11 18.8 (45.0%) 3 (+25.7%) 2 (—4.3%)
12 14.7 (+5.0%) 4 (—8.6%) 9 (~17.4%)
Mean 4.1% 10.9% 4.2%

error prone than the estimation of the other 2 parameters. Fig. 4
shows the fitted leaf model for 2 exemplary leaves.

Continuous parameter extraction monitoring

To assess the reliability of an automatic parameter extraction, we
integrated the reference model into our standard 3D data acqui-
sition procedure. Thereafter, algorithms were employed to auto-
matically gather morphological characteristics. Table 5 exhibits
the measurements for the height, width, and volume of the con-
vex hull for 9 measurement dates. Based on the data collected,
there is no noticeable difference in the measured values between
greenhouse and field trials. The measured values for the parame-
ter height and width have a maximum deviation of 1.4% from the
reference value. There is an average deviation of 0.2mm or 0.8%
observed for the height and 0.2mm or 0.5% for the width. The
volume of the convex hull shows a maximum deviation of 8.2%
from the reference value. On average, the measured volume of the
convex hull deviates from the reference by 471.0cm=> or 2.9%. It
can be observed that, with the exception of 1 measurement, the
evaluated parameters always deviate downward and are therefore
lower than the reference parameters.
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Table 5: Monitoring the parameter extraction from the refer-
ence model in greenhouse and field experiments at different time
points. The percentage values indicate the deviation from the au-
tomatically collected benchmark values.

Time Height Width Convex hull volume
[cm] [em] [cm?]

01¢ 27.3 (-1.4%) 44.8 (-0.6%) 16,091.3 (—0.1%)
02¢ 27.5 (—0.9%) 44.5 (-1.4%) 15,705.8 (—2.5%)
03¢ 27.4 (-1.0%) 45.0 (-0.2%) 16,029.8 (—0.5%)
044 27.4 (-~1.0%) 44.7 (-0.8%) 15,690.3 (—2.6%)
05¢ 27.4 (-1.1%) 44.7 (-0.9%) 15,561.6 (—3.4%)
06" 27.7 (£0.0%) 45.1 (+£0.0%) 15,610.0 (—3.1%)
07° 27.7 (£0.0%) 44.9 (-0.4%) 15,473.0 (—3.9%)
ogb 27.4 (—1.1%) 45.1 (+£0.0%) 14,791.0 (—8.2%)
09? 27.8 (+0.4%) 45.2 (+0.2%) 15,774.0 (—2.1%)
Mean 0.2 (—0.8%) 0.2 (—0.5%) 471.0 (—2.9%)

“Greenhouse. "Field.

Discussion

3D reference model

3D printing for referencing in 3D plant phenotyping

In recent years, the use of 3D printing has increased in different
scientific domains, including plant science. Griffiths [58] analyzed
the applications of 3D printing in plant science and found that in
addition to the production of usable plant growth systems (71.4%)
and phenotyping tools (14.3%), 3D printing is already being used
for modeling and analysis validation (14.3%). However, so far, this
usage is limited to the rhizosphere. Liang et al. [59] utilized a 3D
printed artificial model of a tree root cluster to investigate the re-
sponse of vegetated slopes exposed to earthquake ground motion
using geotechnical centrifuge modeling. Although this application
differs significantly from ours, Topp et al. [26] employed 3D print-
ing to fabricate a reference model of a simplified root system and
used it to evaluate automatically extracted parameters like the
number of roots or the convex hull volume. These were the first
studies to employ 3D printing technology for validation purposes
in plant phenotyping.

Compared to using commercial plastic plant models, we iden-
tified several advantages to using 3D printed reference mod-
els. Commercial plant models are mostly ornamental plants,
which, due to their different habitus, can only approximate the
challenges for 3D sensors and algorithms intended for use with
crops. Moreover, 3D scanning can be used to model most organs
of crops in various defined development stages, allowing for a di-
verse range of reference objects that commercial models cannot
provide. Additionally, 3D printable reference models enable stan-
dardized reference approaches in 3D plant phenotyping, as they
can be produced with high accuracy and low effort by researchers
themselves. Topp et al. [26] concluded that printing of plant parts
can provide important reference data for 3D parameter analysis.
However, the previously given examples are limited to laboratory
use. Our reference model is designed for use in outdoor environ-
ments of field trials and is therefore exposed to challenging envi-
ronmental factors like heat, UV light, and moisture that can alter
the model’s dimensions over time.

To validate our proposed plant model as a reference object, the
first step was to analyze the production deviations between the
computer model and the 3D printed reference model to determine
the precision of our manufacturing process. As shown in Fig. 5, we
were able to achieve deviations ranging from —10mm to +5mm
using FDM 3D printing technology. The deviation is believed to be
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primarily due to the assembly process rather than low reproduc-
tion accuracy of the single model parts. Large laminar deviations
are not present, and modern 3D printers have demonstrated ex-
cellent reproduction accuracy [27, 28]. The V-shaped connection
of the leaves requires manual vertical orientation, which may re-
sult in lowered or raised leaf surfaces. Possible improvements of
this connection are discussed below. However, the deviations that
were evaluated appear to be negligible for many morphological
parameters, such as plant height, width, or the length of individ-
ual leaves. The morphological parameter that appears to be the
most affected is supposedly the leaf angle.

To quantify possible dimensional stability problems, the refer-
ence model was examined 143 and 361 days after production. In
between, the reference model was used in greenhouse and field
experiments and subjected to intense external influences such
as UV light, temperature, and humidity, which are known to af-
fect the properties of thermoplastic polymers such as PETG [60].
Nevertheless, the reference model shows only small dimensional
deviations of +4 mm over the course of nearly 1 year, with the ab-
solute mean deviation being close to Omm (Fig. 6). This demon-
strates the stability and usability of our 3D printed reference
model for use in different environments. Two main effects of de-
formation are expected to take place. The first effect is internal to
the leaf, meaning that it affects the shape or size of the leaf blade.
The second effect affects the positioning of the leaf blade by al-
tering its orientation or positioning through a bending of the peti-
ole. Fig. 6 shows that petiole deformation has the greatest effect
on overall deviations, as evidenced by the more or less uniform
coloration of individual leaves. Altogether, there is a slight ten-
dency for the leaves to descend. However, this is not the case for
all leaves of the reference model. To determine the service life of
a 3D printed reference model, the dimensional stability should be
analyzed furthermore. Possible solutions to improve the dimen-
sional stability over time are discussed below.

The analysis demonstrates that consumer-grade FDM 3D print-
ers can accurately print even complex structured models of agri-
cultural crops. The reference model is reproducible and fulfills
necessary requirements for use in plant phenotyping in terms of
accuracy and dimensional stability. Therefore, extracting morpho-
logical parameters from 3D printed plant models for validation
and referencing purposes is a reasonable approach.

Improving production precision and model persistence

Although the production of the reference model is straightfor-
ward, there are some ways to improve it to enhance ease of
production and use, reduce production deviations (illustrated in
Fig. 5), and improve dimensional stability (analyzed in Fig. 6).
These improvements will likely enhance the precision and persis-
tence of the reference model and can be considered when repro-
ducing it. However, it is important to note that the improvements
to be discussed are optional. The current setup is already suffi-
cient with respect to the requirements in 3D phenotyping.

The design of the V-shaped connection between the beet body
and the leaf stems is a major contributor to production deviations.
This connection prevents false lateral alignment but can result in
incorrect vertical positioning of the leaf, as demonstrated in Fig. 5.
An angled connector would resolve this issue and substantially
decrease the deviation between the computer model and the 3D
printed version of the reference model. Another approach for im-
proving the connection could be to embed precast connectors dur-
ing the printing process. Embedding objects during 3D printing is
a technique used in various disciplines and has the potential to
add new functionalities to the printed parts [61]. [t may even be
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Figure 7: M3C2 distances with respect to the reference scan for (A) the
laser line scanner system and (B) the DSLM camera system of the
robotic phenotyping platform.

possible to embed quick connectors to allow for disassembly of
the reference model. However, further research and development
isneeded to validate these reconstructions in terms of production
deviations and temporal stability.

The choice of filament has a strong impact on production de-
viation and dimensional stability. Warping of printed parts dur-
ing production due to cooling can cause deviations on a small
to medium scale and is directly linked to the material proper-
ties of the filament used. PETG was chosen over acrylonitrile bu-
tadiene styrene or polyamide due to its low tendency for warp-
ing and superior mechanical properties compared to PLA, while
still being as easy to process as PLA. A recent advancement in
3D printing involves the utilization of fiber-reinforced filaments.
These filaments consist of a thermoplastic polymer, such as PETG,
as a matrix material and are strengthened with carbon, aramid,
or glass fibers. The application of these engineered materials ap-
pears suitable due to their enhanced elasticity and ultimate ten-
sile strength, as described by Kannan et al. [62]. However, it is cru-
cial to reassess production deviations and dimensional stability
over time when using a new filament type, as the addition of fibers
to PETG can alter characteristics such as the shrinkage ratio [63].

Additionally, the positioning of the leaves on the print bed is
believed to affect print deviation and dimensional stability over
time. Fig. 2 shows that the leaves were printed as a whole in a lat-
eral position, which may cause the stem, being the weakest part,
to warp upward or develop unilateral internal stresses that bend
the stem over time. As a countermeasure, Fig. 8 proposes an im-
proved printing approach for a single leaf. The leaf is cut along its
longitudinal axes and assembled after printing. This method min-
imizes warping due to the large contact surface of the stem with
the print bed and generates counteracting internal stresses in the
stem, leading to reduced deformation over time. Furthermore, this
technique significantly reduces the need for support structures
by eliminating overhanging parts, which minimizes both printing
time and waste. In addition, when combined with a variable layer
height, as shown in Fig. 8, it has the potential to improve the sur-
face texture of the printed objects.

The Gyroid infill pattern was chosen for its isotropic proper-
ties [36]. However, it is worth noting that PETG printed parts ex-
hibit improved mechanical properties with increasing infill den-
sity [34]. According to Sepahi et al. [38], PETG printed parts reach
their optimal tensile strength when printed with an infill pattern
parallel to the direction of loading. Therefore, it may be more ben-
eficial to print the single leaves with a dense infill pattern linear to
the stem. This can be achieved by using a high number of perime-

|
0.07 0.15 0.20

Layer heigth [mm]

Figure 8: Improved printing orientation and variable layer height
illustration (colored scale) for individual leaves. The leaf is cut along its
longitudinal axes and assembled after printing.

ters. When fiber-reinforced filaments are combined with it, the ref-
erence model’s resilience can be significantly enhanced.

Benchmarking parameters

To increase the applicability of the reference model, benchmark
parameters have been collected both automatically and manually
for a variety of use cases. Table 1 contains the extracted plant-
based parameters, while leaf-based parameters are listed in Ta-
ble 2.

The plant parameters show good accordance between the man-
ual and the automated measurement method, while the devia-
tions are considerably higher for leaf parameters. However, it is
important to note that comparisons are made at a high level of
precision, making manual measurements difficult to use. The ob-
served differences are likely to be mainly due to the difficulty of
maintaining consistent measurement points and rules when per-
forming manual measurements, and they are likely to be less af-
fected by systematic measurement errors of one or the other ap-
proach. This situation highlights the challenge of comparing mea-
surements obtained using manual and software-based methods.
Determining the points of the petiole base and leaf blade base can
be challenging, as previously noted. This applies to both manual
and software-based measurements, as well as comparisons be-
tween different algorithms. To address this, benchmark parame-
ters were collected in a clear and traceable manner.

A subsequent implementation of novel 3D morphological pa-
rameters for plant phenotyping applications is conceivable. Given
the high point accuracy and density of the original 3D reference
model, it is feasible to collect measurements for new parameters
on an idealized database. Later, these measurements can be com-
pared to real-world data, which may be biased by environmen-
tal influences, data collection procedures, or the use of a lower-
quality sensor for data acquisition.

Use cases in plant phenotyping
Evaluation of 3D sensors

Based on the extracted benchmark parameters and the inclusion
of novel morphological 3D parameters for plant phenotyping, the
3D reference model can be applied to numerous use cases. The
first use case involves comparing different 3D sensors and their
use for 3D phenotyping. This is a crucial topic as different sen-
sor types use different physical approaches to acquire data, which
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can have an individual influence on the resulting data structure
and its accuracy [14]. In addition, different sensor types require
special positioning or data recording procedures for the plant,
which affects the sensor’s field of view and, consequently, the oc-
clusion rate it can achieve.

Esser et al. [55] previously compared the used laser and camera
sensor systems using a real plant, similar to our approach. How-
ever, their comparison was based on an unstable living object that
is not available to other researchers. By using a printed 3D refer-
ence model, our comparison provides greater context and better
reproducibility and enables other research facilities to compare
their 3D sensor systems and track technological progress in this
area. Table 3 displays the results of the sensor comparison con-
ducted in this study. It is noteworthy that the laser system, while
twice as accurate as the camera system, has a significantly higher
occlusion rate. The camera system produces more complete re-
constructions, which can be attributed to its sensor configuration.
Equipped with 20 cameras, it measures the plants from multiple
angles, resulting in a more complete reconstruction compared to
the laser scanning system, which only observes from the right and
left sides. However, none of the systems were able to reconstruct
the 2 innermost leaves of the reference model to a usable degree.
This demonstrates the potential of the reference model in iden-
tifying weak points in reconstruction, which can be addressed by
the development of future 3D sensor systems and reconstruction
algorithms.

The results shown here highlight the potential of the 3D ref-
erence model for the evaluation of 3D phenotyping systems by
making a statement about the accuracy and completeness of their
reconstructions.

Evaluation of parameter extraction algorithms

Our second use case involves the use of the reference model to
evaluate algorithms for extracting morphological parameters at
the plant and leaf level. This is achieved by comparing the output
of an algorithm with the automatically or manually extracted pre-
cise benchmark parameters.

Precise definition of the measurement parameters is crucial
at the high level of accuracy enabled by modern 3D sensors.
Scholz et al. [10] identified issues when comparing results from 2
measurement methods due to differing definitions used to record
values. Golbach et al. [17] described the noise in (manual) ref-
erence data as the limiting factor for the accuracy of 3D mea-
suring approaches. This limitation applies especially to measur-
ing parameters such as leaf angle, which are typically difficult to
access through manual measurements [20-22] or human scor-
ing [10, 19]. The automatically morphological measurements con-
ducted in this study are precisely defined and can be imitated.
They serve as benchmark values obtained under optimized con-
ditions. These values can be used to evaluate the performance of
a tested algorithm intended for practical use with an optimal data
basis.

To simulate this use case, a state-of-the-art algorithm by
Marks et al. [11] for estimating single-leaf morphological param-
eters of sugar beet was investigated. It was developed to estimate
the total leaf length, leaf blade length, and leaf blade width under
real field conditions and with respect to incomplete point clouds
by detecting key points of sugar beet leaves. The results are pre-
sented in Table 4. The algorithm’s performance on real-world data
is reasonable for leaf length and leaf width, which are in good
agreement with the benchmark values. Fig. 4 displays 2 examples
of the leaf model fitted to the point cloud of the reference model,
demonstrating the approach'’s effectiveness. However, the estima-
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tion of the length of the leaf blade exhibits a higher mean error
rate. This is likely due to the difficulty in detecting the joint be-
tween the petiole and the leaf blade, as well as the ambiguity in
the definition of this point (see above).

This observation highlights the importance of defining key
measurement points accurately. Another example of this is
the consistently positive deviation in leaf length observed in
the algorithm used (see Table 4). It can be concluded that
the definition of the stem base should be investigated and
optimized.

In this use case, the ability to detect systematic errors in al-
gorithms used to extract morphological parameters was demon-
strated. Based on this, fine-tuning can be performed to match the
recorded values with the provided benchmark parameters. Fur-
thermore, these data can be used to compare different parameter
extraction algorithms among each other.

Continuous parameter extraction monitoring

The third use case utilizes the 3D reference model as a stable ref-
erence object for automatic parameter extraction in scientific ex-
periments. This approach offers 2 main benefits: evaluating the
measurement system (interaction of sensor and algorithm) used
for plant phenotyping under practical conditions and creating ver-
ification data for both verifiable and nonverifiable morphological
parameters that lack necessary reference data.

The study demonstrates that the used measurement sys-
tem performs well in various environments, allowing for high-
precision monitoring at millimeter scale of specific 3D parame-
ters. The results also indicate that the measurement system is rel-
atively insensitive to changes in distance and angle of incidence
between the reference model and the sensor, as shown in Table 5.
The results confirm the accuracy of the approach used without
requiring intensive manual labor for reference measurements.
They also indicate that it is possible to reference parameter ex-
tractions for 3D parameters that are not verifiable under normal
circumstances, such as the volume of the convex hull. However,
time point 8 shows a significant decline in the measured value
for the convex hull (Table 5). Simultaneously, the measurements
for plant height and width show no unusual behavior. A visual
inspection confirmed the integrity of the underlying point cloud.
This leads to the conclusion that higher-dimensional parameters,
such as the volume of the convex hull, are more prone to mea-
suring errors than 1-dimensional parameters like plant height
or width. Therefore, high-dimensional parameters generally ex-
hibit greater parameter variation and tend to have more measure-
ment outliers. With this in mind, the proposed 3D reference model
provides the opportunity to monitor these types of parameter
extractions.

Regarding the implementation of new 3D phenotyping param-
eters, this discovery allows the user to measure the stability and
usefulness of novel parameters that can only be obtained through
the combination of software-based data acquisition and subse-
quent data analysis. Therefore, only stable 3D parameters are use-
ful for 3D phenotyping.

The proposed use case allows the user to easily evaluate
whether the required tolerances in automatic parameter extrac-
tion are met or not. However, this workflow has a limitation in that
it cannot automatically identify the source of errors but rather
simplifies the evaluation process. Measurement errors must be
manually determined as either due to a defective 3D model by the
3D sensor (such as scale errors, high occlusion rates, or outliers)
or caused by processing algorithms (such as faulty preprocessing,
segmentation, or extraction errors).
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Future scenarios

The use of 3D printing for creating reference objects in plant phe-
notyping is not restricted to sugar beet and the leaf apparatus. We
see an opportunity to apply this concept to other cultivated crops,
even if they have unique design and production requirements.
Rosulate plants appear to have an advantage in re-creating the
leaf apparatus, while creating a 3D printable wheat plant model
presents a challenge. In any case, proposed improvements to the
production process should be investigated, as they can contribute
to better production accuracy and resilience, thus extending the
use of a model.

Re-creating small-scale organs or details of plants using 3D
printing is not a major future challenge, as other 3D manufac-
turing technologies like stereolithography offer far greater qual-
ity compared to FDM. The challenge is to ensure that the model
can withstand the various mechanical and physical forces that
occur in everyday use. Thin leaf stems, for example, pose a risk
of breakage or deformation. When creating a 3D printable model
of plants with upright stem growth, such as wheat or maize,
it is necessary to adapt the production technique. A combina-
tion of 3D printed leaf surfaces and carbon fiber rods, which act
as stems, seems to be a conceivable option. The making of a
reference model for a new crop is subject to different require-
ments, which are determined by the model’s architecture and in-
tended application. This study demonstrates the process for cre-
ating a sugar beet reference model for use in indoor and out-
door environments. However, this process may need to be modi-
fied for creating reference models for plants with different growth
types.

Nevertheless, the creation of a 3D reference model seems to be
possible for juvenile growth stages of most agricultural crops. Cre-
ating reference models for different growth stages of a crop could
provide additional benefits by demonstrating a wider range of
morphological characteristics and 3D architecture. This would al-
low for a better basis of comparison between the reference model
and plants under investigation at any growth stage. Additionally,
the proposed workflow could be adapted to horticultural produc-
tion to produce 3D printed fruits and vegetable references. This
would be useful for tasks such as monitoring 3D shape comple-
tion, as performed by Magistri et al. [64] and Pan et al. [65], for use
in robot automated greenhouses.

In addition to the broadly described advantages of using 3D
printing in 3D plant phenotyping, there are also possible limita-
tions to consider. One such limitation is the difficulty in accu-
rately representing the optical properties of a real plant, specif-
ically its spectral reflectance influenced by the color and material
type of the filament used. This is due to the fact that most avail-
able filament is monochromatic and the spatially varying reflec-
tive properties of a plant are difficult to print. Therefore, it may
be more effective to consider coating a reference model in order
to achieve a more accurate plant-like spectrum. Another poten-
tial limitation to consider is the long-term dimensional stability
of a 3D printed reference model. Our research has shown that
the reference model experiences relatively low-dimensional de-
formation after 1 year of intensive use. However, it is important to
continuously conduct deformation analysis to ensure the model’s
integrity. It is worth noting that deformation can be influenced
by various factors, such as the model’s structure, the materials
used, and 3D print settings. Each variation in these can possibly
change the dimensional stability and must be evaluated for long-
term use.

Conclusion

Consumer-grade FDM 3D printing enables to produce highly ac-
curate and stable reference models for application in 3D plant
phenotyping, contributing to solving the issue of referencing mor-
phological parameter extractions. The proposed reference model
is accurately reproducible and stable over a longer period, indi-
cating that FDM 3D printing is a suitable production technique
for the suggested applications. The introduced process of creat-
ing a 3D reference model for sugar beets can serve as an ex-
ample for developing similar reference models for other widely
used arable or horticultural crops. Through the experiments con-
ducted, it was determined that 3D reference models can serve a
wide range of applications in 3D plant phenotyping. Besides rep-
resenting a standardized approach for comparing 3D sensor sys-
tems based on their accuracy and reconstruction completeness of
plants, an evaluation of the precision of parameter extraction al-
gorithms designed for high-throughput phenotyping under ideal
conditions was demonstrated using our reference model. Addi-
tionally, the reference model is used to monitor the extraction
of morphological parameters under practical conditions. There-
fore, it is possible to provide verification data for 3D morphologi-
cal parameters that cannot be referenced using traditional refer-
encing methods used in plant phenotyping. We provide files and
a detailed description for reprinting the model, along with pre-
cise manual and automated benchmark parameters for plant and
single-leaf parameters, enabling the research community to repli-
cate and benefit from our research.
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