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Abstract 

Bac kgr ound: This study addresses the importance of precise referencing in 3-dimensional (3D) plant phenotyping, which is crucial 
for advancing plant breeding and improving crop production. T raditionally , reference data in plant phenotyping r el y on inv asi v e 
methods. Recent advancements in 3D sensing technologies offer the possibility to collect parameters that cannot be r efer enced by 
man ual measur ements. This work focuses on ev aluating a 3D printed sugar beet plant model as a r efer encing tool. 

Results: Fused deposition modeling has turned out to be a suitable 3D printing technique for creating reference objects in 3D plant 
phenotyping. Production deviations of the created reference model were in a low and acce pta b le r ange . We w er e a b le to achiev e 
deviations ranging from −10 mm to + 5 mm. In par allel, w e demonstr ated a high-dimensional stability of the r efer ence model, r eaching 
only ±4 mm deformation over the course of 1 year. Detailed print files, assemb l y descriptions, and benc hmark par ameters ar e pr ovided, 
facilitating r e plication and benefiting the r esear c h community. 

Conclusion: Consumer-grade 3D printing was utilized to create a stable and reproducible 3D reference model of a sugar beet plant, 
addressing challenges in referencing morphological parameters in 3D plant phenotyping. The reference model is applicable in 3 
demonstrated use cases: evaluating and comparing 3D sensor systems, investigating the potential accuracy of parameter extraction 

algorithms, and contin uousl y monitoring these algorithms in practical experiments in greenhouse and field experiments. Using this 
approach, it is possible to monitor the extraction of a nonverifiable parameter and create reference data. The process serves as a 
model for developing reference models for other agricultural crops. 

Ke yw ords: 3D plant phenotyping, 3D printing, r efer ence 
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Bac kgr ound 

Ada pting a gricultur al cr op pr oduction to incr easingl y c halleng- 
ing environmental conditions is critical for enhancing production 

le v els and ensuring production security. Farmers face challeng- 
ing growing conditions caused by various biotic and abiotic envi- 
r onmental factors. Cultiv ation of an a ppr opriate cr op v ariety is a 
successful a ppr oac h to maintain stable yields and handle climatic 
changes [ 1 ]. Ho w ever, plant breeding for novel crop varieties is a 
time-consuming process that requires a lot of labor-intensive and 

reliable information about the interaction of a crop genotype with 

its en vironment. T he process of accessing this information in form 

of geometric or physiological properties of the plant is called plant 
phenotyping. Tr aditionall y, the acquisition of plant c har acteristics 
is associated with inv asiv e and destructiv e methods, whic h is still 
the basis of modern plant br eeding [ 2 , 3 ]. Ne v ertheless, the de- 
velopment and now widespread availability of noninvasive mea- 
sur ement tec hnologies has led to a ne w er a in the phenotyping of 
plants [ 4 , 5 ]. 

In the past decades, 3-dimensional (3D) plant phenotyping was 
utilized for assessing geometric properties of plants. Advances in 

passi ve and acti ve optical sensors, coupled with 3D reconstruc- 
tion algorithms , pro vide the basis for pr ecise high-thr oughput and 

high-r esolution 3D anal ysis of abov e-gr ound plant structur es, ad- 
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ancing 3D shoot phenotyping r esearc h [ 6 , 7 ]. This r esearc h topic
ims to access the intricate 3D structure of plants by measur-
ng v arious mor phological tr aits and gather data about a crop’s
r owth status, ultimatel y r esulting in an enhanced compr ehen-
ion of plant gr owth. Additionall y, information about the 3D struc-
ure of a plant is essential for crop modeling [ 2 ] and can e v en be
sed to correct other optical sensor data [ 2 , 8 ]. Combining 3D data
cquisition with advanced analysis techniques enables measure- 
ent of diverse morphological growth parameters across various 

cales, r anging fr om the canopy to single plant and or gan le v el [ 2 ,
 ]. 

Based on their r esearc h, Sc holz et al. [ 10 ] concluded that an au-
omatic morphological parameter assessment using 3D models 
an fulfill breeders’ needs for accurate phenotypic data. The 3D
ensor technology has advanced to the extent that close-range,
igh-resolution scanning with millimeter accuracy and precision 

s becoming incr easingl y affordable. A digital r epr esentation of a
lant’s structure in the form of a 3D model (point cloud or mesh)
an be used to digitize morphological measurements down to 
he scale of individual organs [ 11 , 12 ]. Additionally, digital repre-
entations offer the potential to de v elop ne w 3D c har acteristics
f plants that cannot be ca ptur ed by humans like plant volume
r surface area, establishing them as important traits for plant
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Figur e 1: T he pr oposed 3D printed r efer ence model for sugar beet in (A) 
greenhouse and (B) field experiments. 
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reeding [ 13 ]. Ho w ever, this potential has not been extensiv el y ex-
lor ed. Extr acting 3D c har acteristics of plants in high thr oughput
nd under field or greenhouse conditions presents several chal-
enges regarding data acquisition with different sensor systems,
s well as processing and analysis of the data [ 14 ]. Ultimately, all
ensor types face the problem of validating their measurements. 

Validation in high-resolution 3D scanning r equir es r efer ence
ata to produce accurate and reliable results. In 3D plant phe-
otyping, r esearc hers deal with complex structured, small-scale
bjects. Man y mor phological featur es like plant height or leaf
ength can be r etrie v ed fr om a 3D plant model using custom or
ommerciall y av ailable anal ysis softwar e like CloudCompar e [ 15 ].
o w e v er, e v aluating these featur e extr actions can be c halleng-

ng. The validation of many parameters still relies on manual
easurements or visual scoring by human experts, which is

abor-intensive and has limited precision. The accuracy of visual
coring is often questioned, for example, in disease assessment.
utter et al. [ 16 ] documented the impact of human raters on

he final disease scor e. Sc holz et al. [ 10 ] used expert scoring as a
 efer ence for 3D assessment of morphological parameters . T hey
oncluded than human scoring is prone to errors and identified
he quantification of small-par ameter v ariations as one of the
reatest weaknesses of human scoring. Moreover, manual refer-
nce measurements have limitations in properly representing the
lant’s 3D structure. Modern sensor technology and advanced pa-
 ameter extr action algorithms pose a challenge to the use of man-
al measurements and visual scoring as reference data. 

Additionall y, we hav e identified 3 gener al categories of 3D pa-
ameters for plants . T he first category includes parameters that
an be e v aluated by cr eating r efer ence data thr ough manual
easurements . T his is limited to single, easy-to-derive param-

ters, such as plant height or leaf length. Determining precise
ata for these parameters is relatively straightforw ar d but time-
onsuming and often inv asiv e [ 2 , 17 ], whic h pr ecludes the gener a-
ion of time-series data. Golbach et al. [ 17 ] performed 3D measure-

ents of leaf length and width and stem length and created refer-
nce data using inv asiv e 2-dimensional (2D) scans from a flatbed
canner. The authors report that physical and computational bias
ffect their r efer ence measur ements due to the 3D nature of the
easured objects . T hey also identify the noise of the r efer ence

ata as the limiting factor of the accuracy of their 3D measure-
ents. Nguyen et al. [ 18 ] used the same r efer encing method as
olbach et al. [ 17 ] by utilizing 2D scans for leaf length, width,
erimeter, and area to determine the reconstruction accuracy of a
e v eloped 3D scanning system for plant phenotyping. They used a
onventional plastic houseplant to validate their measurements.
o w e v er, in order to access the 2D r efer ence data, the plastic plant
ad to be cut, rendering it useless and providing no real advantage
ver using a biological plant. 

Second, we refer to parameters that are typically accessed
hrough visual scoring because they cannot be measured man-
ally or only with great difficulty. This process is time-consuming
nd lacks high accuracy [ 10 , 16 ]. An example for this category is
he scoring of leaf attitude, which describes the ov er all leaf an-
le of a plant. This r equir es a considerable amount of work and
ften lacks the necessary precision. For instance, trained experts
av e scor ed the leaf angle either absolutel y [ 10 ] or r elativ el y [ 19 ].
o w e v er, the leaf angle can also be measured using either a pro-

ractor [ 20 , 21 ] or a digital inclinometer [ 22 ], but this process is
 v en mor e time-consuming. 

The third category includes parameters that are not measur-
ble by humans and can only be retrieved through the combi-
ation of advanced optical sensor techniques and computer al-
orithms . P ossible examples of fine morphological and novel pa-
ameters that cannot be captured by human workers include the
onvex hull or the shadow cast of a plant. Computerized data ac-
uisition and analysis enable the recording of parameters of all
ategories while being noninv asiv e, compr ehensible, and r esource
fficient. It is essential to monitor and r efer ence the extraction of
arameters of all categories to provide a reliable data source for
uture plant breeding. 

Biskup et al. [ 23 ] made initial a ppr oac hes to create a functional
D r efer ence shoot model. They used soybean lea ves , fixed them
o a flat board, and varied the angle of the board r elativ e to a
ter eo camer a set up to determine the accur acy of the setup for
eaf angle determination. Similarly, Dandrifosse et al. [ 24 ] used
lant leaves of known size and fixed them to a flat board to de-
ermine the accuracy and precision of leaf area measurements
or different leaf angles. Müller-Linow et al. [ 25 ] created a more
ompr ehensiv e 3D model of a plant. They used a 3D plant model
ade of plywood with 8 adjustable flat leaves to evaluate the leaf

ngle estimation of a custom ster eo camer a system with down-
tr eam data anal ysis and r eported a good a gr eement between the
alues of the artificial plant model and the measured values. How-
 v er, both a ppr oac hes pr esented her e onl y deal with the e v alua-
ion of a single mor phological featur e. After all, an artificial plant

odel can be used for r efer encing v arious mor phological par am-
ters . Under these circumstances , the need for a ne w r efer ence
ethod becomes a ppar ent. Topp et al. [ 26 ] used 3D printing to
anufactur e a r efer ence model of a simplified root system and

sed it to e v aluate automaticall y extr acted par ameters. Since the
D printed r efer ence model is based on a digital model of the r oot
ystem, extr acted par ameters can be compar ed to softwar e-based
 efer ence par ameters . T her efor e, they emphasized the significant
ole of 3D printing in 3D phenotyping. 

To address the subject of r efer encing in 3D shoot phenotyping,
e transfer the idea of Topp et al. [ 26 ] of 3D printing reference

tructures for phenotyping to above-ground plant structures and
ropose a 3D model of a sugar beet plant ( Beta vulgaris ) that can
e produced using ad diti ve man ufacturing methods (Fig. 1 ). The

ncreasing popularity of 3D printing in recent years has opened up
ew possibilities for the scientific community to quickly and eas-

l y cr eate parts and pr ototypes. Fused deposition modeling (FDM)
as used to manufacture the 3D reference model due to its reli-
bility and affordability. This technique is widely used in various
isciplines and is known for its ease of handling and r epr oduc-
ion, while maintaining high precision and quality standards [ 27 ,
8 ]. FDM 3D printing is cost-effective and requires minimal finish-
ng work. At the same time, it has low user r equir ements, making



A 3D printed plant model for accurate and reliable 3D plant phenotyping | 3 

s  

m  

s
t  

s  

3  

l  

t  

i  

a  

i  

p  

o  

s  

d  

p  

v

3
T  

u  

(  

e  

l  

u  

t  

c  

s  

o
 

c  

t  

a  

e  

t  

b  

s  

a  

o  

m

w  

n
i  

m  

t  

fi  

c  

p  

I  

w  

d  

(  

t
g  

t  

w  

t  

P
P  

m  

r

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae035/7695669 by Bibl H

als-N
asen-O

hren Klinik user on 20 June 2024
it a cutting-edge technique for rapid prototyping and component 
production that is accessible to everyone. 

The main contribution of this article is an exploration into the 
potential of utilizing a 3D printed plant model as a precise refer- 
encing tool in 3D plant phenotyping. In this field, using 3D print- 
ing for producing reference objects is an innov ativ e a ppr oac h with 

possibilities and limitations yet to be explor ed. Ther efor e, we first 
analyze the deviations between the underlying computer model 
and the 3D printed r efer ence model. Next, we integrate a reference 
model into our r esearc h activities in field and greenhouse exper- 
iments over the course of 1 year. The dimensional stability over 
time is assessed using high-precision laser scanning and down- 
str eam deformation anal ysis. In order to demonstr ate the pr acti- 
cal applications of the reference model and contribute to solving 
the r efer encing pr oblem in 3D plant phenotyping, we pr esent 3 
use cases: 

(A) Classify the suitability of a 3D sensor for plant phenotyping 
by generating precision and occlusion scores 

(B) Ev aluate the accur acy of a par ameter extr action algorithm 

under laboratory conditions 
(C) Monitor the stability of an automatic parameter extraction 

of verifiable and nonverifiable parameters in practical appli- 
cations 

In addition to providing the 3D model of the reference plant 
and a detailed construction manual, we offer benchmark param- 
eters for various morphological parameters on both plant and 

single-leaf scales, which have been extracted automatically using 
softwar e-based a ppr oac hes and manuall y using tr aditional mea- 
suring techniques . T his enables other scientists to use the 3D ref- 
erence model for their research, refine the methods used, and ap- 
ply the gained knowledge to create reference models for other im- 
portant a gricultur al cr ops. 

Material and Methods 

3D reference model 
Data basis 
The 3D r efer ence model is based on a real sugar beet plant (Vasco; 
SESV anderHave N .V.), cultivated under greenhouse conditions. At 
the time of data collection, the plant was a ppr oximatel y at BBCH 

19. The w orkflo w for cr eating the r efer ence model is visualized 

in Fig. 2 . A light detection and ranging (LiDAR) scanner (Faro Fo- 
cus S70; Faro Technologies) was used to create high-precision 

3D point clouds from 12 different viewing angles. Using multi- 
ple spherical r egistr ation tar gets, the single scans wer e r egister ed 

into 1 occlusion-free 3D representation of the sugar beet plant us- 
ing the software Faro Scene. Next, the point cloud was processed 

using outlier r emov al algorithms implemented in the Python li- 
brary Open3D (v0.13.0) [ 29 ]. The surface of the point cloud was 
reconstructed with the help of a ball-pivoting algorithm [ 30 ] 
and smoothed using moving least squares surface reconstruc- 
tion [ 31 ] implemented in the open source softwar e CloudCompar e 
(v2.11.1) [ 15 ]. After this, the resulting triangle mesh was loaded in 

blender (v2.92) [ 32 ] for further manual editing. 

Manual editing 

To make the leaf blades stable and 3D printable, they were thick- 
ened to a ppr oximatel y 3 mm using a solidify modifier. As sugar 
beet stems are comparatively delicate and fragile, it is very diffi- 
cult to r epr oduce them in detail in a 3D printable model. It can be 
assumed that an accurate reproduced stem cannot withstand the 
tresses that occur, for example, due to transport of the printed
odel. For this reason, all stems were thickened using different

culpting tools available in blender, resulting in stronger stems 
hat ar e mor e suitable to r esist ordinary str esses. For the last de-
ign step, the bisect tool was used to split the r efer ence model into
D printable pieces . T his step was mainl y performed to contr ol the
ayer orientation while 3D printing, since they str ongl y influence
ensile force properties of 3D printed parts [ 33 , 34 ]. Following this
dea, the model was split into leaves and beet body, which was
gain split into 3 pieces. Other benefits from splitting the model
nto multiple parts are a lo w er printing failur e r ate due to multi-
le smaller prints and the possibility to print the r efer ence model
n 3D printers with a small build volume . T he cut surface was de-
igned in a V-shape in order to minimize deviations between the
igital and the 3D printed model when assembling the individual
arts later. After completing the manual editing steps, the indi-
idual parts were exported in .stl format. 

D printing 

o produce the reference model via 3D printing, the individ-
al model parts were loaded into the slicer software PrusaSlicer

v2.4.0-beta1) [ 35 ]. A slicer software takes a 3D object file and gen-
rates G-code instructions for the printer to fabricate the object
ay er b y lay er. A Prusa i3 MK3S + printer (Prusa Research a.s.) was
sed together with the standard printer pr ofile. Supports wer e ac-
ivated on the build plate, and the 0.15-mm quality profile was
hosen and adjusted to our r equir ements (perimeters: 3, fill den-
ity: 50%, fill pattern: Gyr oid, brim width: 5 mm, ov erhang thr esh-
ld: 30 ◦). 

The orientation of the individual parts on the print bed is a criti-
al part of the FDM production process, as the connection between
he individual layers is weaker than the material itself [ 36 ]. For ex-
mple, tensile forces should always be applied parallel to the lay-
rs, not orthogonal to them [ 37 ]. Applied to the r efer ence model,
his means that the stems should be oriented parallel to the print
ed, as shown in Fig. 2 . In this way, tensile forces ar e optimall y ab-
orbed by the layers in a parallel direction, and bending forces are
bsorbed orthogonal to the la yers . T he increase in stability due to
ptimal positioning of the individual parts on the print bed is the
ain reason for dividing the model into individual parts. 
The filament material was chosen considering the need to 

ithstand the conditions in field and greenhouse trials and ordi-
ary stresses during transport. Essential material attributes, both 

n a general sense and for ensuring durability, encompass good
ec hanical pr operties alongside high toler ances for moder ate

emper atur es, ultr aviolet (UV) light, and humidity. Mor eov er, the
lament should be easy to print and processable by most
onsumer-grade 3D printers . Considering this , we ha v e c hosen
ol yethylene ter ephthalate gl ycol (PETG) as the printing filament.
t has a high mechanical resilience, is resistant to UV light and
ater, and has has an acceptable tolerance to w ar d temper atur e
eformation [ 33 , 38 ]. In contrast to widely used polylactic acid

PLA), PETG is not biodegradable and therefore more stable over
ime, while showing competitive strength, toughness, and elon- 
ation properties [ 38 ]. Additionally, it is also more flexible and
her efor e less likely to break on impact [ 33 , 37 ]. During printing
ith PETG, limited warping deformation and a low shrinkage ra-

io can be observed [ 39 ]. The model was printed out of Geeetech
ETG Green (Shenzhen Getech Technology Co.) using the Prusa 
ETG profile in PrusaSlicer. The total time needed for printing all
odel parts with the mentioned har dw are and slicer settings was

 oughl y 70 hours. 
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F igure 2: Workflo w for the cr eation of the artificial sugar beet r efer ence plant. The intermediate pr ocesses ar e shown in white boxes. Conducted 
production steps are highlighted in orange while the used software and har dw are are pictured in light red. 
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For assembly, the individual parts were first cleaned of their
upport material. The individual parts were then glued together
ith c y anoacrylate adhesiv e. Finall y, a heat set insert with a di-
meter of 5 mm was melted into the base of the beet body, which
llo w ed it to be easily mounted to a steel rod and positioned in
ny conducted experiment trials (see Fig. 1 ). 

D printed model inspection 

he 3D printed model was scanned immediately after produc-
ion using a high-precision laser triangulation system to create
n accurate digital copy of the model for later analysis . T he sys-
em includes a line laser scanner (P er ceptron ScanWorks V5; P er-
eptron) mounted on a mobile measuring arm (Romer Infinite
.0; Hexagon AB) and has a sub-millimeter accurac y. It w as used
n multiple studies regarding different high-accuracy 3D pheno-
yping a ppr oac hes [ 9 , 40–44 ]. The system’s scanning and r econ-
truction accurac y underw ent e v aluation and was found to be of
xcellent quality [ 40 ]. We hav e used antir eflection spr ay (AESUB
r ange; Scanningspr ay Vertriebs GmbH) to further impr ov e the
uality of the resulting point cloud. The generated point cloud al-

ows for a precise description of the deviations between the com-
uter model of the r efer ence model and the 3D printed model due
o the production process. Scans performed later allo w ed for the

onitoring of dimensional stability over a longer period of time. 

egistration 

o compare the point clouds, their respective coordinate systems
ad to be aligned and r egister ed to minimize systematic errors. To
c hie v e this, the 3D scans of the printed model were first manu-
lly aligned with the digital model as accur atel y as possible using
loudCompar e. As ther e wer e no 3D corr espondence points av ail-
ble, a point-to-plane iter ativ e closest point (ICP) algorithm [ 45 ]
 as emplo y ed as a final r egistr ation tec hnique. Onl y the beet body
nd the petiole base of the point clouds were utilized for the final
 egistr ation to pr e v ent the ICP algorithm fr om av er a ging deforma-
ions of the leaf a ppar atus, thus biasing the actual deviations . T he
 egion ar ound the beet body is consider ed r obust to deformation
hile still offering distinct points and surfaces for precise regis-

ration. 

D point cloud comparison 

he multiscale model to model cloud comparison (M3C2) dis-
ance [ 46 ] was computed to analyze the production deviations
nd structural deformation over time . T he M3C2 technique does
ot r equir e fixed-point corr espondences and, unlike dir ect cloud-
o-cloud comparison methods, is less sensitive to outliers and
he quality of the point clouds themselves. It retains local struc-
ur al featur es and does not r equir e meshing of the point cloud.
he calculation involv es se v er al steps. Initiall y, the surface nor-
als are estimated and oriented. Subsequently, the mean surface

hange in the normal direction determines the distance between
he 2 point clouds. For a compr ehensiv e explanation of the algo-
ithm, we refer to [ 46 ]. The calculation was performed using an
mplementation of the algorithm in the Python library py4dgeo
v0.5.0) [ 47 ]. To finally determine the production deviations, the

3C2 distance between the high-resolution 3D scan immediately
fter the production of the printed model and the computer model
as determined. Changes in deformation over time were assessed
y measuring the distance between the initial 3D scan of the ref-
rence model after production and 1 of the 2 further 3D scans
aken after 143 days and 361 days. During this period, the refer-
nce model was subjected to extensive testing in both greenhouse
nd field environments and underwent significant mechanical,
emper atur e, and UV light–r elated str ess. Ther efor e, the later scan
ccur atel y portr ays r ealistic str esses caused by v arious measur e-
ent applications and long-term use of the model. 
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Morphological benchmark parameters 

To effectiv el y utilize the r efer ence model in pr actical a pplications,
it is necessary to pr ecisel y collect the model’s morphological pa- 
rameters in a well-defined and comprehensible wa y. T he task is to 
gather clear benchmark parameters, which can be used to assess 
various sensors and algorithms. Two approaches were emplo y ed: 
an automatic software-based approach, which offers high preci- 
sion and repeatability, and a manual a ppr oac h, whic h r epr esents 
conv entional, manual measur ement tec hniques. Since par ame- 
ters like convex hull or projected leaf area cannot be measured 

manuall y, the softwar e-based a ppr oac h includes mor e par ame- 
ters. 

A utomated extr action 

The automatic par ameters wer e extr acted fr om the initial high- 
accuracy 3D scan of the printed model, taken immediately after 
pr oduction. We hav e used Python (v3.10, RRID:SCR _ 008394 ) [ 48 ] 
for an automated parameter extraction, utilizing the libraries 
Open3D, NumPy (v1.24.4, RRID:SCR _ 008633 ) [ 49 ], Potpourri3D 

(v0.0.8) [ 50 ], Alphashape (v1.3.1) [ 51 ], and Descartes (v1.1.0) [ 52 ] 
besides the Python built-in modules . T he following is intended as 
a r epr oducible description of all automaticall y extr acted par am- 
eters. 

On a single-plant scale, the model’s height was determined 

by calculating the difference between the highest and the lo w est 
points of the point cloud. To obtain the width , the point cloud was 
first projected onto the xy-plane. Afterw ar d, the largest euclidean 

distance of the point cloud was determined. The calculation of 
the convex hull volume and the convex hull surface area of 
the model was performed by utilizing the Qhull [ 53 ] algorithm. To 
determine the projected leaf area , a 2D mesh was generated by 
projecting the point cloud onto the xy-plane. Subsequently, the 
2D surface area was calculated. The leaf area of the model con- 
sists of the surface area of its individual lea ves , explained in detail 
below. 

On single-leaf scale, leaf length (petiole length + leaf blade 
length), leaf blade length, leaf blade width, and leaf area param- 
eters were assessed according to the European Union measure- 
ment guidelines for variety approval [ 19 ]. For this purpose, the 
point cloud of the model was first manually divided into indi- 
vidual leaves by using CloudCompare . T he lea ves were cropped 

as close to the beet body as possible. For a comprehensible mea- 
surement, it is essential to determine the coordinates of 3 specific 
points: petiole base, leaf blade base, and leaf blade tip. To better 
access these points, the longitudinal axes of all leaves were man- 
ually aligned with the global x-axis and the tr ansv erse axis or- 
thogonal to the global z-axis . T he petiole base was determined by 
identifying the point with the lo w est x-axis value, thanks to the 
pr e vious tr ansformation. Utilizing the heat method for distance 
computation [ 54 ], the leaf blade tip was determined as the point 
with the greatest distance over the surface of the point cloud to 
the petiole base point. The calculated distance r epr esents the leaf 
length . 

To access the leaf base point in sugar beet, a universal defi- 
nition that can be applied to all developmental stages of a leaf 
must first be established, as to our knowledge there is none. We 
suggest defining this spot based on a r a pidl y incr easing leaf width.
For this purpose, the width is measured starting at the petiole base 
and moving along the longitudinal axis to w ar d the leaf tip in seg- 
ments of 1.0 mm by fitting a polynomial curve to the top surface 
of the point cloud of a segment. Across all measured segments,
the mean width is continuously calculated by av er a ging the mean 
f the central 50% of all measurements. If the current measured
idth of a segment exceeds the av er a ge width by a certain factor,

he midpoint of the leaf base is located within the current seg-
ent. We recommend a factor value of 2.5, since it achieved the

ighest le v el of corr elation with manual measur ements of sugar
eet leaves in 2D measurements. 

After determination of the leaf blade base, the leaf blade
ength was calculated as stated for the leaf length. The width of
he leaf blade was measured orthogonally to the longitudinal axis
f the leaf blade in segments of 1.0 mm using the heat method for
istance computation [ 54 ]. The greatest width of all segments was
ecorded as the leaf blade width . To measure leaf area , the leaf
lade was detached from the petiole at the leaf base orthogonally
o the longitudinal axis, and the point cloud of the leaf blade was

eshed using a ball-pivoting algorithm [ 30 ]. The sum of all tri-
ngles r epr esents the leaf area. The leaf inclination angle was
easur ed for eac h leaf blade as the angle between the vertical

nd a line joining the leaf blade basis and the leaf blade tip to
llow for angles < 90 ◦. 

anual extraction 

n addition to automatically extracting morphological reference 
arameters , con ventional measurements were also taken for pa-
ameters that allo w ed manual extraction using the 3D printed
 efer ence model. For single-plant parameters, a folding rule was
sed to measure height and width , while the number of leaves
as counted manually. For the purposes of quantifying single- 

eaf morphological parameters , the use of a ruler alone is insuf-
cient as it cannot accur atel y portr ay 3D structur es . To o vercome
his limitation, a narrow strip of tape was affixed to the reference

odel to connect 2 specific points of interest within its 3D struc-
ur e. Subsequentl y, this ta pe was adher ed to a flat sheet of pa per
here it could then be measured using a ruler. The leaf inclina-
ion angle was measured using a digital inclinometer. The des-
gnated measurement points and methods for manual and auto- 

atic measurements remain consistent. 

se cases in plant phenotyping 

valuation of 3D sensors 
he high accuracy and stability of the r efer ence model enables the
 v aluation of sensor systems used for 3D phenotyping in the field
n terms of accuracy and completeness of the plants reconstruc-
ion created with those systems. In this w ork, w e evaluate the 3D
econstructions of a robotic field platform as a use case for the
 efer ence model as it is described by Esser et al. [ 55 ]. The robot
s equipped with a m ulticamer a and a laser line scanner–based
henotyping system consisting of 20 DSLM cameras and 2 laser

ine scanners . T he m ulticamer a system’s 3D r econstruction is per-
ormed using the PermutoSDF method [ 56 ], while the laser-based
ystem uses position information r etrie v ed fr om the global navi-
ation satellite system (GNSS) and an inertial measurement unit 
IMU) to r efer ence the position of e v ery measur ement. For m ul-
itempor al phenotyping ca pabilities, the r obot is equipped with
 geor efer encing system including 2 GNSS antennas and a r eal-
ime kinematic (RTK) GNSS r eceiv er. Fig. 3 shows the field robot
nd the mounted sensors. For a detailed description of the sensor
r operties, their configur ation, and the methods used for plant re-
onstruction, we refer to [ 55 ]. 

To e v aluate the r econstructions of the camera and the laser
henotyping system, we first generated a reference scan of the
rinted plant in the lab using the laser line scanning system uti-

ized for the 3D printed model inspection. Afterw ar d, the model

https://scicrunch.org/resolver/RRID:SCR_008394
https://scicrunch.org/resolver/RRID:SCR_008633
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Figure 3: (A) Field robot phenotyping platform equipped with (B) 2 laser line scanners (LMI Gocator 2490) and (C) 20 DSLM cameras (Nikon Z7). More 
details about the platform are provided by Esser et al. [ 55 ]. 
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Figur e 4: Displa y of leaf models fitted to the point cloud of the r efer ence 
model for (A) leaf 7 and (B) leaf 1. The marked lines indicate the 
sections used to measure leaf length, blade length, and blade width. 
More details about the algorithm are provided by Marks et al. [ 11 ]. 
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as scanned with the camera and laser phenotyping system of
he robotic field platform to generate 3D point clouds for both
ystems. For e v aluation, w e w er e inter ested in the accur acy and
ompleteness of the point clouds . T he M3C2 point cloud distance
etric to the r efer ence scan was used to e v aluate the accuracy.

o value the completeness of the 3D model, the r efer ence scan
nd the reconstructions of the robotic platform were spatially
ubsampled to a point distance of 5 mm using a voxel grid filter.
fterw ar d, the differences in the number of points to the refer-
nce were determined, valuing the completeness of the sensor
ystems’ plant reconstruction. 

valuation of parameter extraction algorithms 
nother use case for the r efer ence model is the e v aluation of au-

omatic a ppr oac hes for plant and leaf parameter estimation, as
e pr ovide highl y pr ecise r efer ence v alues for the most common
arameters on a plant and single-leaf basis. To eliminate possi-
le influences of the utilized 3D sensor, the a ppr oac hes can be
ested on the digital 3D model of the r efer ence model. Following
his idea, we present a performance evaluation of an approach to
utonomousl y measur e the leaf length, leaf blade length, and the
eaf blade width introduced by Marks et al. [ 11 ]. 

The a ppr oac h is based on fitting an a priori leaf model to the
D point cloud of the r efer ence model. The a priori model is de-
ned as a triangular mesh and r epr esents the standard shape of
 sugar beet leaf. This model was then deformed onto the point
loud in the fitting process, in order to obtain a triangular mesh
hat r epr esents the specific leaf (Fig 4 ). We then extracted the pa-
ameters based on the deformed leaf model. For a more detailed
xplanation of the algorithm, we refer to [ 11 ]. 

ontinuous parameter extraction monitoring 

he r efer ence model can be used to continuously monitor the
tability of an automatic par ameter extr action in the combined
ystem of sensors and algorithms . T her efor e, it is necessary to re-
eatedl y collect mor phological par ameters of the r efer ence model

n various test scenarios and environmental conditions . T he ap-
r oac h can e v aluate both v erifiable and nonv erifiable mor pholog-

cal parameters and reduce the need for labor-intensive and de-
tructi ve man ual r efer ence measur ements. 
To demonstrate this use case for the verifiable parameters
lant height and width and the nonv erifiable par ameter volume
f the convex hull, the r efer ence model was integrated into our
tandard process of 3D data acquisition using a LiDAR scanner in
e v er al gr eenhouse and field trials cultiv ating sugar beet (Fig. 1 ).
he r efer ence model was positioned at differ ent angles and loca-
ions r elativ e to the sensor to maximize the variability of struc-
ural influences like distance or angle of incidence as described
y Medic et al. [ 57 ]. After generating a 3D point cloud from the

ndividual scans of the LiDAR sensor, the r efer ence plant was ex-
r acted manuall y. The par ameter extr action algorithms anal yzed
he point cloud of the r efer ence model and extracted the height,
he width, and the volume of the convex hull of the r efer ence

odel. The distribution of these parameters was examined and
ompared with the specified benchmark parameters. 

esults 

D printed model e v alua tion 

roduction deviations 
ven though recent 3D printers achieve high-dimensional accu-
acy in their prints, there may be variations between the computer

odel and the final 3D printed r efer ence model due to the assem-
l y of m ultiple smaller printed parts. In order to e v aluate dimen-
ional differences caused by production, the M3C2 distance and
he frequency of deviations were calculated (see Fig. 5 ). Positive
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Figure 5: Differences of the computer model and the 3D printed 
r efer ence model immediately after production, depicted by the M3C2 
distance. 

Figure 6: Dimensional stability of the 3D printed r efer ence model 
demonstrated by the M3C2 distance between the model immediately 
after production and the model after (A) 143 days and (B) 361 days of 
intensive use. In segment (B), 1 leaf is highlighted in gr ay, whic h was not 
included in the analysis because it was damaged by improper handling. 

 

Table 1: Mor phological par ameters of the 3D r efer ence model at 
plant scale 

Parameter Automated Manual 

Height [cm] 27.7 28.0 
Width [cm] 45.1 45.5 
Convex hull [cm 

2 ] 3,635 —
Convex hull [cm 

3 ] 16,107 —
Leaf area [cm 

2 ] 809 —
Projected leaf area [cm 

2 ] 522 —
Leaf count — 12 
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and negativ e de viations in the dir ection of the surface normals 
ar e observ able . Some lea v es exhibit uniform de viation while oth- 
ers show both positive and negative deviations on the same sur- 
face, indicating torsional distortion of the leav es. De viation v alues 
r ange fr om a ppr oximatel y −10 mm to + 5 mm. T he a v er a ge de via-
tion measures −2.5 mm. 

Dimensional stability 

To assess the 3D printed r efer ence model’s dimensional stabil- 
ity o ver time , 2 high-pr ecision 3D measur ements wer e conducted 

(see Fig. 6 ). The initial scan was performed immediately after pro- 
uction, while the second measurement was taken after 143 days
Fig. 6 A). The r efer ence model underwent only slight dimensional
eformation, r anging fr om −2 mm to + 4 mm during the examined
eriod. T he a v er a ge deformation was + 0.2 mm. Most surfaces ex-
erienced deformation in the range of 0 mm to −1 mm. Ho w e v er,

t is a ppar ent that the deformations ar e specific to the individ-
al lea ves . It can be observed that the more extreme deformation
alues can be assigned to individual leaves that are either low-
ring or raising. These results are also evident in the reference
odel’s second scan after 361 days (see Fig. 6 B). The dimensional

eformations found in this case were between −4 mm and + 4 mm
nd thus have only a slightly larger range compared to the pre-
ious scan. The av er a ge deformation was −0.1 mm. In addition,
t is again evident that the leaves of the reference model do not
eform uniforml y. Ov er all, the av er a ge M3C2 distance v alues sug-
est a slight trend to w ar d negative deformation in the direction of
ravity. 

orphological benchmark parameters 

or phological r efer ence par ameters wer e extr acted at both the
ingle-plant and single-leaf scales using automated software- 
ased and manual methods outlined in the section abo ve . Results
or the single-plant par ameters ar e pr esented in Table 1 . There
r e onl y slight differ ences observ ed between the digital and man-
al extraction of a parameter. Extracted parameters for individual

eav es ar e pr esented in Table 2 , wher e the differ ences between the
 extraction techniques are more noticeable . T he a verage devia-
ion between the 2 methods is 1.2 cm for the leaf length, 1.2 cm
or the blade length, 0.6 cm for the blade width, and 3.8 ◦ for the
eaf angle. 

se cases in plant phenotyping 

valuation of 3D sensors 
ig. 7 shows the M3C2 distances of the sensors of the robotic phe-
otyping platform to the r efer ence model for 1 example leaf. The
oint clouds of the camera and laser sensor systems are regis-
ered to the reference scan using the ICP algorithm. The M3C2
istograms for both sensor systems are showing distances in the
ange of ±2 mm (Fig. 7 ). The shapes of the histograms are sim-
lar to a normal distribution, but systematics can be recognized
f looking at the point clouds colored according to the M3C2 dis-
ances in the upper part of the figure. Since Fig. 7 just shows the
esults for 1 example leaf, the standard deviations of the M3C2
istances to the r efer ence model wer e computed and are summa-
ized in Table 3 . Note that results for just 10 leaves are shown here
ince occlusions of leaves 11 and 12 result in very incomplete re-
onstructions for both the camera and laser scanning system. The
ean standard deviations over all 10 leaves for the laser system
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Table 2: Morphological parameters of the 3D reference model at leaf scale 

Automated Manual 

Leaf length Blade length Blade width Leaf angle Leaf area Leaf length Blade length Blade width Leaf angle 
Leaf [cm] [cm] [cm] [ ◦] [cm 

2 ] [cm] [cm] [cm] [ ◦] 

01 25 .4 14 .6 9 .1 108 .7 100 .9 27 .6 15 .6 9 .3 104 .0 
02 26 .4 12 .0 8 .2 65 .7 69 .6 25 .9 14 .2 8 .4 63 .0 
03 27 .8 14 .8 9 .2 87 .0 92 .9 26 .4 15 .5 10 .1 85 .0 
04 29 .0 13 .5 8 .3 42 .3 80 .7 29 .1 14 .4 9 .1 42 .0 
05 27 .5 14 .3 8 .7 21 .9 90 .7 31 .9 16 .7 10 .5 20 .0 
06 32 .0 16 .6 10 .2 47 .8 121 .2 28 .4 14 .4 9 .4 49 .0 
07 29 .1 14 .4 9 .3 40 .4 90 .7 27 .6 16 .1 9 .1 41 .0 
08 23 .5 11 .6 7 .2 28 .8 60 .6 22 .3 11 .1 7 .0 30 .0 
09 22 .4 10 .4 6 .8 26 .7 51 .0 23 .4 11 .6 7 .8 18 .0 
10 17 .9 8 .9 4 .8 19 .8 30 .5 18 .0 9 .3 4 .9 12 .0 
11 17 .9 7 .4 2 .3 17 .4 10 .0 17 .9 8 .0 2 .4 10 .0 
12 14 .0 8 .1 2 .3 10 .8 10 .4 13 .1 7 .5 1 .9 4 .0 

Ta ble 3: M3C2 standar d deviations and number of points per leaf 
after subsampling for the robot’s laser and camera systems to ref- 
erence scan. The percentage values indicate the deviation from 

the r efer ence v alues. 

σM3C2 [mm] Number of points 

Leaf Laser Camera Laser Camera Ref 

01 0.24 1.18 363 ( −7.6%) 382 ( −2.8%) 393 
02 0.20 0.57 267 ( −14.9%) 306 ( −2.5%) 314 
03 0.20 0.48 399 ( −6.6%) 387 ( −9.4%) 427 
04 0.22 0.47 297 ( −8.9%) 340 ( + 4.3%) 326 
05 0.34 0.28 322 ( −14.6%) 366 ( −2.9%) 377 
06 0.32 0.32 354 ( −4.1%) 355 ( −3.8%) 369 
07 0.77 0.29 321 ( −15.1%) 362 ( −4.2%) 378 
08 0.12 0.20 204 ( −2.9%) 205 ( −2.4%) 210 
09 0.37 0.32 226 ( −7.0%) 229 ( −5.8%) 243 
10 0.07 0.36 110 ( −10.6%) 106 ( −13.8%) 123 

Mean 0.28 0.45 9.23% 5.19% —
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Table 4: Automaticall y estimated mor phological par ameters of 
the 3D r efer ence model at leaf scale . T he percenta ge v alues in- 
dicate the deviation from the automatically collected benchmark 
values. 

Leaf length Blade length Blade width 
Leaf [cm] [cm] [cm] 

01 26.1 ( + 2.8%) 15.6 ( + 6.8%) 9.9 ( + 8.8%) 
02 27.7 ( + 4.9%) 14.4 ( + 20.0%) 8.3 ( + 1.2%) 
03 29.3 ( + 5.4%) 17.8 ( + 20.3%) 9.2 ( + 0.0%) 
04 30.5 ( + 5.2%) 15.9 ( + 17.8%) 8.8 ( + 6.0%) 
05 28.1 ( + 2.2%) 14.6 ( + 2.1%) 8.7 ( + 0.0%) 
06 33.1 ( + 3.4%) 16.7 ( + 0.6%) 10.1 ( −1.0%) 
07 29.5 ( + 1.4%) 14.2 ( −1.4%) 9.5 ( + 2.2%) 
08 23.7 ( + 0.9%) 10.4 ( −10.3%) 7.2 ( + 0.0%) 
09 23.4 ( + 4.5%) 12.1 ( + 16.3%) 6.3 ( −7.4%) 
10 19.5 ( + 8.9%) 9.0 ( + 1.1%) 4.7 ( −2.1%) 
11 18.8 ( + 5.0%) 9.3 ( + 25.7%) 2.2 ( −4.3%) 
12 14.7 ( + 5.0%) 7.4 ( −8.6%) 1.9 ( −17.4%) 

Mean 4.1% 10.9% 4.2% 
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nd camera systems are valued at 0.28 mm (laser) and 0.45 mm
camera) at a maximum of 0.77 mm (laser) and 1.18 mm (camera).

These results show that both systems deliver reconstructions
ith an accuracy on the order of millimeters in most cases. Ta-
le 3 also shows the number of points after subsampling the point
louds of the r efer ence, laser, and camer a r econstruction. The dif-
erence in the number of points and their percentage to the ref-
rence is used to value the completeness of the reconstructions
occlusion factor). For the laser point cloud, the mean point dif-
er ence ov er all 10 leav es is 9.23% at a maximum of 15.1% for leaf
. The results for the camera system show more complete recon-
tructions at a mean point difference of 5.19% at a maximum of
3.8% for leaf 10. 

valuation of parameter extraction algorithms 
e used the point cloud of the r efer ence plant collected by a

igh-precision laser scanner to validate the template-fitting ap-
r oac h pr esented in [ 11 ]. The r esults ar e r eported in Table 4 . The
 ppr oac h performed particularl y well for leaf length and blade
idth estimation, where the mean errors are 4.1% and 4.2%, re-

pectiv el y. Ther e a ppears to be a slight trend to w ar d higher algo-
ithmic errors for smaller leaves located in the center of the plant.
he blade length estimation with a mean error of 10.9% was more
rr or pr one than the estimation of the other 2 par ameters. Fig. 4
hows the fitted leaf model for 2 exemplary lea ves . 

ontinuous parameter extraction monitoring 

o assess the reliability of an automatic parameter extraction, we
ntegr ated the r efer ence model into our standard 3D data acqui-
ition pr ocedur e . T her eafter, algorithms wer e emplo y ed to auto-
atically gather morphological characteristics. Table 5 exhibits

he measurements for the height, width, and volume of the con-
ex hull for 9 measurement dates. Based on the data collected,
here is no noticeable difference in the measured values between
reenhouse and field trials . T he measured values for the parame-
er height and width have a maximum deviation of 1.4% from the
 efer ence v alue . T here is an av er a ge de viation of 0.2 mm or 0.8%
bserved for the height and 0.2 mm or 0.5% for the width. The
olume of the convex hull shows a maximum deviation of 8.2%
r om the r efer ence v alue . On a v er a ge, the measur ed volume of the
onv ex hull de viates fr om the r efer ence by 471.0 cm 

−3 or 2.9%. It
an be observed that, with the exception of 1 measurement, the
 v aluated par ameters al ways de viate do wnw ar d and ar e ther efor e
o w er than the r efer ence par ameters. 
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Table 5: Monitoring the parameter extraction from the refer- 
ence model in greenhouse and field experiments at different time 
points . T he percentage values indicate the deviation from the au- 
tomatically collected benchmark values. 

Time Height Width Convex hull volume 
[cm] [cm] [cm 

3 ] 

01 a 27.3 ( −1.4%) 44.8 ( −0.6%) 16,091.3 ( −0.1%) 
02 a 27.5 ( −0.9%) 44.5 ( −1.4%) 15,705.8 ( −2.5%) 
03 a 27.4 ( −1.0%) 45.0 ( −0.2%) 16,029.8 ( −0.5%) 
04 a 27.4 ( −1.0%) 44.7 ( −0.8%) 15,690.3 ( −2.6%) 
05 a 27.4 ( −1.1%) 44.7 ( −0.9%) 15,561.6 ( −3.4%) 
06 b 27.7 ( ±0 . 0% ) 45.1 ( ±0 . 0% ) 15,610.0 ( −3.1%) 
07 b 27.7 ( ±0 . 0% ) 44.9 ( −0.4%) 15,473.0 ( −3.9%) 
08 b 27.4 ( −1.1%) 45.1 ( ±0 . 0% ) 14,791.0 ( −8.2%) 
09 b 27.8 ( + 0.4%) 45.2 ( + 0.2%) 15,774.0 ( −2.1%) 

Mean 0.2 ( −0.8%) 0.2 ( −0.5%) 471.0 ( −2.9%) 

a Greenhouse. b Field. 
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Discussion 

3D reference model 
3D printing for referencing in 3D plant phenotyping 

In recent years, the use of 3D printing has increased in different 
scientific domains, including plant science. Griffiths [ 58 ] analyzed 

the applications of 3D printing in plant science and found that in 

addition to the production of usable plant growth systems (71.4%) 
and phenotyping tools (14.3%), 3D printing is already being used 

for modeling and analysis validation (14.3%). Ho w ever , so far , this 
usage is limited to the rhizosphere. Liang et al. [ 59 ] utilized a 3D 

printed artificial model of a tree root cluster to investigate the re- 
sponse of vegetated slopes exposed to earthquake ground motion 

using geotechnical centrifuge modeling. Although this application 

differs significantl y fr om ours, Topp et al. [ 26 ] emplo y ed 3D print- 
ing to fabricate a r efer ence model of a simplified root system and 

used it to e v aluate automaticall y extr acted par ameters like the 
number of roots or the convex hull volume . T hese were the first 
studies to employ 3D printing technology for validation purposes 
in plant phenotyping. 

Compared to using commercial plastic plant models, we iden- 
tified se v er al adv anta ges to using 3D printed r efer ence mod- 
els. Commercial plant models are mostly ornamental plants, 
which, due to their different habitus, can only approximate the 
challenges for 3D sensors and algorithms intended for use with 

cr ops. Mor eov er, 3D scanning can be used to model most organs 
of crops in various defined development stages, allowing for a di- 
v erse r ange of r efer ence objects that commercial models cannot 
pro vide . Additionally, 3D printable reference models enable stan- 
dardized r efer ence a ppr oac hes in 3D plant phenotyping, as they 
can be produced with high accuracy and low effort by r esearc hers 
themselves. Topp et al. [ 26 ] concluded that printing of plant parts 
can provide important reference data for 3D parameter analysis.
Ho w e v er, the pr e viousl y giv en examples ar e limited to labor atory 
use. Our r efer ence model is designed for use in outdoor environ- 
ments of field trials and is ther efor e exposed to challenging envi- 
ronmental factors like heat, UV light, and moisture that can alter 
the model’s dimensions over time. 

To validate our proposed plant model as a reference object, the 
first step was to analyze the production deviations between the 
computer model and the 3D printed r efer ence model to determine 
the precision of our manufacturing process. As shown in Fig. 5 , we 
were able to achieve deviations ranging from −10 mm to + 5 mm 

using FDM 3D printing technology. The deviation is believed to be 
rimarily due to the assembly process rather than low reproduc-
ion accuracy of the single model parts. Large laminar deviations
r e not pr esent, and modern 3D printers hav e demonstr ated ex-
ellent r epr oduction accur acy [ 27 , 28 ]. The V-sha ped connection
f the leav es r equir es manual vertical orientation, which may re-
ult in lo w er ed or r aised leaf surfaces . P ossible impro vements of
his connection are discussed belo w. Ho w ever, the deviations that
er e e v aluated a ppear to be negligible for man y mor phological
ar ameters, suc h as plant height, width, or the length of individ-
al lea ves . T he mor phological par ameter that a ppears to be the
ost affected is supposedly the leaf angle. 
To quantify possible dimensional stability problems, the refer- 

nce model was examined 143 and 361 days after production. In
etween, the r efer ence model was used in gr eenhouse and field
xperiments and subjected to intense external influences such 

s UV light, temper atur e, and humidity, whic h ar e known to af-
ect the properties of thermoplastic polymers such as PETG [ 60 ].
e v ertheless, the r efer ence model shows onl y small dimensional
eviations of ±4 mm over the course of nearly 1 year, with the ab-
olute mean deviation being close to 0 mm (Fig. 6 ). This demon-
trates the stability and usability of our 3D printed r efer ence
odel for use in different en vironments . Two main effects of de-

ormation are expected to take place . T he first effect is internal to
he leaf, meaning that it affects the shape or size of the leaf blade.
he second effect affects the positioning of the leaf blade by al-
ering its orientation or positioning through a bending of the peti-
le. Fig. 6 shows that petiole deformation has the greatest effect
n ov er all de viations, as e videnced by the more or less uniform
oloration of individual lea ves . Altogether, there is a slight ten-
ency for the leaves to descend. Howe v er, this is not the case for
ll leaves of the reference model. To determine the service life of
 3D printed r efer ence model, the dimensional stability should be
nal yzed furthermor e . P ossible solutions to impro ve the dimen-
ional stability over time are discussed below. 

The analysis demonstrates that consumer-grade FDM 3D print- 
rs can accur atel y print e v en complex structured models of agri-
ultur al cr ops . T he r efer ence model is r epr oducible and fulfills
ecessary r equir ements for use in plant phenotyping in terms of
ccuracy and dimensional stability. T herefore , extracting morpho- 
ogical parameters from 3D printed plant models for validation 

nd r efer encing pur poses is a r easonable a ppr oac h. 

mpr oving pr oduction pr ecision and model persistence 
lthough the production of the reference model is straightfor- 
 ar d, ther e ar e some ways to impr ov e it to enhance ease of
roduction and use, reduce production deviations (illustrated in 

ig. 5 ), and impr ov e dimensional stability (anal yzed in Fig. 6 ).
 hese impro vements will likely enhance the precision and persis-

ence of the r efer ence model and can be considered when r epr o-
ucing it. Ho w e v er, it is important to note that the impr ov ements
o be discussed are optional. The current setup is already suffi-
ient with respect to the requirements in 3D phenotyping. 

The design of the V-shaped connection between the beet body
nd the leaf stems is a major contributor to pr oduction de viations.
his connection pr e v ents false lateral alignment but can result in

ncorr ect v ertical positioning of the leaf, as demonstr ated in Fig. 5 .
n angled connector would r esolv e this issue and substantially
ecr ease the de viation between the computer model and the 3D
rinted version of the reference model. Another approach for im-
roving the connection could be to embed precast connectors dur-

ng the printing process. Embedding objects during 3D printing is
 technique used in various disciplines and has the potential to
dd new functionalities to the printed parts [ 61 ]. It may e v en be
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Figure 7: M3C2 distances with respect to the reference scan for (A) the 
laser line scanner system and (B) the DSLM camera system of the 
robotic phenotyping platform. 
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longitudinal axes and assembled after printing. 
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ossible to embed quick connectors to allow for disassembly of
he r efer ence model. Ho w e v er, further r esearc h and de v elopment
s needed to validate these reconstructions in terms of production
eviations and temporal stability. 

The choice of filament has a strong impact on production de-
iation and dimensional stability. Warping of printed parts dur-
ng production due to cooling can cause deviations on a small
o medium scale and is dir ectl y linked to the material proper-
ies of the filament used. PETG was chosen over acrylonitrile bu-
adiene styrene or polyamide due to its low tendency for warp-
ng and superior mechanical properties compared to PLA, while
till being as easy to process as PLA. A recent advancement in
D printing involves the utilization of fiber-reinforced filaments.
hese filaments consist of a thermoplastic pol ymer, suc h as PETG,
s a matrix material and are strengthened with carbon, aramid,
r glass fibers . T he application of these engineered materials ap-
ears suitable due to their enhanced elasticity and ultimate ten-
ile strength, as described by Kannan et al. [ 62 ]. Howe v er, it is cru-
ial to reassess production deviations and dimensional stability
ver time when using a new filament type, as the addition of fibers
o PETG can alter c har acteristics suc h as the shrinka ge r atio [ 63 ].

Additionally, the positioning of the leaves on the print bed is
elie v ed to affect print deviation and dimensional stability over
ime. Fig. 2 shows that the leaves were printed as a whole in a lat-
r al position, whic h may cause the stem, being the weakest part,
o warp upward or de v elop unilater al internal str esses that bend
he stem over time. As a countermeasure, Fig. 8 proposes an im-
r ov ed printing a ppr oac h for a single leaf. The leaf is cut along its

ongitudinal axes and assembled after printing. This method min-
mizes warping due to the large contact surface of the stem with
he print bed and generates counteracting internal stresses in the
tem, leading to reduced deformation over time. Furthermore, this
ec hnique significantl y r educes the need for support structur es
y eliminating overhanging parts, which minimizes both printing
ime and waste. In addition, when combined with a variable layer
eight, as shown in Fig. 8 , it has the potential to impr ov e the sur-
ace texture of the printed objects. 

The Gyroid infill pattern was chosen for its isotropic proper-
ies [ 36 ]. Ho w e v er, it is worth noting that PETG printed parts ex-
ibit impr ov ed mec hanical pr operties with incr easing infill den-
ity [ 34 ]. According to Sepahi et al. [ 38 ], PETG printed parts r eac h
heir optimal tensile strength when printed with an infill pattern
arallel to the direction of loading. T herefore , it ma y be more ben-
ficial to print the single leaves with a dense infill pattern linear to
he stem. This can be ac hie v ed by using a high number of perime-
ers. When fiber-reinforced filaments are combined with it, the ref-
rence model’s resilience can be significantly enhanced. 

enc hmar king parameters 
o increase the applicability of the r efer ence model, benc hmark
ar ameters hav e been collected both automatically and manually
or a variety of use cases. Table 1 contains the extracted plant-
ased parameters, while leaf-based parameters are listed in Ta-
le 2 . 

The plant parameters show good accordance between the man-
al and the automated measurement method, while the devia-
ions are considerably higher for leaf parameters. Ho w ever, it is
mportant to note that comparisons are made at a high le v el of
r ecision, making manual measur ements difficult to use . T he ob-
erv ed differ ences ar e likel y to be mainl y due to the difficulty of
aintaining consistent measurement points and rules when per-

orming manual measurements, and they are likely to be less af-
ected by systematic measurement errors of one or the other ap-
r oac h. This situation highlights the challenge of comparing mea-
urements obtained using manual and software-based methods.
etermining the points of the petiole base and leaf blade base can
e challenging, as previously noted. This applies to both manual
nd softwar e-based measur ements, as well as comparisons be-
ween different algorithms. To address this, benchmark parame-
ers were collected in a clear and traceable manner. 

A subsequent implementation of nov el 3D mor phological pa-
ameters for plant phenotyping applications is concei vable. Gi ven
he high point accuracy and density of the original 3D r efer ence

odel, it is feasible to collect measurements for new parameters
n an idealized database. Later, these measurements can be com-
ar ed to r eal-world data, whic h may be biased by environmen-
al influences, data collection pr ocedur es, or the use of a lo w er-
uality sensor for data acquisition. 

se cases in plant phenotyping 

valuation of 3D sensors 
ased on the extr acted benc hmark par ameters and the inclusion
f nov el mor phological 3D par ameters for plant phenotyping, the
D r efer ence model can be applied to numerous use cases . T he
rst use case involves comparing different 3D sensors and their
se for 3D phenotyping. This is a crucial topic as different sen-
or types use different physical approaches to acquire data, which
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can have an individual influence on the resulting data structure 
and its accuracy [ 14 ]. In addition, different sensor types require 
special positioning or data recording procedures for the plant,
which affects the sensor’s field of view and, consequently, the oc- 
clusion rate it can achieve. 

Esser et al. [ 55 ] pr e viousl y compar ed the used laser and camera 
sensor systems using a real plant, similar to our approach. How- 
e v er, their comparison was based on an unstable living object that 
is not available to other researchers. By using a printed 3D refer- 
ence model, our comparison provides greater context and better 
r epr oducibility and enables other r esearc h facilities to compare 
their 3D sensor systems and tr ac k tec hnological pr ogr ess in this 
area. Table 3 displays the results of the sensor comparison con- 
ducted in this study. It is noteworthy that the laser system, while 
twice as accurate as the camera system, has a significantly higher 
occlusion rate . T he camer a system pr oduces mor e complete r e- 
constructions, which can be attributed to its sensor configuration.
Equipped with 20 cameras, it measures the plants from multiple 
angles, resulting in a more complete reconstruction compared to 
the laser scanning system, which only observes from the right and 

left sides. Ho w e v er, none of the systems wer e able to r econstruct 
the 2 innermost leaves of the reference model to a usable degree.
This demonstrates the potential of the r efer ence model in iden- 
tifying weak points in r econstruction, whic h can be addressed by 
the de v elopment of futur e 3D sensor systems and reconstruction 

algorithms. 
The results shown here highlight the potential of the 3D ref- 

erence model for the e v aluation of 3D phenotyping systems by 
making a statement about the accuracy and completeness of their 
reconstructions. 

Evaluation of parameter extraction algorithms 
Our second use case involves the use of the reference model to 
e v aluate algorithms for extracting morphological parameters at 
the plant and leaf le v el. This is ac hie v ed by comparing the output 
of an algorithm with the automatically or manually extracted pre- 
cise benchmark parameters. 

Precise definition of the measurement parameters is crucial 
at the high le v el of accuracy enabled by modern 3D sensors.
Scholz et al. [ 10 ] identified issues when comparing r esults fr om 2 
measurement methods due to differing definitions used to record 

v alues. Golbac h et al. [ 17 ] described the noise in (manual) ref- 
erence data as the limiting factor for the accuracy of 3D mea- 
suring a ppr oac hes . T his limitation a pplies especiall y to measur- 
ing par ameters suc h as leaf angle, whic h ar e typicall y difficult to 
access through manual measurements [ 20–22 ] or human scor- 
ing [ 10 , 19 ]. The automatically morphological measurements con- 
ducted in this study are precisely defined and can be imitated.
They serve as benchmark values obtained under optimized con- 
ditions . T hese values can be used to e v aluate the performance of 
a tested algorithm intended for practical use with an optimal data 
basis. 

To simulate this use case, a state-of-the-art algorithm by 
Marks et al. [ 11 ] for estimating single-leaf mor phological par am- 
eters of sugar beet was investigated. It was de v eloped to estimate 
the total leaf length, leaf blade length, and leaf blade width under 
real field conditions and with respect to incomplete point clouds 
by detecting k e y points of sugar beet lea ves . T he r esults ar e pr e-
sented in Table 4 . The algorithm’s performance on real-world data 
is reasonable for leaf length and leaf width, whic h ar e in good 

a gr eement with the benchmark values. Fig. 4 displays 2 examples 
of the leaf model fitted to the point cloud of the r efer ence model,
demonstrating the approach’s effectiveness. Ho w ever, the estima- 
ion of the length of the leaf blade exhibits a higher mean error
ate . T his is likely due to the difficulty in detecting the joint be-
ween the petiole and the leaf blade, as well as the ambiguity in
he definition of this point (see above). 

This observation highlights the importance of defining k e y
easur ement points accur atel y. Another example of this is

he consistently positive deviation in leaf length observed in 

he algorithm used (see Table 4 ). It can be concluded that
he definition of the stem base should be investigated and
ptimized. 

In this use case, the ability to detect systematic errors in al-
orithms used to extr act mor phological par ameters was demon-
trated. Based on this, fine-tuning can be performed to match the
 ecorded v alues with the pr ovided benc hmark par ameters. Fur-
hermore, these data can be used to compar e differ ent par ameter
xtraction algorithms among each other. 

ontinuous parameter extraction monitoring 

he third use case utilizes the 3D r efer ence model as a stable ref-
rence object for automatic parameter extraction in scientific ex- 
eriments . T his a ppr oac h offers 2 main benefits: e v aluating the
easur ement system (inter action of sensor and algorithm) used

or plant phenotyping under practical conditions and creating ver- 
fication data for both verifiable and nonverifiable morphological 
arameters that lack necessary reference data. 

The study demonstrates that the used measurement sys- 
em performs well in various en vironments , allowing for high-
recision monitoring at millimeter scale of specific 3D parame- 
ers . T he results also indicate that the measurement system is rel-
tiv el y insensitiv e to changes in distance and angle of incidence
etween the r efer ence model and the sensor, as shown in Table 5 .
he results confirm the accuracy of the approach used without
 equiring intensiv e manual labor for r efer ence measur ements.
hey also indicate that it is possible to r efer ence par ameter ex-
r actions for 3D par ameters that ar e not v erifiable under normal
ircumstances, such as the volume of the convex hull. Howe v er,
ime point 8 shows a significant decline in the measured value
or the convex hull (Table 5 ). Sim ultaneousl y, the measur ements
or plant height and width show no unusual behavior. A visual
nspection confirmed the integrity of the underlying point cloud.
his leads to the conclusion that higher-dimensional parameters,
uch as the volume of the convex hull, are more prone to mea-
uring errors than 1-dimensional parameters like plant height 
r width. Ther efor e, high-dimensional par ameters gener all y ex-
ibit gr eater par ameter v ariation and tend to hav e mor e measur e-
ent outliers. With this in mind, the proposed 3D reference model

rovides the opportunity to monitor these types of parameter 
xtractions. 

Regarding the implementation of new 3D phenotyping param- 
ters , this disco v ery allows the user to measur e the stability and
sefulness of novel parameters that can only be obtained through
he combination of software-based data acquisition and subse- 
uent data analysis . T herefore , only stable 3 D parameters are use-
ul for 3D phenotyping. 

The proposed use case allows the user to easily evaluate
hether the r equir ed toler ances in automatic par ameter extr ac-

ion are met or not. Ho w ever, this w orkflo w has a limitation in that
t cannot automatically identify the source of errors but rather
implifies the e v aluation pr ocess. Measur ement err ors m ust be
anually determined as either due to a defective 3D model by the

D sensor (such as scale errors, high occlusion rates, or outliers)
r caused by processing algorithms (such as faulty preprocessing,
egmentation, or extraction errors). 
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uture scenarios 

he use of 3D printing for cr eating r efer ence objects in plant phe-
otyping is not restricted to sugar beet and the leaf a ppar atus. We
ee an opportunity to a ppl y this concept to other cultivated crops,
 v en if they have unique design and pr oduction r equir ements.
osulate plants appear to have an adv anta ge in r e-cr eating the

eaf a ppar atus, while cr eating a 3D printable wheat plant model
r esents a c hallenge. In an y case, pr oposed impr ov ements to the
r oduction pr ocess should be inv estigated, as they can contribute
o better production accuracy and resilience, thus extending the
se of a model. 

Re-cr eating small-scale or gans or details of plants using 3D
rinting is not a major futur e c hallenge, as other 3D manufac-
uring technologies like stereolithography offer far greater qual-
ty compared to FDM. The challenge is to ensure that the model
an withstand the v arious mec hanical and physical forces that
ccur in e v eryda y use . T hin leaf stems , for example , pose a risk
f br eaka ge or deformation. When creating a 3D printable model
f plants with upright stem gr owth, suc h as wheat or maize,
t is necessary to adapt the production technique. A combina-
ion of 3D printed leaf surfaces and carbon fiber r ods, whic h act
s stems, seems to be a conceivable option. The making of a
 efer ence model for a ne w cr op is subject to different require-
ents, whic h ar e determined by the model’s arc hitectur e and in-

ended application. This study demonstrates the process for cre-
ting a sugar beet r efer ence model for use in indoor and out-
oor en vironments . Ho w ever, this process may need to be modi-
ed for creating reference models for plants with different growth
ypes. 

Ne v ertheless, the cr eation of a 3D r efer ence model seems to be
ossible for juvenile growth stages of most agricultural crops. Cre-
ting r efer ence models for differ ent gr owth sta ges of a cr op could
rovide additional benefits by demonstrating a wider range of
or phological c har acteristics and 3D arc hitectur e . T his would al-

ow for a better basis of comparison between the r efer ence model
nd plants under investigation at any growth stage. Additionally,
he proposed w orkflo w could be adapted to horticultural produc-
ion to produce 3D printed fruits and vegetable references . T his
ould be useful for tasks such as monitoring 3D shape comple-

ion, as performed by Magistri et al. [ 64 ] and Pan et al. [ 65 ], for use
n robot automated greenhouses. 

In addition to the br oadl y described adv anta ges of using 3D
rinting in 3D plant phenotyping, there are also possible limita-
ions to consider. One such limitation is the difficulty in accu-
 atel y r epr esenting the optical pr operties of a r eal plant, specif-
call y its spectr al r eflectance influenced by the color and material
ype of the filament used. This is due to the fact that most avail-
ble filament is monoc hr omatic and the spatially varying reflec-
iv e pr operties of a plant ar e difficult to print. Ther efor e, it may
e more effective to consider coating a reference model in order
o ac hie v e a mor e accur ate plant-like spectrum. Another poten-
ial limitation to consider is the long-term dimensional stability
f a 3D printed r efer ence model. Our r esearc h has shown that
he r efer ence model experiences r elativ el y low-dimensional de-
ormation after 1 year of intensive use. Ho w ever, it is important to
ontinuously conduct deformation analysis to ensure the model’s
ntegrity. It is worth noting that deformation can be influenced
y various factors, such as the model’s structure, the materials
sed, and 3D print settings. Each variation in these can possibly
hange the dimensional stability and must be evaluated for long-
erm use. 
onclusion 

onsumer-grade FDM 3D printing enables to produce highly ac-
urate and stable reference models for application in 3D plant
henotyping, contributing to solving the issue of r efer encing mor-
hological par ameter extr actions . T he pr oposed r efer ence model

s accur atel y r epr oducible and stable ov er a longer period, indi-
ating that FDM 3D printing is a suitable production technique
or the suggested applications . T he introduced process of creat-
ng a 3D r efer ence model for sugar beets can serve as an ex-
mple for de v eloping similar r efer ence models for other widely
sed arable or horticultural crops . T hrough the experiments con-
ucted, it was determined that 3D r efer ence models can serve a
ide range of applications in 3D plant phenotyping. Besides rep-

esenting a standardized approach for comparing 3D sensor sys-
ems based on their accuracy and reconstruction completeness of
lants, an e v aluation of the precision of par ameter extr action al-
orithms designed for high-throughput phenotyping under ideal
onditions was demonstrated using our reference model. Addi-
ionall y, the r efer ence model is used to monitor the extraction
f mor phological par ameters under pr actical conditions . T here-
ore, it is possible to provide verification data for 3D morphologi-
al parameters that cannot be referenced using traditional refer-
ncing methods used in plant phenotyping. We provide files and
 detailed description for reprinting the model, along with pre-
ise manual and automated benc hmark par ameters for plant and
ingle-leaf parameters, enabling the research community to repli-
ate and benefit from our research. 

bbreviations 

D: 2-dimensional; 3D: 3-dimensional; FDM: fused deposition
odeling; GNSS: global navigation satellite system; ICP: iter ativ e

losest point; IMU: inertial measurement unit; LiDAR: light detec-
ion and r anging; M3C2: m ultiscale model-to-model cloud com-
arison; PETG: pol yethylene ter ephthalate gl ycol; PLA: pol ylactic
cid; RTK: real-time kinematics; UV: ultraviolet. 
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