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A B S T R A C T

Potato yield is an important metric for farmers to further optimize their cultivation practices. Potato yield can
be estimated on a harvester using an RGB-D camera that can estimate the three-dimensional (3D) volume of
individual potato tubers. A challenge, however, is that the 3D shape derived from RGB-D images is only
partially completed, underestimating the actual volume. To address this issue, we developed a 3D shape
completion network, called CoRe++, which can complete the 3D shape from RGB-D images. CoRe++ is a
deep learning network that consists of a convolutional encoder and a decoder. The encoder compresses RGB-D
images into latent vectors that are used by the decoder to complete the 3D shape using the deep signed
distance field network (DeepSDF). To evaluate our CoRe++ network, we collected partial and complete 3D
point clouds of 339 potato tubers on an operational harvester in Japan. On the 1425 RGB-D images in the test
set (representing 51 unique potato tubers), our network achieved a completion accuracy of 2.8 mm on average.
For volumetric estimation, the root mean squared error (RMSE) was 22.6 ml, and this was better than the RMSE
of the linear regression (31.1 ml) and the base model (36.9 ml). We found that the RMSE can be further reduced
to 18.2 ml when performing the 3D shape completion in the center of the RGB-D image. With an average 3D
shape completion time of 10 ms per tuber, we can conclude that CoRe++ is both fast and accurate enough
to be implemented on an operational harvester for high-throughput potato yield estimation. CoRe++’s high-
throughput and accurate processing allows it to be applied to other tuber, fruit and vegetable crops, thereby
enabling versatile, accurate and real-time yield monitoring in precision agriculture. Our code, network weights
and dataset are publicly available at https://github.com/UTokyo-FieldPhenomics-Lab/corepp.git.
1. Introduction

Potatoes (Solanum tuberosum) are important for global food secu-
rity (Zhang et al., 2017) and are of considerable economic importance.
In 2021, potato production contributed $100 billion to the US econ-
omy (Knudson and Miller, 2023), and e19.4 billion to the EU economy
in 2023 (Eurostat, 2024). Potatoes have relatively high nutrient re-
quirements and the quantity and timing of nutrient application impacts
tuber yield (Ruark et al., 2014; Love et al., 2005). Excess nutrient
application represents wasted money and can contribute to waterway
eutrophication (Davenport et al., 2005). While fields are typically
uniformly fertilized, variable rate precision fertilization offers the po-
tential to reduce expenses while optimizing tuber yield and reducing
environmental impact (Ahmad and Sharma, 2023). To enable preci-
sion fertilization and to further optimize global resource management,
farmers must have data on field yields. Such field yield data can
be estimated with above-ground biomass measurements (Liu et al.,
2024a,b) or close-range monitoring systems installed on the harvester.

∗ Corresponding author.
E-mail address: pieter.blok@fieldphenomics.com (P.M. Blok).

Such monitoring systems can automatically estimate key yield param-
eters such as tuber number, size, volume, and weight. Commonly used
monitoring systems use load cells attached to the harvesters’ conveyor
belt to measure the mass of the harvested produce in real time (Zamani
et al., 2014; Kabir et al., 2018). Such weighing systems are easy to
use and maintain, but disadvantages of these systems is that they only
capture gross yield and that they include tare (such as stones, soil and
crop residue) in the weight measurement. Therefore, there is a need
for a tare-free and individualized monitoring of tubers, which allows
farmers to learn from their fertilizer management decisions and enable
them to collect detailed information on marketable yields for better
sales decisions.

Tare-free and individualized monitoring of potato tubers can be
accomplished by a camera system and computer vision software. Cur-
rently, at least 14 of such camera systems have been presented in sci-
entific literature: Noordam et al. (2000), Hofstee and Molema (2003),
ElMasry et al. (2012), Razmjooy et al. (2012), Lee et al. (2018), Long
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et al. (2018), Si et al. (2018), Su et al. (2018), Pandey et al. (2019), Cai
et al. (2020), Lee and Shin (2020), Dolata et al. (2021), Huynh et al.
(2022) and Jang et al. (2023). Most of these systems (11 of the 14) used
 single red, green and blue (RGB) color camera to detect the potato
ubers and then estimate their yield parameters using offline calibrated
ixel-to-world conversion factors. While this method proved effective in
alibrated laboratory setups, it was also found to have limited accuracy
or potatoes that are occluded. Occlusion is a common phenomena on
he conveyor belt of an operational harvester.

More recent studies have focused on extending the traditional RGB
camera with additional three-dimensional (3D) vision. With 3D vision,
it is possible to create partial or complete 3D shapes of potato tubers,
allowing for better estimation of tuber yield under the challenging
conditions of occlusion. Cai et al. (2020) extended an RGB camera with
 laser line triangulation method to capture the complete 3D shape of
otato tubers. Although their system enabled very accurate volumetric
stimates of potato tubers in a laboratory setup, the image acquisition
ethod was unfortunately too time-consuming to be applied on an

perational harvester. RGB cameras with embedded depth sensing
bilities, known as RGB-D cameras, allow much higher throughput than
aser triangulation methods. Although being more susceptible to dust
nd motion blur, RGB-D cameras are cheaper and easier to integrate
nto existing machines than laser triangulation methods. RGB-D cam-
ras, such as the ones used by Long et al. (2018) and Su et al. (2018),

are therefore more promising for use on an operational harvester.
A current limitation with RGB-D cameras is that they can only

produce a partial 3D shape of the potato tuber, which can lead to an
nderestimation of the actual size, volume or weight. Combining mul-
iple RGB-D cameras can potentially reduce the effect of this problem,
ut this will not fully solve it and make the overall system complex
nd more expensive. Therefore, it is more desirable and economically

feasible to use a single RGB-D camera, and then estimate the complete
D shape with dedicated software. There are numerous examples in the
cientific literature of using 3D shape completion software to estimate
omplete shapes from partial shapes. Most of the current shape com-
letion methods use deep learning techniques based on multi-layered
erceptrons, graph-based convolutional neural networks and encoder–
ecoder networks to complete the 3D shape from partially completed
oint clouds (Fei et al., 2022). Also in the agricultural domain, where

deep learning applications are widespread for disease detection, yield
prediction and machine automation, there are studies on 3D shape
completion: one on the completion of plant leaves (Chen et al., 2023),
one on the completion of trees (Xu et al., 2023), and five on the
completion of fruits (Ge et al., 2020; Magistri et al., 2022, 2024;
Marangoz et al., 2022; Pan et al., 2023).

When assessing the applicability of 3D shape completion methods
or potato yield estimation, it is crucial to consider their processing
peed. Ideally, the shape completion method should be fast enough to

process all the potato tubers that move over the conveyor belt during
harvest, because this will provide the most complete and accurate yield
estimate possible. Since roughly more than 200,000 potato tubers are
harvested per hectare, the 3D shape completion method must complete
processing in a matter of milliseconds. Of the studies mentioned above,
only the method of Magistri et al. (2022) has the potential to do so.

agistri’s method, called CoRe (Completion and Reconstruction), can
omplete 3D shapes in 4 ms (tested on sweet peppers and strawberries).
he novelty of CoRe is the addition of a convolutional encoder to the
eep signed distance function decoder (DeepSDF, Park et al., 2019).

CoRe’s convolutional encoder compresses RGB-D images into a latent
vector, which is a compact representation of the shape’s geometry.
The latent vector from the encoder is then used along with the 3D
coordinates of the point cloud as input for DeepSDF to reconstruct
the complete 3D shape. Because the latent vector is predicted by the
convolutional encoder, there is no need for DeepSDF’s original time-
consuming latent vector optimization, making the entire 3D shape

completion method significantly faster. w
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Although the work by Magistri et al. (2022) shows the potential
for high-throughput 3D shape completion, there are still unanswered
research questions. First, what is the optimal size of the latent vector
for implicitly learning the shape of the potato tubers? Second, given
that the potato tubers are transported on the conveyor belt and thus
move from bottom to top in the image, what is the best image location
to perform the 3D shape completion? Third, and most important, is the
3D shape completion method able to quickly and accurately estimate
the volume of fast moving potato tubers on an operational harvester?

The main contribution of this paper is the extension of the work
by Magistri et al. (2022) to answer these research questions. We have
conducted a systematic study and analysis on how to optimize the
D shape completion method. Our optimization has led to several
mprovements to CoRe’s original convolutional encoder: an improved
ata preprocessing, geometric and color data augmentations, an up-
ated loss function, an updated neural network architecture, and a
raphical processing unit (GPU)-based 3D mesh generation that im-
roves and speeds up the 3D shape completion for precision agriculture
pplications.

This paper presents the research and development of a 3D shape
ompletion network for estimating the volume of individual potato
ubers on an operational harvester. Our research novelties are four-fold.
irst, we optimized CoRe’s original convolutional encoder for faster and
ore accurate 3D shape completion of potato tubers on an operational
arvester. Second, we performed a systematic analysis of the effect of
he latent size, image analysis region, potato size, and potato cultivar
n the performance of the 3D shape completion of potato tubers.
hird, we conducted two ablation studies on the impact of our new
dditions to the overall performance. Fourth, we publicly released our
D dataset with partially and fully completed point clouds of potato
ubers collected on an operational harvester in dirty and cluttered
ircumstances. Although this study focused on potato tubers, our shape
ompletion method can also be applied to other crops that suffer from
bject occlusion, such as fruits, berries, peppers, tomatoes and other
oot crops. Our method can thus serve the broader purpose of better
andling partial visibility in agricultural applications requiring high
hroughput, such as robotic harvesting, pick-and-place, path planning,
nd obstacle detection and avoidance.

2. Materials and methods

2.1. Dataset

2.1.1. Imaging system
We installed an imaging system above the conveyor belt of a single-

row potato harvester (Toyonoki Top-1, Fig. 1(a)). The imaging system
as installed in a black plastic box with dimensions of 85 cm (width),

45 cm (depth) and 39 cm (height) (Fig. 1(b)). Inside the plastic box,
four light emitting diode (LED) strips were installed to provide light
with a color temperature of 6000 K (Fig. 1(c)). Our enclosed setup not
nly ensured uniform lighting conditions, which improved the RGB-D
mage quality, but also ensured that our system could be used at night.
eflective curtains on the sides of the plastic box helped to diffuse the

ight. In the center of the box, an RGB-D camera (Intel Realsense D405)
as installed that captured images of the conveyor belt with a top-view
erspective. The distance between the RGB-D camera and the conveyor
elt was approximately 0.33 m. At this distance, the camera’s field
f view was 0.64 m (width) by 0.39 m (height). The RGB-D camera
as connected to a Lenovo Thinkpad P53 laptop with an Intel Xeon
-2276M 2.8 GHz CPU with 64 GB RAM and a Nvidia Quadro RTX
000 GPU with 16 GB memory. On the laptop, the Robot Operating
ystem 2 (ROS2, version: Humble Hawksbill) was used to collect color
nd depth images with 30 frames per second. The exposure time of the
GB-D camera was set to 5.0 ms, allowing us to capture the images

ithout motion blur. The images were stored in ROS2 bag files.
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Fig. 1. (a) and (b) give overviews of the imaging system installed on a potato harvester in Sarabetsu, Japan. (c) Inside the imaging box, an RGB-D camera was installed, together
with four LED strips that provided the necessary illumination inside the box. The sides of box were covered with a reflective curtain to generate diffuse lighting conditions.
2.1.2. Image collection on the harvester
RGB-D images were collected from 12 rows in a potato field in

Sarabetsu, Japan (latitude: 42.610316, longitude: 143.156753). The
row spacing in this field was 0.75 m and the potato cultivar was Sayaka.
For each row, a separate ROS2 bag file was recorded and stored on
the laptop. To increase diversity in potato sizes and shapes, we also
collected data by running the harvester in the barn of the farm and then
dumping boxes of two different potato cultivars on the conveyor belt.
Although this mimicked the density of potato tubers on the conveyor
belt in the field, there was no tare in the boxes, making the detection
task easier. The barn experiment was conducted with six boxes of
potatoes, each weighing between eight and ten kilograms. The six boxes
were divided into three boxes with potatoes from the Kitahime cultivar
3 
and three boxes from the Corolle cultivar. A separate ROS2 bag file was
recorded for each box and stored on the laptop.

While running the harvester in the field or in the barn, we collected
images of 339 potato tubers of different sizes and shapes to test our
3D shape completion method. Our collection method consisted of the
following procedure: one person standing in front of the imaging box
randomly selected a potato tuber and then inserted a colored thumb-
tack into the potato. The thumbtack was inserted into the potato such
that it was visible in the RGB image when the tuber passed the image
acquisition region of the RGB-D camera. This procedure was repeated
for all 339 potato tubers. Given the speed of the conveyor belt, we
were able to capture between 20 and 30 images for each marked potato
tuber when it moved under the camera along with the conveyor belt
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Fig. 2. Our potato collection method involved marking potato tubers with a colored thumbtack so that the tuber could be easily identified in the image and easily collected after
image acquisition. (a), (b), and (c) show a tuber marked with a red thumbtack while it moved over the conveyor belt.
(Fig. 2). After the image acquisition, another person standing behind
the imaging box collected the marked potato by hand. The marked
potato was then placed in a bucket that was later brought to the barn
for 3D reconstruction.

2.1.3. 3D reconstruction of potato tubers as ground truth
To obtain the complete 3D shape of the collected potato tubers as

ground truth, we have set up a 3D reconstruction system in the barn
(Fig. 3a). This system consisted of three Canon X7 DSLR cameras, a
turntable (Foldio 360, OrangeMonkie Inc.), four auto-detectable marker
stands (Fig. 3b), and a photo studio with LED illumination.

Prior to taking the images, each collected potato tuber was pierced
with a narrow threaded bolt attached to a white wooden board
(Fig. 3b). This piercing allowed the tuber to be photographed from
three camera perspectives while being held off the ground, allowing
almost the entire longitudinal section of the tuber to be photographed
at once. To capture all sides of the tuber, the turntable was set to
rotate 15 degrees per interval and then stop for two seconds to give the
three cameras time to acquire the images. The image acquisition was
accomplished with a commercial shutter controller (Esper TriggerBox)
that released an electronic trigger to the three cameras at the same
time. For each camera, 24 images were recorded per complete rotation
of the turntable. The resulting 72 images were directly transferred to
the connected laptop computer to store them for 3D reconstruction
(Fig. 3c). The camera parameter settings, image transferring, and image
renaming were accomplished with DigiCamControl software, of which
its details are shown in Fig. 3d.

After the image acquisition, the images were processed to extract
the mask region of the potato tuber. Due to soil residues and light
reflections on the tuber surfaces (Fig. 3e), which were similar to the
black and white background, we had to use a combination of color-
based filtering and a deep learning-based segmentation refinement.
Given that potato tubers are predominantly yellow (Fig. 4), we chose
to use the CIELAB color space, because yellow in CIELAB is represented
with high positive values on the b* axis and near-zero values on the a*
axis, allowing for straightforward filtering without interference from
other colors or lighting conditions (we used b* ≥ 15 for filtering, see
the result in Fig. 3f). By using CIELAB filtering as pre-segmentation,
it became easier for the deep learning network to refine the mask
(Fig. 3g). We used the CascadePSP (Cheng et al., 2020) deep learning
network due to its multi-stage refinement approach, which enabled
better segmentation quality compared to other segmentation networks
like U-Net (Ronneberger et al., 2015) and Mask R-CNN (He et al.,
2017).

After generating the masks of all tubers, we implemented an auto-
matic batch processing workflow based on the Metashape API for 3D
reconstruction (Fig. 3i). First, the images and corresponding masks of
each potato tuber were grouped for each camera and its corresponding
view angles. Then, the control point markers in the images were au-
tomatically detected, the scale bars were automatically imported, and
world coordinates were automatically assigned to each potato tuber.
Afterwards, the images of the different cameras were aligned, and the
corresponding key points were generated. These aligned images served
4 
as input for the 3D reconstruction, which resulted the colored 3D mesh
models for all 339 potato tubers in our dataset. After 3D reconstruction,
small distortions, such as 3D meshes belonging to the white wooden
board were removed. Then, the filtered meshes were double-checked by
another researcher in CloudCompare who removed small disconnected
components if necessary. Fig. 4 illustrates a filtered 3D mesh of a potato
tuber with colored textures.

2.1.4. Dataset splits and volume
After the 3D reconstruction of the 339 collected potato tubers, we

split the dataset into a train, validation and test set. The split was made
in such a way that the three sets contained a representative portion of
different sizes, shapes and cultivars (Fig. 5). Our split ratio was 70% for
the train set (237 potato tubers), 15% for the validation set (51 potato
tubers) and 15% for the independent test set (51 potato tubers).

Because each potato tuber was photographed 20 to 30 times on the
conveyor belt of the harvester, the total number of RGB-D images for
training the encoder was 6794. The number of validation images was
1439 and the number of independent test images was 1425.

The average data volume per potato was 58.5 MB. This consisted of
an average of 55.1 MB for the RGB-D image frames and an average of
3.5 MB for the 3D mesh.

2.2. 3D shape completion network

2.2.1. Encoder and decoder architecture
Our 3D shape completion network was based on the CoRe network

presented in Magistri et al. (2022). Given the many updates made
to CoRe during our research, our 3D shape completion network was
renamed to CoRe++. Fig. 6 gives a schematic overview of CoRe++.
CoRe++ consisted of a convolutional encoder and a decoder. This
encoder–decoder network was chosen over alternatives like 3D convo-
lutions or voxel-based networks due to its small network architecture,
thereby enabling high-throughput processing. The encoder was a small
neural network consisting of seven convolutional layers, each followed
by a Leaky-ReLU activation function and a Max-Pooling layer, see the
details in Table 1. The position of the pooling layer was one of the
changes of CoRe++ compared to CoRe (in CoRe, the pooling layer
was before the activation). We hypothesized that this positional change
of the pooling layer could help prevent the loss of important image
features. After the last convolution block, there was a flatten layer
that flattened the output tensor so that it could be processed by the
fully connected layer. The fully connected layer outputted the latent
vector, which was a compressed representation of the 3D shape of the
potato tuber. The size of the latent vector, which could be configured in
our software, determined the network’s ability to optimize the dataset.
Intuitively, the larger the size, the higher the number of parameters in
the network, meaning that it required larger datasets to properly train.

The decoder of CoRe++ was the coded-shape deep signed distance
function (DeepSDF, Park et al., 2019). This decoder was composed of
nine fully connected layers with a feature dimension output of 512.
The first fully connected layer had an input dimension of latent size +
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Fig. 3. The workflow of our 3D reconstruction included three steps: (1) image collection, (2) image preprocessing, (3) 3D reconstruction with Structure-from-Motion (SfM).

Fig. 4. 3D colored mesh of a potato tuber produced by our 3D reconstruction pipeline. (a) front view, (b) right side view, (c) back view, (d) left side view.

Fig. 5. Kernel density estimate plots for visualizing the volumetric distribution by potato cultivar in the train, validation and test set.

Computers and Electronics in Agriculture 228 (2025) 109673 
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Fig. 6. Schematic representation of our CoRe++ encoder–decoder network for 3D shape completion of potato tubers. The encoder compresses RGB-D images into a latent vector,
which is processed by the DeepSDF decoder to reconstruct the complete 3D point cloud.
Table 1
Neural network architecture of the convolutional encoder of CoRe++.

Layer Type Kernel size Strides Padding Activation Trainable parameters

1 Convolution 3 × 3 1 1 Leaky-ReLU(0.2) 592
2 Max pooling 4 × 4 2 1 – 0
3 Convolution 3 × 3 1 1 Leaky-ReLU(0.2) 4640
4 Max pooling 4 × 4 2 1 – 0
5 Convolution 3 × 3 1 1 Leaky-ReLU(0.2) 18,496
6 Max pooling 4 × 4 2 1 – 0
7 Convolution 3 × 3 1 1 Leaky-ReLU(0.2) 73,856
8 Max pooling 4 × 4 2 1 – 0
9 Convolution 3 × 3 1 1 Leaky-ReLU(0.2) 295,168
10 Max pooling 4 × 4 2 1 – 0
11 Convolution 3 × 3 1 1 Leaky-ReLU(0.2) 1,180,160
12 Max pooling 4 × 4 2 1 – 0
13 Convolution 3 × 3 1 1 Leaky-ReLU(0.2) 4,719,616
14 Max pooling 4 × 4 2 1 – 0
15 Flatten – – – – 0
16 Fully connected – – – – 131,104

Total: 6,423,632
3, which was the result of concatenating the latent vector with the 3-
dimensional vector of the object’s coordinates in x, y, z. After the last
fully connected layer there was a ReLU activation function followed
by a hyperbolic tangent function. The latter outputted values between
−1 and 1. Conceptually, this output is the signed distance to the
object’s surface, in which positive values represent 3D points outside
the object’s surface and negative values represent 3D points inside the
object’s surface. The value’s magnitude corresponded to the distances
to the object’s 3D surface, where values close to zero approximated
the object’s 3D shape. The concept of signed distances is visualized in
Fig. 7.

2.2.2. Data input, preprocessing, augmentation, and postprocessing
The input for the CoRe++ network was a four-channel RGB-D image

that was masked to the potato region and clipped to a fixed-sized image
of 304 × 304 pixels (Fig. 6). This image dimension was chosen such that
the largest tuber in our dataset would completely fit in the image. The
input boxes and masks were obtained after manually annotating the
potato tuber regions with the LabelMe annotation software. Note that
this region clipping and masking can also be achieved with an object
detection or instance segmentation model.

Two new data preprocessing techniques were added to CoRe++.
The first was a depth pixel filtering algorithm, which was extracted
from Blok et al. (2021), that removed all depth pixels that were
further away from the depth values of the majority of the pixels in the
masked depth image. This majority of pixels was assumed to represent
the potato region, and helped to remove depth outliers in the depth
image. The second preprocessing technique was a normalization of the
remaining depth pixels between the minimum (230 mm) and maximum
distance value (350 mm) between the RGB-D camera and the potato
tubers on the conveyor belt. This normalization helped to increase
6 
contrast in the depth image (Fig. 6), which potentially leads to better
model convergence.

In addition to these new data preprocessing techniques, we also
added geometric and color data augmentations to the encoder training
procedure in an attempt to improve the network’s generalization per-
formance. Both geometric and color augmentations were parameterized
so that the augmented images looked different but visually realistic
compared to the original image. The geometric augmentations involved
a random image rotation to a maximum of 45 degrees, a random hori-
zontal flipping of the image and a random vertical flipping of the image.
These augmentations mimicked different orientations of the tubers on
the conveyor belt. The geometric data augmentations were applied to
both the RGB image and the depth image. The color augmentations
were only applied to the RGB image, and involved a random change of
the brightness, saturation and hue of the image, by using the following
parameters: between 0.0 and 0.5 for brightness and saturation, and
between −0.1 to 0.1 for hue. These color augmentations mimicked
different tuber colors and lighting conditions, helping the network to
better generalize to new potato cultivars and different lighting settings.

The data augmentation for training the DeepSDF decoder involved
a random scaling of the original 3D shape with scaling parameters
between 0.5 and 2.0, meaning that the original shape was scaled
between half of its original size and double of its size. The second
data augmentation involved a rotation of the 3D shape around the z
axis by a rotation value between 0.0 and 30.0 degrees. The last data
augmentation was a random shear of the 3D shape of maximally 0.5 in
the x direction. For each original 3D shape, 10 augmented 3D shapes
were included into the train set.

As Fig. 6 indicates, the output of the CoRe++ network is a com-
pleted 3D point cloud. Since it is not possible to calculate volume
directly from a 3D point cloud, we added a 3D data postprocessing
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Fig. 7. Visualization of the signed distances as target values for DeepSDF to learn the 3D shape of potato tubers: red points are negative (inside surface), green points are positive
(outside surface), and blue points are zero (on the surface).
procedure that converted the 3D point cloud into a fully enclosed,
watertight 3D mesh from which the volume could be estimated. Our
3D mesh generation consisted of selecting the predicted signed distance
values less than or equal to 0.0. These values represented the 3D points
on the surface and inside the potato tuber, refer to the blue- and red-
colored points in Fig. 7. From the selected points, a 3D convex hull
shape was extracted using Open3D’s GPU-accelerated hull function. The
convex hull was then smoothed with a triangle-based algorithm (Loop,
1987) that divided each triangle of the hull into four smaller triangles.
The value of four turned out to be optimal for smoothing the 3D
shape in a high-throughput fashion. For applications that are less time-
critical, a value higher than four can be chosen to make the 3D shape
completion even more accurate. What followed were noise suppression
procedures and an iterative voxel-based downsampling of the generated
hull in case it was not watertight. The latter procedure guaranteed that
each produced 3D mesh was watertight so that the volume could be
calculated.

2.2.3. Training procedure
The encoder and decoder were trained in the opposite order: first

the DeepSDF decoder was trained on the complete 3D shapes in order
to optimize the latent vectors. Then, the encoder was trained to fit the
preprocessed RGB-D images to the target latent vectors. In Fig. 6, these
two training procedures are visualized by the blue colored and purple
colored arrows, respectively.

At the start of the DeepSDF training, a randomly initialized latent
vector was assigned to each data point. These latent vectors were
then optimized along with the weights of the decoder using standard
backpropagation. In our research, the DeepSDF decoder was trained for
1001 epochs with a step-based learning rate scheduler that started at
a learning rate of 5 ⋅10−4 (this value was adopted from the original
DeepSDF paper). For every 300 epochs, the learning rate was halved.
The decoder was trained with the Adaptive Moment Estimation (Adam)
optimizer. We used the L1 loss function during training, because this
loss function serves the purpose of minimizing the sum of all distance
differences between the target 3D shape and the predicted 3D shape.
For every 10 epochs, a weight file and a latent vector code were
automatically saved. The snapshot value of 10 epochs was significantly
lower than the original DeepSDF implementation (1000) and Magistri
et al. (2022) (500), and it allowed us to frequently identify trends of
network overfitting, thereby allowing us to make a better selection
of the optimal weights. The metric for selecting the optimal weights
was the Chamfer distance (𝑑 ), which is the sum of the average
𝐶 𝐷
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closest distance from points in the ground truth 3D shape () to the
points in the reconstructed 3D shape (), and vice versa (Eq. (1)).
The lower the Chamfer distance, the better the 3D reconstruction. The
unit of the Chamfer distance was millimeter (mm). The weight file and
corresponding latent vector code with the lowest Chamfer distance on
the validation set were used as targets for training the encoder.

𝑑𝐶 𝐷(,) = 1
||

∑

𝑥∈
min
𝑦∈

‖𝑥 − 𝑦‖22 +
1
||

∑

𝑦∈
min
𝑥∈

‖𝑦 − 𝑥‖22 (1)

where || and || are the numbers of points in  and , respectively
The weights of the encoder were randomly initialized before the

training started. During encoder training, the weights of the decoder
were frozen. The encoder was trained for 100 epochs. The initial
learning rate was 1 ⋅10−4, and this value was gradually decreased by
an exponential learning rate scheduler of 97%. The encoder was also
trained with the Adam optimizer. We used the mean squared error
loss function (MSE) to minimize the squares of the differences between
the target latent vector and the predicted latent vector. We chose this
loss function because it penalizes larger differences between the target
and predicted latent vector more heavily than CoRe’s default L1 loss
function. Besides the MSE loss function, we used the contrastive loss
function by Magistri et al. (2022). The rationale is that contrastive loss
encourages the encoder to learn latent vectors that are well-separated
in the latent space for the different potato tubers. Contrastive loss also
enforces the encoder to learn latent vectors closer in the latent space
for the images belonging to the same potato tuber. The contrastive
loss function is summarized in Eq. (2), where 𝑁 is the total number
of potato tubers, 𝐳𝑖 and 𝐳𝑗 represent the latent vector of instances 𝑖
and 𝑗, respectively, 𝑦𝑖 and 𝑦𝑗 denote the potato tuber identifiers of
instances 𝑖 and 𝑗, respectively, 𝛿rep is the margin parameter controlling
the minimum separation between representations of instances with
different tuber identifiers (in our research 𝛿rep was set to 0.5), ‖ ⋅ ‖
denotes the Euclidean distance between two latent vectors, ‖ ⋅‖+ is the
positive part of the argument, ensuring that only positive differences
contributed to the loss.

𝑐 =
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

{

‖𝐳𝑖 − 𝐳𝑗‖+, if 𝑦𝑖 = 𝑦𝑗
max{0, 𝛿rep − ‖𝐳𝑖 − 𝐳𝑗‖}, if 𝑦𝑖 ≠ 𝑦𝑗

(2)

The combined loss function for training the encoder is summarized
in Eq. (3). The loss contribution values were set to 1.0 for 𝑤𝑚𝑠𝑒,
and 0.05 for 𝑤𝑐 . These values were optimized in a pre-comparative
experiment.
 = 𝑤𝑚𝑠𝑒 ⋅ 𝑚𝑠𝑒 +𝑤𝑐 ⋅ 𝑐 (3)
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For every epoch, the encoder was inferred on the validation set with
the decoder activated. The encoder weights with the lowest root mean
squared error (RMSE, Eq. (4)) on the volume were stored for final eval-
uation on the independent test set. We chose the RMSE metric, because
it was the most common metric in the scientific literature for evaluating
the volumetric estimate of potato tubers. The ground truth volume
(𝑉 ) was calculated from the reconstructed 3D mesh (Section 2.1.3),
using the Tetrahedron method (Eq. (5)). The same method was used
to calculate the volume from CoRe++’s 3D reconstruction (𝑉 ).

𝑅𝑀 𝑆 𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑉 − 𝑉 )2 (4)

where 𝑉 and 𝑉 are the estimated volume and the ground truth volume,
respectively. 𝑛 is the number of potato tubers in the dataset.

𝑉 =
𝑇
∑

𝑖=1

1
6
(

𝐯1 ⋅ (𝐯2 × 𝐯3)
)

(5)

where 𝐯1, 𝐯2, 𝐯3 are the three vertices representing a triangle in the
mesh. 𝑇 is the total number of triangles in the mesh.

2.3. Experiments

2.3.1. The effect of the latent size on the 3D shape completion result
For 3D shape completion, it is important that the encoder-

compressed latent vector contains high-level distinguishable 3D fea-
tures that generalize well on new and untrained shapes. Because the
latent vector plays such an important role in an encoder–decoder
network like ours, we set up an experiment that tested what was the
optimal latent vector size for completing the 3D shape of potato tubers.
We investigated six sizes: 8, 16, 32, 64, 128, and 256. Latent size 32 was
used in the original study by Magistri et al. (2022). Our hypothesis was
that the smaller sizes, such as 8 and 16, compressed the data too much,
possibly losing critical details, leading to suboptimal generalization.
The larger sizes, such as 128 and 256, potentially captured more
noise, leading to overfitting and suboptimal shape generalization. The
medium sizes, 32 and 64, probably struck a better balance between
compression and generalizability because they allowed the model to
efficiently capture key features.

To better understand the optimal size of the latent vector, we
conducted an additional experiment with our CoRe++ network. For
each of the six tested latent sizes, we interpolated the values of the
latent vector of the smallest potato tuber and the largest in the test set.
Interpolating between these two latent vectors can reveal how well the
network has learned to represent size variations. A smooth transition
in the generated 3D shapes and sizes can indicate that the latent space
is well-structured, meaning that the network can effectively generate
realistic 3D shapes for unseen inputs, i.e., generalize better (Mi et al.,
2021).

The experiment was tested with 3 networks: the DeepSDF decoder
architecture without the encoder, the original CoRe network of Magistri
et al. (2022), and our CoRe++ network. The DeepSDF decoder-only
architecture was tested to better understand where the largest effect of
the latent size was: in the encoder or in the decoder. Testing the original
CoRe network of Magistri et al. (2022) provided insight into a potential
trend commonly shared between CoRe and CoRe++. It also gave a more
detailed overview on the potential improvement of CoRe++ over CoRe.

Our evaluation was based on two requirements: accuracy and anal-
ysis speed. The accuracy requirement was met if the RMSE on the
volume (Eq. (4)) was lower than that of a standard linear regression
model. Input to that linear regression model were the length, width
and depth estimates of the partially completed point cloud (Fig. 8).
This point cloud was obtained by converting the filtered RGB-D image
(Fig. 6) into 3D points using the intrinsic camera parameters of the
RGB-D camera in Open3D software. From the generated point cloud,
the oriented 3D bounding box was obtained from which the length,
8 
Fig. 8. To determine whether the accuracy requirement was met, we trained a linear
regression model on the length, width and depth estimates of the oriented 3D bounding
box generated from the partially completed point cloud.

width and depth dimensions were extracted (Fig. 8) as input parameters
for training the linear regression model. The linear regression model
was trained on the same train and validation set and tested on the
same independent test set (Section 2.1.4). Our trained linear regression
model resulted a RMSE of 31.1 ml on the volumetric estimate of the
1425 test images. As such, if the 3D shape completion method had a
RMSE lower than 31.1 ml, then the accuracy requirement was met.

The analysis speed requirement was met if the 3D shape completion
was finished in less than 16 milliseconds (ms) per potato tuber. This
maximum analysis time was calculated based on the highest number of
potato tubers present in a single image in our dataset: 59. The average
throughput time of the potato tubers on the harvester was 0.95 s, and
this value was derived by dividing the average number of 28.5 frames
per tuber (9658/339, Section 2.1.4) by the camera acquisition rate of
30 frames per second. With the maximum number of tubers in a single
image and the average throughput time, we estimated that the 3D shape
completion method should analyze up to 62 potato tubers per second
(59/0.95). This equaled to 16 ms per tuber (1000/62).

2.3.2. The effect of the potato size, potato cultivar, and image analysis
region on the 3D shape completion result

The goal of this experiment was to gather insights into the perfor-
mance of our CoRe++ shape completion method when applied in the
field. The analysis was conducted with the best performing latent size
found in the previous experiment. Our first practical analysis was on
the effect of the tuber size on the 3D shape completion result. This
analysis is important because it provides information about the degree
of generalizability of our method in a particular field. Under typical
field conditions, a wide variety of tuber sizes move over the harvester’s
conveyor belt, and this size variability can influence yield estimation.
Our method must handle this variability effectively, ensuring accu-
rate volumetric estimates regardless of the tuber size. Such flexibility
is crucial for making reliable yield predictions in real-world harvest
situations. We decided to perform the analysis on four different size
classes, which were extracted from our dataset distribution (Fig. 5):
small tubers with a volume between 0 and 100 ml, small to medium
tubers with a volume between 100 and 150 ml, medium to large tubers
with a volume between 150 and 200 ml, and large tubers with a volume
between 200 and 500 ml. The ranges were chosen so that a relatively
balanced number of tubers ended up in the four classes.

The second practical analysis was on the effect of the potato cultivar
on the 3D shape completion result. This analysis provided insights into
the degree of generalizability of the 3D completion method at the farm
level, as the majority of farmers grow multiple cultivars in a season. We
wanted to test if our method can provide accurate volumetric estimates
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regardless of the potato cultivar. We conducted the experiment with
hree potato cultivars (Corolle, Kitahime and Sayaka) that differed in

shape and size. Corolle was the cultivar with the most elongated and
mallest tubers. Kitahime was the cultivar with the most spherical and
edium-sized tubers. Sayaka was the cultivar with the largest tubers

nd the greatest diversity in shape. This may be due to the fact that
ayaka was the cultivar with the most samples in our dataset. As shape
etrics, we calculated the elongation factor and the concavity factor.
he elongation factor was obtained by dividing the longest dimension
f the 3D bounding box of the ground truth mesh by the shortest
imension. Spherical shapes have an elongation factor close to 1 and
longated shapes have an elongation factor closer to 2. The concavity
actor was obtained by calculating the Chamfer distance between the

original ground truth 3D mesh and the convex hull shape of that mesh.
Higher Chamfer distances mean that there are more valleys or concave
regions on the surface of the potato tuber.

Our final practical analysis focused on identifying the horizontal im-
ge region where ideally the 3D shape completion should be performed.
he reason for this analysis is that it is neither computationally desir-
ble nor necessary to analyze all 20 to 30 RGB-D frames of each tuber
hen it moves over the conveyor belt. The computational efficiency can
e improved by performing the 3D shape completion only in the image
egion with the average lowest RMSE for volumetric estimation. In our
nalysis, we examined thirteen horizontal image regions (Table 2).

2.3.3. Ablation studies
Two ablation studies were performed as a final experiment. The

irst ablation study was conducted on the additions to CoRe++, which
elped us to better understand the impact of the individual additions
o the overall performance. The second ablation study was conducted
n the components that were commonly shared between CoRe++ and
oRe. This ablation study helped us to better understand the impact of
hanges in the input data and network architecture of the convolutional
ncoder.

The first ablation study consisted of examining the impact of seven
dditions made to CoRe++. The first two examined ablations consisted
f individually deactivating the depth normalization and the depth fil-
ering when training the convolutional encoder (both data preprocess-
ng steps are described in Section 2.2.2). After that, we examined the

impact of deactivating the data augmentation when training the con-
volutional encoder. The fourth ablation examined the effect of reposi-
tioning the Max-Pooling layer before the Leaky-ReLU activation, as was
the case in the original CoRe implementation (refer to Section 2.2.1).
The fifth examined ablation was changing the MSE loss function back
to the L1 loss function, as was the case in CoRe (refer to Section 2.2.3).
The sixth examined ablation consisted of replacing CoRe++’s method
for automatically determining the best network weights (using GPU-
based 3D mesh generation and the RMSE volume metric) with CoRe’s
original method (using marching cubes (Lorensen and Cline, 1987)

esh generation and Chamfer distance metric). The seventh examined
blation consisted of deactivating CoRe++’s 3D smoothing technique
hich was described in Section 2.2.3.

The second ablation study consisted of examining the effects of
ten ablations in the input data and network architecture that were
commonly shared between CoRe++ and CoRe. The first ablation in-
volved training CoRe++ with a single-channel depth image instead of
the original four-channel RGB-D image. This ablation gave us a better
understanding of the effect of adding color channels to the input data
for completing the 3D shape. The second ablation involved training
CoRe++ with an RGB-D image clipped to the bounding box instead
of the original mask. This ablation gave us insight into how the final
application on the potato harvester should look like: one based on
an object detection model or one based on an instance segmentation
model. Logically, this ablation also gave insight into the future an-
notation effort, which would be significantly higher when using an

instance segmentation model. The third ablation involved simplifying a
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Table 2
Summary of the investigated horizontal image regions.

Region Horizontal image region [pixels]

1 0–100
2 100–150
3 150–200
4 200–250
5 250–300
6 300–350
7 350–400
8 400–450
9 450–500
10 500–550
11 550–600
12 600–650
13 650–720

the encoder’s network architecture from seven to five convolutional
blocks (layers 1–10 in Table 1 followed by a flatten layer and a fully
connected layer). This ablation gave us insight into the effect on perfor-
mance when using an even lighter network in the situation of hardware
constraints. The fourth ablation involved removing the pooling layers
(the even layers in Table 1) to investigate their effect on the overall
performance. The fifth ablation involved replacing CoRe++’s original
Leaky-ReLU activation with the standard ReLU activation. The sixth
ablation involved disabling the contrastive loss element in the loss
function so that only the MSE loss was used during training. The
eventh to the tenth ablation involved increasing or decreasing the
earning rate in increments of two and five. The resulting learning rates

were 5 ⋅10−4 (learning rate ⋅ 5), 2 ⋅10−4 (learning rate ⋅ 2), 5 ⋅10−5

(learning rate ⋅ 0.5) and 2 ⋅10−5 (learning rate ⋅ 0.2).

2.4. Evaluation

For evaluating the 3D point cloud completion in our experiments,
e used the Chamfer distance (Eq. (1), Section 2.2.3) as performance

metric. Besides the Chamfer distance, we also calculated the precision,
recall and the f-score. The precision (𝑝) was the percentage of recon-
structed points within a certain distance (𝑑) to the ground truth point
cloud (Eq. (6)). As such, it represented the accuracy of the 3D shape
ompletion. The recall (𝑟) was the percentage of ground truth points
ithin a certain distance (𝑑) to the reconstructed point cloud (Eq. (7)).

The recall represented the completeness of the 3D shape completion.
For our evaluation, we used a distance (𝑑) threshold of 5.0 mm. This
threshold was adopted from Magistri et al. (2022), so that we could
compare our results one-on-one with their results. After calculating
the precision and recall, the f-score was obtained (Eq. (8)). The f-
core was the harmonic mean between the precision and the recall,
nd it represented the percentage of 3D points that were correctly
econstructed.

𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛(𝑑) = 100
||

∑

𝑦∈

[[

min
𝑥∈

‖𝑦 − 𝑥‖ < 𝑑
]]

(6)

𝑟𝑒𝑐 𝑎𝑙 𝑙(𝑑) = 100
||

∑

𝑥∈

[[

min
𝑦∈

‖𝑥 − 𝑦‖ < 𝑑
]]

(7)

𝑓 − 𝑠𝑐 𝑜𝑟𝑒(𝑑) = 2 ⋅ 𝑝(𝑑) ⋅ 𝑟(𝑑)
𝑝(𝑑) + 𝑟(𝑑)

(8)

For evaluating the volumetric estimate in our experiments, we used
the RMSE metric, as presented in Eq. (4). To evaluate the processing
speed, we calculated the average 3D shape completion time on the
test images. This processing speed analysis was performed on a Lenovo
Legion Pro 7 16IRX8H laptop with an Intel i9-13900HX 2.2 GHz CPU
with 32 GB RAM and a NVIDIA GeForce RTX 4090 Laptop GPU with
16 GB memory. This laptop was considered a suitable laptop for use on

n operational harvester.
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Table 3
The effect of the latent size on the 3D shape completion results with DeepSDF, CoRe, and CoRe++. The upward arrows indicate the higher the better, and the downward arrows
the lower the better. The values in bold are the best performing values per 3D shape completion method. Please refer to Section 2.3.1 for the accuracy and speed requirements
and Section 2.4 for the performance metrics.

3D shape completion Latent 𝑑𝐶 𝐷 f-score Precision Recall RMSE Time Accuracy Speed
method size [mm] ↓ [%] ↑ [%] ↑ [%] ↑ [ml] ↓ [ms] ↓

DeepSDF
(Park et al., 2019)

8 1.5 98.1 97.9 98.4 7.2 32 636.5 ✓ ✗

16 1.7 98.8 98.8 98.7 11.1 32 669.0 ✓ ✗

32 1.8 99.2 99.2 99.2 7.5 32 580.9 ✓ ✗

64 1.8 98.8 98.8 98.8 16.8 32 792.3 ✓ ✗

128 1.8 99.3 99.4 99.3 13.3 32 919.1 ✓ ✗

256 1.9 97.3 97.4 97.3 13.4 33 003.6 ✓ ✗

CoRe
(Magistri et al., 2022)

8 6.0 50.8 53.2 49.7 60.6 8.5 ✗ ✓

16 3.7 71.8 73.8 70.0 50.3 9.3 ✗ ✓

32 3.1 81.4 81.5 81.5 36.9 7.5 ✗ ✓

64 3.4 76.1 74.1 78.6 41.6 8.3 ✗ ✓

128 3.3 78.3 78.7 78.0 43.9 8.0 ✗ ✓

256 5.3 58.3 58.8 58.6 90.0 6.7 ✗ ✓

CoRe++ (ours)

8 7.9 38.1 39.8 37.6 68.8 9.1 ✗ ✓

16 4.2 65.4 66.8 64.4 44.6 13.0 ✗ ✓

32 2.8 85.0 85.2 85.0 22.6 9.9 ✓ ✓

64 2.9 83.2 83.8 82.8 28.1 9.4 ✓ ✓

128 3.3 78.6 81.1 76.4 35.7 9.3 ✗ ✓

256 4.5 62.5 63.7 61.8 65.0 10.2 ✗ ✓
Table 4
3D shape completion results expressed for the four size classes. Count summarizes the total number of RGB-D frames analyzed per size class.

Volume Count Elongation Concavity 𝑑𝐶 𝐷 f-score Precision Recall RMSE rel. error
[ml] factor factor [mm] [mm] ↓ [%] ↑ [%] ↑ [%] ↑ [ml] ↓ [%] ↓

0–100 361 1.6 0.2 2.5 89.3 89.0 89.8 16.8 19.1
100–150 364 1.4 0.3 3.0 82.3 82.1 82.6 18.2 12.5
150–200 277 1.4 0.3 2.7 85.4 85.8 85.1 21.7 10.0
200–500 423 1.5 0.4 2.9 83.5 84.2 82.9 29.7 9.0
C
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w

3. Results

3.1. The effect of the latent size on the 3D shape completion result

Table 3 summarizes the results of the 3D shape completion for the
three 3D completion methods and the six latent sizes. Interestingly,
the effect of the latent size was marginal when testing the DeepSDF
decoder-only network. For this network, the smallest latent size of 8
esulted in the lowest Chamfer distance and RMSE on the volume.

One possible explanation for this result is that the DeepSDF decoder
ses an iterative optimization process during inference to extract the

best possible latent vector. This iterative process probably helped to
optimize the latent vector for each potato shape in the test set, making
he 3D shape completion slow (33 s on average), but also better

optimized for each of the six tested latent sizes.
For both CoRe and CoRe++, the best latent size was 32, followed

y 64. This result is consistent with our hypothesis that the medium-
sized latent vectors strike a better balance between compression and
generalizability. Fig. 9 shows that latent sizes 32 and 64 have the most
iverse 3D shapes and sizes after latent space interpolation. Compared
o the other sizes, latent sizes 32 and 64 have both spherical and
longated 3D shapes, and the sizes show a proper sequential build-up,
ndicating a better generalized latent space. Latent size 8 and 256 are
oth worse in 3D shape completion performance (Table 3) and latent

space interpolation (Fig. 9). Latent size 8 could only produce five valid
3D shapes out of the seven interpolated latent vectors, while latent size
256 failed to produce a sequential size build-up. Latent sizes 16 and 128
roduced mainly elongated 3D shapes, meaning that they had a limited
bility to produce the more spherical shapes.

In terms of 3D shape completion and volumetric estimate, CoRe++
utperformed CoRe for five of the six latent sizes: 16, 32, 64, 128,
56 (Table 3). The difference between the 3D shape completion result

of CoRe++ and CoRe is visualized in Fig. 10. As for CoRe++, the
reconstructed 3D shapes are smooth and they approximate the real
hape of the potato tuber. With CoRe, the 3D shapes are rougher and
10 
spikier, leading to less resemblance to the real potato shape, larger
hamfer distances and larger volumetric errors.

Only for CoRe++ and latent sizes 32 and 64, the accuracy re-
quirement was met as the corresponding RMSE values were less than
31.1 ml (this was the baseline value when using linear regression). The
requirement for analysis speed was met for each latent size for both
CoRe and CoRe++, as all of the analysis times were less than 16 ms
(Table 3). Regarding analysis time, no clear trend was observable when
increasing or decreasing the latent vector size, implying that it does not
matter for the analysis speed which size is chosen.

3.2. The effect of the potato size, potato cultivar, and image analysis region
n the 3D shape completion result

This experiment was conducted with CoRe++ and latent size 32, as
his was the best performing combination in the previous experiment.

Table 4 summarizes the effect of the potato size on the 3D shape
ompletion result. There is a trend that the RMSE on the volumetric

estimate is larger when the tuber is larger. A possible explanation is that
the larger tubers are more concave (Table 4), meaning that they have
more valleys and variations in their 3D curvature, making it harder
to accurately reconstruct the 3D shape (especially when the concave
parts are facing downward with respect to the camera’s perspective). It
was demonstrated that especially the DeepSDF decoder produced large
volumetric errors on tubers with a high concavity factor. This indicates
that DeepSDF struggled in reconstructing the concave parts. The en-
coder produced the largest volumetric errors on the largest tubers in
the test set (their volume was in between 225 and 357 ml), and this
may be due to the under-representation of these tubers in our dataset
(Fig. 5). In-depth analysis on the five potato tubers with the largest 3D
shape completion errors confirmed these trends, as these tubers had
a high concavity factor (up to 0.45), were abnormally large or both.
CoRe++’s largest error of 104 ml (which is visualized in Fig. 10(b)),

as on the second largest and the second most concave potato tuber in
the test set. Thus, for a better generalization performance on the potato
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Fig. 9. 3D shape completion results for the seven latent space interpolations, visualized for each of the six tested latent sizes. The far left and far right meshes are the smallest
and largest tubers in the test set between which the interpolation was performed.

Fig. 10. (a) CoRe++’s best 3D shape completion result was achieved on a medium-sized potato tuber. (b) CoRe++’s worst 3D completion result was achieved on a large-sized
and irregularly-shaped potato tuber. In (a) and (b), the partial point cloud is visualized on the left, the 3D completion result of CoRe is visualized on the second from the left,
and that of CoRe++ on the second from the right. Most right is the 3D ground truth shape.
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Table 5
3D shape completion results expressed for the three tested potato cultivars. Count summarizes the total number of RGB-D frames analyzed per cultivar.

Potato Count Elongation Concavity 𝑑𝐶 𝐷 f-score Precision Recall RMSE rel. error
Cultivar factor factor [mm] [mm] ↓ [%] ↑ [%] ↑ [%] ↑ [ml] ↓ [%] ↓

Corolle 291 1.9 0.3 2.9 83.9 84.1 83.8 17.6 15.4
Sayaka 869 1.5 0.3 2.8 84.5 84.9 84.2 24.8 11.8
Kitahime 265 1.2 0.3 2.5 88.0 87.2 88.9 19.3 12.6
Fig. 11. Root mean squared errors (RMSE) visualized for thirteen horizontal image regions. The green-colored region in the center of the image between 350 and 400 pixels had
the lowest RMSE of 18.2 ml.
harvester, it may be beneficial to increase data diversity and expand the
train set with more examples of large, concave tubers.

Table 5 summarizes the effect of the potato cultivar, and thus
indirectly the shape of the potato tuber, on the 3D shape completion
results. There is a trend that the Chamfer distance is lower when the
tubers have a more spherical shape (i.e. elongation factors closer to
1.0). For the RMSE on the volumetric estimate, there is no clear trend
regarding the tuber shape. What may explain this result is that the
different cultivars had different tuber sizes: the cultivar Corolle had the
relative smallest tubers and it was already shown in Table 4 that the
RMSE is lowest when the tubers are smaller. The largest RMSE was
observed on Sayaka, which was the cultivar with the largest tubers on
average, but it was also the cultivar with the largest number of samples,
meaning that there was probably more diversity in tuber shape and size.
Thus, for better generalization performance on cultivars with highly
varied tuber characteristics, it may be beneficial to extend the data
augmentations when training the encoder and decoder.

Fig. 11 visualizes the RMSE on the volumetric estimate for the
thirteen different image regions. The smallest RMSE of 18.2 ml was
observed in the central horizontal region of the image between 350 and
400 pixels. By performing the 3D shape completion only in this image
region, the computational efficiency of the volumetric estimates can be
improved in a practical setup. The largest RMSE values were observed
in the lower and upper parts of the image, indicating that these regions
are not recommended for performing the 3D shape completion. These
results may also indicate that some form of lens distortion has occurred
in the peripheral regions of the camera’s field of view, leading to poorer
3D shape completion in these regions. There may also have been a
higher degree of occlusion in these regions.

3.3. Ablation studies

The ablation study on CoRe++’s additions (Table 6) shows that the
largest contribution to the overall performance was made by CoRe++’s
validation method, which was based on GPU mesh generation and
RMSE validation metric. Changing this validation method back to
12 
the original validation method of CoRe with marching cubes mesh
generation and Chamfer distance validation metric, led to the largest
increase in both Chamfer distance (+32.1%) and RMSE on volumetric
estimate (+122.1%). An obvious explanation for this result is that the
final volumetric estimate benefits from having the RMSE optimized
during training. Another explanation is that CoRe’s original marching
cubes method seems unable to accurately reconstruct the 3D shapes
of the potato tubers. This may be due to the chosen grid density of
the marching cubes method which was optimized for high-throughput
3D reconstruction, but possibly came at the expense of the accuracy
(something that can also be observed in Fig. 10). Three other additions
to CoRe++ that significantly improved the overall performance were
the two data preprocessing steps (highlighted by the first and second
ablation) and the loss function modification to MSE (highlighted by the
fifth ablation).

Regarding the general ablation study (Table 6), there are a few
interesting outcomes. First, the choice of the activation function had
a large impact on the overall performance. The fifth ablation shows
that after replacing the Leaky-ReLU activation with a standard ReLU,
the Chamfer distance increased by 46.4% and the RMSE by 96.0%. This
outcome is consistent with that of Tomar (2022), who also found that
ReLU under-performs compared to the more advanced variants of ReLU
when testing an autoencoder on the Global Wheat Head dataset (David
et al., 2020). In our case, we think that the Leaky-ReLU activation
resulted in a better and faster network convergence during training,
due to Leaky-ReLU’s ability to maintain non-zero gradients for negative
inputs. A second interesting outcome was the relatively large impact of
the RGB color channels on the overall performance. Our initial expec-
tation was that only the depth image would contain relevant features
for completing the 3D shape. There are two possible explanations for
this result. First, the depth image has typically more noise than the RGB
image, which may lead to less good feature extraction when only using
the depth image. Second, the data augmentations for the RGB color
channels were more extensive than for the depth channel, which may
have resulted in a better generalization performance when using RGB-
D images rather than just depth images. A third interesting outcome
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Table 6
Performance metrics for the two ablation studies relative to the best performance of CoRe++.
Ablation Category 𝑑𝐶 𝐷 (mm) ↓ f-score ↑ RMSE (ml) ↓

abs rel abs rel abs rel

CoRe++ Baseline 2.8 – 85.0 – 22.6 –

Ablation study on CoRe++’s additions
No depth normalization Data preprocessing 3.3 +17.9% 78.6 −7.5% 34.3 +51.8%
No depth filtering Data preprocessing 3.4 +21.4% 75.9 −10.7% 41.1 +81.9%
No data augmentation Data augmentation 2.9 +3.6% 83.9 −1.3% 32.4 +43.4%
Act-Pool → Pool-Act Network changes 2.9 +3.6% 83.2 −2.1% 31.0 +37.2%
MSE loss → L1 loss Loss function 3.1 +10.7% 81.3 −4.4% 31.4 +38.9%
Val → CoRe val Train validation 3.7 +32.1% 72.0 −15.3% 50.2 +122.1%
Smoothing → Custom 3D postprocessing 2.8 0.0% 85.1 +0.2% 24.9 +10.2%

General ablation study
RGB-D → D Data preprocessing 3.5 +25.0% 75.4 −11.3% 40.5 +79.2%
Mask → Box Data preprocessing 3.2 +14.3% 78.9 −7.2% 33.0 +46.0%
7 → 5 Conv. blocks Network changes 3.0 +7.1% 82.3 −3.2% 32.0 +41.6%
No pooling layers Network changes 2.9 +3.6% 83.0 −2.4% 29.7 +31.4%
Leaky-ReLU → ReLU Network changes 4.1 +46.4% 68.1 −19.1% 44.3 +96.0%
No contrastive loss Loss function 2.7 −3.6% 86.3 +1.5% 23.6 +4.4%
LR → LR⋅5 Learning rate 2.9 +3.6% 83.6 −1.6% 32.1 +42.0%
LR → LR⋅2 Learning rate 2.8 0.0% 85.2 +0.2% 28.8 +27.4%
LR → LR⋅0.5 Learning rate 3.0 +7.1% 81.9 −3.6% 31.0 +37.2%
LR → LR⋅0.2 Learning rate 3.3 +17.9% 77.5 −8.8% 39.9 +76.5%
p
w

n
s
o

is that training without contrastive loss resulted in a lower Chamfer
distance and a higher f-score. One explanation for this result is that
the contrastive loss may only be beneficial if the images were obtained
from different camera perspectives, as was the case in Magistri et al.
(2022). In our experiment, the potato tubers were photographed from
he same top-view camera perspective, which resulted in relatively
imilar 3D shapes, making it more difficult for the contrastive loss
unction to separate the embedding space. Two other observations
rom the ablation study that are useful for implementing CoRe++ on
n operational harvester are: an instance segmentation algorithm is
referred over an object detection algorithm (as highlighted by the
econd ablation), and a lighter encoder network may be more favorable
or high-throughput shape completion, but it comes at the expense of
he accuracy (as highlighted by the third ablation). In summary, the
wo ablation studies highlight that CoRe++’s validation method, data
reprocessing, Leaky-ReLU activation, and inclusion of RGB channels
ere key to improving the 3D shape completion of potato tubers.

4. Discussion

Of the six latent sizes, we observed that a latent size of 32 outper-
ormed the other sizes in terms of 3D shape completion and volumetric

estimate. This suggests that a moderate latent size strikes a balance
etween representational capacity and model complexity, allowing
GB-D images to be encoded more effectively while not overfitting.

The latter was clearly demonstrated by the latent space interpolation,
which generated the most realistic potato shapes and sizes for latent
size 32. Compared to the literature, our observations are similar to
those of Ahmed and Longo (2022), who found that a latent size of
28 was best for optimizing a convolutional variational autoencoder on
spectral topographic maps. Since Ahmed and Longo (2022) did their
esearch on 25 latent sizes, this suggests that even better results could
ave been obtained if we had tested more latent sizes. In future work,
 finer-grained latent size analysis could help identify optimal latent
onfigurations for 3D shape completion tasks in agriculture, thereby
nabling better estimates of crop shapes, volumes, and total yield.

With CoRe++ better 3D shape completion results were obtained
compared to the linear regression model and the original CoRe imple-

entation of Magistri et al. (2022). When we compare our results with
hose of Magistri et al. (2022), we can conclude that our results on

potato are similar (in comparison with strawberry), or better (in com-
arison with sweet pepper). An important remark is that the obtained
esults may depend on the average complexity of the shape that has
13 
to be completed. Shape complexity can impact model generalizability,
affecting its ability to adapt to unseen crop instances. Potato has on
average a less complex shape than sweet pepper, making it easier for
the network to learn a generic shape enabling a better generalization
performance. In future research, we want to test our CoRe++ model
on crops or fruits with a more complex shape, such as pineapple,
dragon fruit and Romanesco broccoli. We encourage fellow researchers
to test our publicly available software on other 3D shapes within the
agricultural domain or beyond.

Our research has provided valuable insights and steps towards the
ractical application of CoRe++ on a potato harvester. Nevertheless,
e think there are potential improvements in software and hardware

that could further improve the performance. Regarding software, we
would like to explore the use of other 3D shape completion networks,
such as the one by Magistri et al. (2024), who used a transformer
etwork. The obtained results with this new transformer network on
weet pepper and strawberry were significantly better than those of the
riginal CoRe implementation (Magistri et al., 2022). An advantage of

using a transformer network is that it is end-to-end trainable, enabling
simultaneous optimization of all network weights, which is advanta-
geous over our CoRe++ network that needs to be trained in two stages.
A hardware improvement that could potentially improve the 3D shape
completion is equipping the conveyor belt with rotating rollers in the
area where the camera is placed. The rotating rollers cause the potato
tubers to rotate gradually as they pass underneath the camera, meaning
that almost the entire shape of the potato can be photographed. This
can both simplify and improve the 3D shape completion. In a scenario
like this, it would also be useful to test whether the contrastive loss
function has an improving effect on completing the 3D shapes of the
rotating potato tubers.

To further test the applicability of CoRe++ on a potato harvester, it
is important to conduct a more in-depth evaluation on potato tubers of
different cultivars. This evaluation will provide a better understanding
of the overall generalization performance of CoRe++ at the farm level.
In such an analysis, it is important to perform the test on potato
tubers without the colored thumbtack, because the thumbtack’s color
and shape may have influenced CoRe++’s extraction of distinguishable
features during training. This could have unintentionally caused a
stronger model trigger towards colors and shapes that do not appear in
practical situations. A future evaluation could benefit from performing
the analysis on a more balanced dataset. Our in-depth analysis revealed
that the largest errors were on small and large tubers and those with
irregular shape, and this might be problematic when analyzing an
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entire field. Future research should therefore focus on obtaining more
balanced datasets or developing training tools that help the network
better deal with under-represented samples.

When applying CoRe++ in practice, it is important to investigate its
erformance, scalability and interpretability as part of a larger system.

In integrated systems, the performance of CoRe++ will be affected by
he instance segmentation algorithm that provides the binary mask. It
s therefore important to investigate the sensitivity of CoRe++ to the
egmentation output of such instance segmentation algorithm. In larger
ntegrated systems, there may be constraints towards the scalability of
oRe++. For instance, when using multi-row harvesters, there will be
 larger throughput of potato tubers on the conveyor belt and this puts
ressure on CoRe++’s ability to complete the 3D shape of all tubers
n time. A straightforward solution is increasing the computational
esources, but this will make the overall system more expensive. We
elieve it is better to develop a multi-threaded software approach, in
hich all 3D shape completion tasks are distributed across multiple

oncurrently-running threads. Regarding the system’s output, it is im-
ortant to consider that the results must be post-processed in such a
ay that they can be easily interpreted by the end user. In its current

etup, CoRe++ produces a volumetric estimation for each potato tuber,
but these estimates have to be spatially summarized in such a way
that a farmer can easily interpret the output. This means that in an
ntegrated system, the outputs of CoRe++ have to be geo-referenced
y means of a global navigation satellite system (GNSS). Such a GNSS-
ntegrated system provides opportunities for integration with in-season
rop growth data from drones, so that additional insights into the

impact of management decisions can be obtained.

5. Conclusions

In this study, we investigated a high-throughput 3D shape com-
pletion network for its suitability for estimating the volume of potato
tubers on an operational harvester. Our research revealed that latent
size 32 had the best 3D shape completion result. With that latent
size, our CoRe++ network had an RMSE of 22.6 ml on the volumetric
estimate, and this was better than the RMSE of the linear regression
(31.1 ml) and the original CoRe network (36.9 ml). We also found
that the RMSE of CoRe++ could be further reduced to 18.2 ml when
performing the 3D shape completion in the center of the RGB-D image.
With an average analysis time of 10 ms per potato tuber, CoRe++
enables a high-throughput 3D shape completion up to 100 potato tubers
per second. Hence, we can conclude that our network is able to quickly
and accurately estimate the volume of fast-moving potato tubers on
an operational harvester. Our method provides real-time potato tuber
yield estimates, giving farmers valuable insights to further optimize
planting, fertilization, and harvest strategies in subsequent growing
seasons. This can help to increase yield, reduce waste, and better
meet market demands—effects not easily achieved by current analytics.
The continual progress in 3D shape completion and machine learning
algorithms will enable more accurate and more useful yield monitoring,
as well as mitigating the effects of occlusion and partial visibility in
obotic harvesting, quality control and sorting.
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