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Abstract. The Scale Invariant Feature Transform (SIFT) has become a popular fea-
ture extractor for vision-based applications. It has been successfully applied to met-
ric localization and mapping using stereo vision and omnivision. In this paper, we
present an approach to Monte-Carlo localization using SIFTfeatures for mobile
robots equipped with a single perspective camera. First, weacquire a 2D grid map of
the environment that contains the visual features. To come up with a compact envi-
ronmental model, we appropriately down-sample the number of features in the final
map. During localization, we cluster close-by particles and estimate for each cluster
the set of potentially visible features in the map using ray-casting. These relevant
map features are then compared to the features extracted from the current image.
The observation model used to evaluate the individual particles considers the differ-
ence between the measured and the expected angle of similar features. In real-world
experiments, we demonstrate that our technique is able to accurately track the po-
sition of a mobile robot. Moreover, we present experiments illustrating that a robot
equipped with a different type of camera can use the same map of SIFT features for
localization.

1 Introduction

Self-localization is one of the fundamental problems in mobile robotics. The topic
was studied intensively in the past. Many approaches exist that use distance infor-
mation provided by a proximity sensor for localizing a robotin the environment.
However, for some types of robots, proximity sensors are notthe appropriate choice
because they do not agree with their design principle. Humanoid robots, for example,
which are constructed to resemble a human, are typically equipped with vision sen-
sors and lack proximity sensors like laser scanners. Therefore, it is natural to equip
these robots with the ability of vision-based localization.

In this paper, we present an approach to vision-based mobilerobot localization
that uses a single perspective camera. We apply the well-known Monte-Carlo lo-
calization (MCL) technique [5] to estimate the robot’s position. MCL uses a set of
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random samples, also called particles, to represent the belief of the robot about its
pose. To locate features in the camera images, we use the Scale Invariant Feature
Transform (SIFT) developed by Lowe [15]. SIFT features are invariant to image
translation, scale, and rotation. Additionally, they are partially invariant to illumi-
nation changes and affine or 3D projection. These propertiesmake SIFT features
particularly suitable for mobile robots since, as the robots move around, they typ-
ically observe landmarks from different angles and distances, and with a different
illumination.

Whereas existing systems, that perform metric localization and mapping using
SIFT features, apply stereo vision in order to compute the 3Dposition of the fea-
tures [20, 7, 21, 2], we rely on a single camera only during localization. Since we
want to concentrate on the localization aspect, we facilitate the map acquisition pro-
cess by using a robot equipped with a camera and a proximity sensor. During map-
ping, we create a 2D grid model of the environment. In each cell of the grid, we store
those features that are supposed to be at that 2D grid position. Since the number of
observed SIFT features is typically high, we appropriatelydown-sample the number
of features in the final map. During MCL, we then rely on a single perspective cam-
era and do not use any proximity information. Our approach estimates for clusters
of particles the set of potentially visible features using ray-casting on the 2D grid.
We then compare those features to the features extracted from the current image. In
the observation model of the particle filter, we consider thedifference between the
measured and the expected angle of similar features. By applying the ray-casting
technique, we avoid comparing the features extracted out ofthe current image to
the whole database of features (as the above mentioned approaches do), which can
lead to serious errors in the data association. As we demonstrate in practical experi-
ments with a mobile robot in an office environment, our technique is able to reliably
track the position of the robot. We also present experimentsillustrating that the same
map of SIFT features can be used for self-localization by different types of robots
equipped with a single camera only and without proximity sensors.

This paper is organized as follows. After discussing related work in the following
section, we describe the Monte-Carlo localization technique that is applied to esti-
mate the robot’s position. In Section 4, we explain how we acquire 2D grid maps of
SIFT features. In Section 5, we present the observation model used for MCL. Finally,
in Section 6, we show experimental results illustrating theaccuracy of our approach
to estimate the robot’s position.

2 Related Work

Monte-Carlo methods are widely used for vision-based localization and have been
shown to yield quite robust estimates of the robot’s position. Several localization
approaches are image-based, which means that they store a set of reference images
taken at various locations that are used for localization. Some of the image-based
methods rely on an omnidirectional camera in order to localize a mobile robot. The
advantages of omnidirectional images are the circular fieldof view and thus, the
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knowledge about the appearance of the environment in all possible gaze directions.
Recent techniques were for example presented by Andreassonet al. [1] who de-
veloped a method to match SIFT features extracted from localinterest points in
panoramic images, by Menegatti et al. [16] who use Fourier coefficients for fea-
ture matching in omnidirectional images, and by Gross et al.[9] who compare the
panoramic images using color histograms. Wolf et al. [23] apply a combination of
MCL and an image retrieval system in order to localize a robotequipped with a
perspective camera. The systems presented by Ledwich and Williams [12] and by
Kŏsécka and Li [11] perform Markov localization within a topological map. They
use the SIFT feature descriptor to match the current view to the reference images.
Whenever using those image-based methods, care has to be taken in deciding at
which positions to collect the reference images in order to ensure a complete cov-
erage of the space the robot can travel in. In contrast to this, our approach stores
features at the positions where they are located in the environment and not for all
possible poses the robot can be in.

Additionally, localization techniques have been presented that use a database of
observed visual landmarks. SIFT features have become very popular for metric lo-
calization as well as for SLAM (simultaneous localization and mapping, [21, 2]).
Se et al. [20] were the first who performed localization usingSIFT features in a re-
stricted area. They did not apply a technique to track the position of the robot over
time. Recently, Elinas and Little [7] presented a system that uses MCL in combi-
nation with a database of SIFT features learned in the same restricted environment.
All these approaches use stereo vision to compute the 3D position of a landmark
and match the visual features in the current view to all thosein the database to find
correspondences. To avoid matching the observations to thewhole database of fea-
tures, we present a system that determines the sets of visible features for clusters of
particles. These relevant features are then matched to the features in the current im-
age. This way, the number of ambiguities, which can occur in larger environments, is
reduced. The relevant features are determined by applying aray-casting technique in
the map of features. The main difference to existing metric localization systems using
SIFT features is however that our approach is applicable to robots that are equipped
with a single perspective camera only, whereas the other approaches require stereo
vision or omnivision.

Note that Davison et al. [3] and Lemaire et al. [13] presentedapproaches to
feature-based SLAM using a single camera. These authors useextended Kalman
filters for state estimation. Both approaches have only beenapplied to robots moving
within a relatively small operational range.

Vision-based MCL was first introduced by Dellaert et al. [4].The authors con-
structed a global ceiling mosaic and use simple features extracted out of images
obtained with a camera pointing to the ceiling for localization. Systems that apply
vision-based MCL are also popular in the RoboCup domain. In this scenario, the
robots use environment-specific objects as features [19, 22].
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3 Monte-Carlo Localization

To estimate the posext (position and orientation) of the robot at timet, we apply
the well-known Monte-Carlo localization (MCL) technique [5], which is a variant of
Markov localization. MCL recursively estimates the posterior about the robot’s pose:

p(xt | z1:t, u0:t−1)

= η · p(zt | xt) ·

∫

xt−1

p(xt | xt−1, ut−1) · p(xt−1 | z1:t−1, u0:t−2) dxt−1 (1)

Here,η is a normalization constant resulting from Bayes’ rule,u0:t−1 denotes the
sequence of all motion commands executed by the robot up to timet− 1, andz0:t is
the sequence of all observations. The termp(xt | xt−1, ut−1) is called motion model
and denotes the probability that the robot ends up in statext given it executes the
motion commandut−1 in statext−1. The observation modelp(zt | xt) denotes the
likelihood of making the observationzt given the robot’s current pose isxt. To deter-
mine the observation likelihood, our approach compares SIFT features in the current
view to those SIFT features in the map that are supposed to be visible (see Section 5).

MCL uses a set of random samples to represent the belief of therobot about its
state at timet. Each sample consists of the state vectorx

(i)
t and a weighting fac-

tor ω
(i)
t that is proportional to the likelihood that the robot is in the corresponding

state. The update of the belief, also called particle filtering, is typically carried out
as follows. First, the particle states are predicted according to the motion model. For
each particle a new pose is drawn given the executed motion command since the pre-
vious update. In the second step, new individual importanceweights are assigned to
the particles. Particlei is weighted according to the likelihoodp(zt | x

(i)
t ). Finally,

a new particle set is created by resampling from the old set according to the parti-
cle weights. Each particle survives with a probability proportional to its importance
weight.

Due to spurious observations it is possible that good particles vanish because they
have temporarily a low likelihood. Therefore, we follow theapproach proposed by
Doucet [6] that uses the so-called number of effective particles [14] to decide when
to perform a resampling step

Neff =
1

∑N

i=1

(

w(i)
)2 , (2)

whereN is the number of particles.Neff estimates how well the current particle
set represents the true posterior. WheneverNeff is close to its maximum valueN ,
the particle set is a good approximation of the true posterior. Its minimal value 1
is obtained in the situation in which a single particle has all the probability mass
contained in its state.

We do not resample in each iteration, instead, we only resample each timeNeff

drops below a given threshold (here set toN
2 ). In this way, the risk of replacing good

particles is drastically reduced.
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4 Acquiring 2D Maps of Scale-Invariant Features

We use maps of visual landmarks for localization. To detect features, we use the
Scale Invariant Feature Transform (SIFT). Each image feature is described by a vec-
tor 〈p, s, r, f〉 wherep is the subpixel location,s is the scale,r is the orientation, and
f is a descriptor vector, generated from local image gradients. The SIFT descriptor
is invariant to image translation, scaling, and rotation and also partially invariant to
illumination changes and affine or 3D projection. Lowe presented results illustrat-
ing robust matching of SIFT descriptors under various imagetransformations [15].
Mikolajczyk and Schmid compared SIFT and other image descriptors and showed
that SIFT yields the highest matching accuracy [17].

Ke and Sukthankar [10] presented an approach to compute a more compact rep-
resentation for SIFT features, called PCA-SIFT. They applyprincipal components
analysis (PCA) to determine the most distinctive components of the feature vector.
As shown in their work, the PCA-based descriptor is more distinctive and more ro-
bust than the standard SIFT descriptor. We therefore use that representation in our
current approach. As suggested by Ke and Sukthankar, we apply a 36 dimensional
descriptor vector resulting from PCA.

To acquire a 2D map of SIFT features, we used a B21r robot equipped with a
perspective camera and a SICK laser range finder. We steered the robot through the
environment to obtain image data as well as proximity and odometry measurements.
The robot was moving with a speed of40cm/s and collected images at a rate of3Hz .
To be able to compute the positions of features and to obtain ground truth data, we
used an approach to grid-based SLAM with Rao-Blackwellizedparticle filters [8].
Using the information about the robot’s pose and extracted SIFT features out of the
current camera image, we can estimate the positions of the features in the map. More
specifically, we use the distance measurement of the laser beam that corresponds
to the horizontal angle of the detected feature and the robot’s pose to calculate the
2D position of the feature. Thus, we assume that the featuresare located on the
obstacles detected by the laser range finder. In the office environment in which we
performed our experiments, this assumption leads to quite robust estimates even if
there certainly exist features that are not correctly mapped. In each 2D grid cell, we
store the set of features that are supposed to be at that 2D grid position. Currently,
we use a grid resolution of10 by 10cm. In the first stage of mapping, we store all
observed features.

After the robot moved through the environment, the number ofobserved SIFT fea-
tures is extremely high. Typically, we have 150-500 features extracted per image with
a resolution of320 by 240 pixels. This results in around 600,000 observed features
after the robot traveled for212m in a typical office environment. After map acqui-
sition, we down-sample a reduced set of features that is usedfor localization. For
each grid cell, we randomly draw features. A drawn feature isrejected if there is
already a similar feature within the cell. We determine similar features by compar-
ing their PCA-SIFT vectors (see below). We sample a maximum of 20 features for
each grid cell. Using the sampling process, features that were observed more often
have a higher chance to be selected and features that were detected only once (due to
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failure observations or noise) are eliminated. The goal of this sampling process is to
reduce computational resources and at the same time obtain arepresentative subset
of features. To choose good representatives for the features, a clustering based on the
descriptor vectors can be carried out.

The left image of Figure 3 shows a 2D grid map of SIFT features of an office
environment that was acquired by the described method. The final map contains
approximately 100,000 features. Note that also a stereo camera system, which was
not available in our case, would be an appropriate solution for map building. The
presented map acquisition approach is not restricted to robots equipped with a laser
range finder.

5 Observation Model for SIFT Features

In the previous section, we described how to built a map of SIFT features using a
robot equipped with a camera and a proximity sensor. In this section, we describe
how a robot without a proximity sensor can use this environmental model for local-
ization with a single perspective camera.

Sensor observations are used to compute the weight of each particle by estimating
the likelihood of the observation given the pose of the particle in the map. Thus, we
have to specify how to computep(zt | xt). In our case, an observationzt consists of
the SIFT features in the current image:zt = {o1, . . . , oM} whereM is the number
of features in the current image. To determine the likelihood of an observation given
a pose in the map, we compare the observed features with the features in the map by
computing the Euclidean distance of their PCA-SIFT descriptor vectors.

In order to avoid comparing the features in the current imageto the whole set
of features contained in the map, we determine the potentially visible features. This
helps to cope with an environment that contains similar landmarks at different loca-
tions (e.g. several similar rooms). In case one matches the current observation against
the whole set of features, this leads to serious errors in thedata association.

To compute the relevant features, we group close-by particles to a cluster. We
determine for each particle cluster the set of features thatare potentially visible from
these locations. This is done using ray-casting on the feature grid map. To speed-up
the process of finding relevant features, one could also precompute for each grid cell
the set of features that are visible. However, in our experiments, computing the simi-
larity of the feature vectors took substantially longer than the ray-casting operations.
Typically, we have 150-500 features per image.

In order to compare two SIFT vectors, we use a distance function based on the
Euclidian distance. The likelihood that the two PCA-SIFT vectorsf andf ′ belong
to the same feature is computed as

p(f = f ′) = exp

(

−
‖f − f ′‖

2 · σ2
1

)

, (3)

whereσ1 is the variance of the Gaussian.
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In general, one could use Eq. (3) to determine the most likelycorrespondence
between an observed feature and the map features. However, since it is possible that
different landmarks exist that have a similar descriptor vector, we do not determine
a unique corresponding map feature for each observed feature. In order to avoid
misassignments, we instead consider all pairs of observed features and relevant map
features. This set of pairs of features is denoted asC. For each pair of features inC
we use Eq. (3) to compute the likelihood that the corresponding PCA-SIFT vectors
belong to the same feature.

This information is than used to compute the likelihoodp(zt | x
(i)
t ) of an obser-

vation given the posex(i)
t of particlei, which is required for MCL. Since a single

perspective camera does not provide depth information, we can use only the angular
information to compute this likelihood. We therefore consider the difference between
the horizontal angles of the currently observed features inthe image and the features
in the map to computep(zt | x

(i)
t ). More specifically, we compute the distribution

over the angular displacement of a particle given the observation and the map. For
each particle, we compute a histogram over the angular differences between the ob-
served features and the map features. The x-values in that histogram represent the
angular displacement and the y-values its likelihood. The histogram is computed us-
ing the pairs of features inC evaluated using Eq. (3).

In particular, we compute for each pair(o, l) ∈ C the difference between the
horizontal angle at which the feature was observed and the angle at which the feature
should be located according to the map and the particle pose.We add the likelihood
that these features are equal, which is given by Eq. (3), to the corresponding bin of
the histogram. As a result, we obtain a distribution about the angular error of the
particle.

In mathematical terms, the valueh(b) of a bin b (representing the interval of
angular differences fromα−(b) to α+(b)) in the histogram is given by

h(b) = β +
∑

{

(o,l)∈C

∣

∣α−(b)≤α(o)−α(l)<α+(b)
}

p(fo = fl), (4)

whereα(·) is the function that computes the horizontal angle of a feature for a given
pose of the robot,fo is the PCA-SIFT descriptor of featureo, andfl of featurel
accordingly.β is a constant greater that zero ensuring that no angular displacement
has zero probability.

The histograms of particles that are close to the correct pose of the robot have
high values around zero. In case that there are several similar features in the environ-
ment, the histogram has multiple modes.

One finally needs to compute the observation likelihood of a particle. So far,
we computed the distribution about the horizontal angular displacement, not its ac-
tual value. In case of a uni-modal or Gaussian distribution it would be sufficient to
consider only the distance of the mean from zero taking into account the variance.
However, in real-world situations, it is likely that one obtains multi-modal distribu-
tions.
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Each bin of that histogram stores the probability mass of thecorresponding an-
gular displacement of the particle. Therefore, we compute the observation likelihood
given we have the angular displacement of that bin and multiply it with the value
stored in that bin. The observation likelihood given the histogram is then computed
by the sum over these values

p(zt | x
(i)
t ) =

∑

b

h(b) · exp
(

−
1

2 · σ2
2

·

[

α+(b) + α−(b)

2

]2
)

, (5)

whereσ2 is the variance of a Gaussian describing the likelihood of a particle depend-
ing on the angular displacement. Figure 1 illustrates the whole process of computing
the observation likelihood for a single particle.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-3 -2 -1  0  1  2  3

lik
el

ih
oo

d

angular displacement [rad]

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3

w
ei

gh
t

angular displacement [rad]

(a) (b)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-3 -2 -1  0  1  2  3

w
ei

gh
te

d 
lik

el
ih

oo
d

angular displacement [rad]

According to Eq. (5),
this leads top(zt | x

(i)
t

) = 0.25.

(c)

Fig. 1. Image (a) shows the distribution about the horizontal angular displacement for a par-
ticular particle computed according to Eq. (4). The plot shown in (b) depicts the Gaussian that
is used to compute the weight of a sample depending on the displacement. Finally, image (c)
shows the resulting histogram in which each bin of the histogram (a) is multiplied by the cor-
responding value of the Gaussian. Summing up the bins leads to an observation likelihood of
0.25.
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Fig. 2. Example images with generated SIFT features. The images were obtained from two
different cameras used in the experiments. The standard camera (left) was used for map acqui-
sition as well as for localization and a low-cost wide-anglecamera (right) for further evaluation
of our localization approach.

Note that a further improvement of the sensor model can be obtained by using the
joint compatibility test between pairs of feature as proposed by Neira and Tardós [18]
and not considering all possible data associations.

6 Experimental Results

To evaluate our approach to estimate the pose of the robot equipped with a single
perspective camera, we carried out a series of real-world experiments with wheeled
and humanoid robots in an office environment. The B21r robot that performed the
mapping task carries a standard camera with an opening angleof approximately65◦.
In order to show that the acquired feature map can be used by robots equipped with
different cameras, we performed the localization experiments using a low-cost wide-
angle camera (with an opening angle of about130◦). The difference between typical
images of both cameras can be seen in Figure 2. The arrows indicate the location,
orientation, and scale of the generated SIFT features. The acquired map is depicted
in Figure 3.

6.1 Localization Accuracy

In this experiment, the wheeled robot traveled a distance ofapproximately20m.
Figure 3 shows the estimated trajectory as well as the true pose of the robot during
this experiment. The ground truth has been determined usinglaser range data. The
evolution of the particle filter is illustrated in Figure 4. It shows the particle clouds
as well as the true position and the pose estimate provided byodometry.

A more quantitative analysis showing the localization error over time can be
found in Figure 5. Between time step 40 and 50, the error in thepose of the vehicle
was comparably high. This is because we used the weighted mean of the samples
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Fig. 3. The left image shows the 2D map acquired in a typical office environment. Each cross
represents the estimated 2D position of a SIFT feature. The right image depicts the estimated
trajectory as well as the ground truth of a localization experiment. As can be seen, the weighted
mean of the particles is close to the true pose of the robot.

t=0

odometry

true pose

t=12

true pose

odometry

t=33

true pose

odometry

t=41

true pose

odometry
t=50

true pose

odometry

t=60

odometry

true pose

Fig. 4. The particle set during localization. The two arrows indicate the pose resulting from
odometry information as well as the true pose of the robot. The true pose of the vehicle was
determined by using a laser range finder that was mounted on the robot for this purpose. The
occupancy grid map is only shown for a better illustration and was not used for localization.

for the error computation and because the belief was temporarily multi-modal. This
fact can be observed in the snapshots depicted in Figure 4. Asthis experiment illus-
trates, our technique is able to accurately estimate the pose of the robot. The average
error in thex/y-position was39cm. The average error in the orientation of the vehi-
cle was4.5◦. We got comparable localization results when using different cameras
with a more constrained field of view like the one which was used for map acquisi-
tion. During our experiments, we used 800 particles in our particle filter, which were
initialized with a Gaussian centered at the starting pose ofthe robot.
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Fig. 5. Evolution of the error during the localization experiment depicted in Figure 3.

Fig. 6. The humanoid robot Max.

6.2 Tracking the Pose of a Humanoid Robot

To further evaluate our approach, we applied our localization technique to the hu-
manoid robot depicted in Figure 6. To estimate the pose of therobot based on exe-
cuted motion commands, we perform dead reckoning. The gait control input consists
of motor currents that control the lateral, speed, sagittal, and the rotational speed. The
estimated velocities are integrated to determine the relative movement. Compared to
a wheeled robot equipped with odometry sensors, this leads to a noisy pose estimate.
Furthermore, due to the design of the humanoid robot, the camera images are often
blurred because of vibrations.

In this experiment, the robot Max traveled along the trajectory shown in Figure 7.
The red circles correspond to position where an observationwas made. The particle
clouds obtained in this experiment are given in Figure 8. In case no sensor infor-
mation is integrated, the pose estimate has a high uncertainty as can be seen in the
first row of that figure. In contrast to this, the use of our vision-based localization
technique reduces the uncertainty and enables to localize the humanoid. Note that
due to unstable motion of the humanoid, missing odometry sensors, vibrations, and
the shaking camera, the localization is less robust compared to a wheeled robot.
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plot 1

plot 2

plot 3

Fig. 7. The trajectory of Max. The red circles indicate the positions where observations were
made. The corresponding plots of the particle clouds are shown in Figure 8.

plot 1 plot 2 plot 3

Fig. 8. Vision-based localization of a humanoid robot. The images in the first row depict
the evolution of the particles in case no sensor informationis used. The high uncertainty in
the particle cloud results from the poor motion estimate resulting from dead reckoning. The
images in the second row show the result of our localization approach. As can be seen, the
visual information allows to accurately estimate the pose of the humanoid robot.
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7 Conclusions

In this paper, we presented an approach to mobile robot localization that relies on
a single perspective camera. Our technique is based on Monte-Carlo localization
and uses SIFT features extracted from camera images. In the observation model of
our particle filter, we compare descriptor vectors of features in the current image to
the set of potentially visible map features given the pose ofthe particles. Based on
this information, we compute a distribution about the angular displacement for each
sample given the current observation. The evaluation of potential correspondences
between features is done efficiently by performing the necessary computations for
clusters of particles. By using only the relevant features in the vicinity of the particles
in the observation model, we reduce the number of data association failures. As we
demonstrate in real-world experiments carried out with a wheeled as well as with a
humanoid robot, our system provides an accurate metric poseestimate for a mobile
robot without requiring proximity sensors, omnivision, ora stereo camera.
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