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Abstract— Panoptic segmentation is the recently introduced
task that tackles semantic segmentation and instance segmen-
tation jointly [18]. In this paper, we present an extension
of SemanticKITTI [1], a large-scale dataset providing dense
point-wise semantic labels for all sequences of the KITTI
Odometry Benchmark [10]. This extension enables training and
evaluation of LiDAR-based panoptic segmentation. We provide
the data and discuss the processing steps needed to enrich a
given semantic annotation with temporally consistent instance
information, i.e., instance information that supplements the
semantic labels and identifies the same instance over sequences
of LiDAR point clouds. Additionally, we present two strong
baselines that combine state-of-the-art LiDAR-based semantic
segmentation approaches with a state-of-the-art detector en-
riching the segmentation with instance information and that
allow other researchers to compare their approaches against.
We believe that our extension of SemanticKITTI with strong
baselines enables the creation of novel algorithms for LiDAR-
based panoptic segmentation as much as it has for the original
semantic segmentation and semantic scene completion tasks.
Data, code, and an online evaluation service using a hidden test
set are publicly available at http://semantic-kitti.org.

I. INTRODUCTION

Fine-grained scene understanding is a pre-requisite for
truly autonomous systems, such as self-driving cars. This
encompasses the type of surfaces, but also identifying indi-
vidual objects. The former is often designated as stuff and
the latter as things [18]. Only both sources of information
together enable autonomous systems to reason about the
drivability of surfaces, the type of objects and obstacles, and
possibly the intent of other agents in the vicinity.

Assigning to each individual pixel or point a semantic
label is called semantic segmentation, while the identification
and separation of individual objects is called instance seg-
mentation. These tasks are usually solved in isolation, but an
increasing number of methods have been recently developed
that solve both jointly using either images [18], [32], [41],
[39], [24], [7] or RGB-D data [30], [14], [16], [9], [43],
[40], [26], [13]. These developments were mainly driven by
the availability of a metric [18] and the swift adaption of
the task in different popular semantic segmentation datasets,
such as Cityscapes [8], Microsoft’s Common Objects in
Context (COCO) [20], and Mapillary Vistas [27]. While
semantic segmentation will still be relevant in the future,
we expect that instance segmentation will be soon replaced
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Fig. 1: Using the semantic segmentation (left part) and the point-
accurate instance annotations for traffic participants (right part),
we provide a benchmark for panoptic segmentation [18] using
three-dimensional LiDAR point clouds. Our work extends the
SemanticKITTI [1] dataset, which is based on the KITTI Vision
Benchmark [10].

and subsumed by the panoptic segmentation task, as it is a
part of a panoptic segmentation framework.

In this paper, we present an extension of the Se-
manticKITTI dataset [1] providing the necessary annotations
to evaluate panoptic segmentation on automotive LiDAR
scans. Fig. 1 shows an example of the provided instance an-
notation for all traffic participants, i.e., vehicles, pedestrians,
and cyclists. To ease the generation of instance information
with provided semantic segmentation of the LiDAR point
clouds, we first generate for static and non-static objects
instance information using grid-based clustering [4] and
distance-based clustering approach. Unfortunately, such a
clustering often leads to over- or under-segmentation, which
we had to manually correct using our point labeling tool.
Furthermore, we provide two baseline approaches that com-
bine state-of-the-art semantic segmentation with state-of-the-
art object detection methods.

In summary, our contributions are as follows:
• We provide temporally-consistent instance annotations

for all traffic participants including vehicles, pedestri-
ans, bicyclists, and motorcyclists for the KITTI Odom-
etry Benchmark.

• We provide two strong baseline approaches combining
current state-of-the-art semantic segmentation and a
state-of-the-art 3D object detector.

• We provide a benchmark with a publicly available on-
line evaluation service for approaches solving LiDAR-
based panoptic segmentation using a hidden test set.

http://semantic-kitti.org


TABLE I: Overview of other LiDAR datasets with annotations for instances (top) and semantic segmentation (bottom).

Name #Scans1 #Boxes/#Points #Classes2 Data3 FoV4 Sequential Reference

KITTI
(Detection) 7k/7k 1k 3(3) B F 7 [10]

Argoverse 22k 993k 17 B C 3 [6]
Lyft 46k 1.3M 9 B C 3 [17]
CADC 7k 305k 10 B C 3 [31]
Waymo 200k 12M 4 B C 3 [37]
A2D2 12k 12k 14 B F 7 [11]
H3D 27k 1.1M 8 B F 7 [29]
PandaSet 16k 1.4M 12 B C 3 [36]

In
st

an
ce

A
nn

ot
at

io
n

nuScenes 44k 1.4M 10 (23) B C 3 [5]
SemanticKITTI 23k/20k 682k 8 P C 3

Oakland3d 17 1.6M 5 (44) P C 7 [25]
Freiburg 77 1.1M 4 (11) P C 7 [3]
Wachtberg 5 400k 5 (5) P C 7 [3]
Semantic3d 15/15 4009M 8 (8) P C 7 [12]
Paris-Lille-3D 3 143M 9 (50) P C 7 [35]
Zhang et al. 140/112 32M 10 (10) P F 7 [42]
SemanticPOSS 2k 216M 14 P C 7 [28]
A2D2 31k 930k 38 P† F 7 [11]
PandaSet 16k 1388M 42 P C 3 [36]

Se
m

an
tic

Se
gm

en
ta

tio
n

nuScenes 40k 1400M 32 P C (3) [5]
SemanticKITTI 23k/20k 4549M 25 (28) P C 3 [1]

1 Number of scans for train and test set, 2 Number of classes used for evaluation and number of classes annotated in brackets, 3 type of annotations,
where B and P correspond to bounding boxes (B) and point-wise (P), 4 field-of-view (FoV) of LiDAR sensor with annotations, where F denotes frontal
and C denotes complete 360◦. † point-wise annotations via projection to annotated image and using corresponding image label.

II. RELATED WORK

Shortly after Kirillov et al. [18] proposed panoptic seg-
mentation and a metric to measure the performance of
approaches providing such labels, the established datasets
for semantic segmentation of image data, i.e., Cityscapes [8],
Microsoft’s Common Objects in Context (COCO) [20], and
Mapillary’s Vistas [27] adopted the metric and added an
evaluation for this task.

Due to the availability of the data, we witnessed a
wide adoption and interest for panoptic segmentation in
the computer vision community [7], [18], [21], [30], [32],
[41], [39], [24]. While there have also been approaches for
RGB-D data [14], [30], [9], [16], [43], [40], [13], there were
basically no approaches available that operate on LiDAR
data, when we released the data in April 2020. There was
simply no annotated data available that provided both point-
wise semantic labels and instance information. Recently,
first approaches adopted the provided annotations to develop
approaches for LiDAR-based panoptic segmentation [22],
[15].

Recently, almost all major self-driving car companies
release datasets providing besides camera also LiDAR
data [37], [17], [11], [6], [5]. While most datasets provide
also annotations for object instances by bounding boxes, only
a few datasets provide point-wise semantic annotation [1],
[11], [36], [5] needed to evaluate panoptic segmentation for
LiDAR. Tab. I summarizes the amount of data provided by
the different datasets.

SemanticKITTI [1] is a dataset based on the KITTI Vision
Benchmark [10], which might not show the diversity of
different inner cities traffic and weather conditions, but still

provides unparalleled long sequences showing a variety of
different environments and driving situations. Our annota-
tions with point-wise labels for the full 360◦ field-of-view
provide labels for 28 classes including labels distinguishing
moving and non-moving objects. By providing now instance
annotations together with an online evaluation on a hidden
test set, we close the gap to the aforementioned established
image-based dataset and provide a benchmark for panoptic
segmentation using an automotive LiDAR. We hope that the
availability of labeled LiDAR scans for panoptic segmenta-
tion opens the door for more research in the direction of
LiDAR-based panoptic segmentation.

III. DATASET

In this section, we introduce the provided dataset and
discuss the annotation process to extract instance information
from a given semantic segmentation in a semi-automatic
fashion with acceptable manual labeling effort to adjust for
wrong over- and under-segmentations.

Fig. 2 shows a qualitative example of the annotation
provided by our dataset. The left part of the figure shows the
semantic segmentation of our SematicKITTI dataset, which
we use to determine the instance annotation. The right side
depicts the temporally consistent annotations, where different
colors correspond to individual instances. Note, that same
colored instances in the top and the bottom row of this figure
correspond to the same instance ID.

A. Annotation Process

For annotation of the instances, we employ a semi-
automatic process using different strategies to generate a
temporally consistent instance annotation. Our goal is to



Fig. 2: Qualitative example of the instance annotation over a sequence of scans: on the left is the semantic annotation and on the right
is the instance annotation shown. Top and bottom rows show consecutive timestamps from sequence 13. Note, same colors at different
timestamps correspond to the same instance id. Best viewed in color.

label the same instance through the whole sequence with
the same instance ID – even for instances that move. For
static objects, the data association can be simply performed
by considering the location of the segment after performing
a pose correction using a Simultaneous Localization and
Mapping (SLAM) system [2]. For moving objects, we have
to account for the motion of the object as well as the motion
of the sensor at the same time.

Overall, the SemanticKITTI dataset [1] provides 28 classes
(including 6 classes to distinguish moving from non-moving
classes) from which we select the traffic participants as
thing classes for the panoptic segmentation, i.e., car, truck,
other-vehicle, motorcycle, bicycle, person, bicyclist, and mo-
torcyclist. The remaining classes are stuff classes for the
panoptic segmentation, i.e., road, sidewalk, parking, other-
ground, building, vegetation, trunk, terrain, fence, pole, and
traffic-sign.

For static thing classes, we first cluster all points for
each individual class using a fast grid-based segmentation
approach [4] to handle the large number of points efficiently.
We then split the aggregated point cloud into tiles of size
100 m by 100 m using the pose information by our SLAM
system [2]. For each tile, we use a two-dimensional grid with
cell size 0.1 m by 0.1 m, which allows us often to separate
even close parking cars. Next, all points are inserted into
the corresponding grid cells using their x and y-coordinates.
Finally, only grid cells with points exceeding a height thresh-
old ∆ > 0.5 m are combined using a flood fill algorithm to
combine neighboring grid cells into segments.

For moving thing classes, we generate clusters for each
scan individually using a distance-based clustering as this
provided more reliable results and could be also used to
associate instances between consecutive scans. First, we
search for each point in a radius of 0.5 m for the nearest

neighbor and cluster points together that share neighbors. To
find associations with the previous 4 scans, we use a slightly
larger radius of 1.0 m to find neighbors between two different
timestamps. If we find enough neighbors with the previous
segments at different timestamps, we associate them together
and assign the same instance ID.

The described clustering leads inevitably to over- and
under-segmentation (cf. Fig. 3), but also to wrong or missing
associations between consecutive timestamps. We correct
these issues manually using an own point labeling tool, which
provides tools to create, join, and split instances. Overall, the
manual correction for all 22 sequences took roughly 70 h of
additional labor.

B. Statistics

Fig. 4 provides an overview of the number of instances
and the actual number of bounding boxes per class. We show
in the upper part of the figure the sequence-wise counts of
instance annotations, i.e., we count each object only once,
even if it is seen multiple times by the sensor. The lower
part of the figure shows the accumulated scan-wise counts of
instances, where we count the instances without considering
the temporally consistent instance ID.

The bulk of the instances correspond to cars, which
are naturally occurring in city-like environments and also
correspond to the normal statistics in autonomous driving
scenarios. Usually, an autonomous car will also encounter
some classes far fewer than other classes or situations. They
are usually denoted as the ‘long tail’ problem, referring to
the underrepresented entities in a given distribution. This
adds complexity to the task, since panoptic segmentation
approaches, which are designed to tackle this scenario must
be able to deal with such skewed class distributions.



Fig. 3: Example of under- (top) and over-segmentation (bottom)
generated by our semi-automated clustering approach, which we
manually corrected by splitting or joining segments.

IV. BASELINE APPROACHES

None of the available RGB-D approaches [14], [30], [13],
[9], [16], [43], [40] could be easily adapted to the size
of the data and the specific characteristics of the LiDAR
point clouds. Available approaches for RGB-D panoptic
segmentation either use a truncated signed distance func-
tion (TSDF) [14], [26] or voxel grids [13], or employ
PointNets [33], [34] for feature extraction [30], [9], [16],
[43], [40]. A TDSF representation and PointNets perform
purely on single point clouds due to the characteristic sparsity
pattern of the rotating LiDAR sensor, which generates dense
point clouds at close ranges and sparse point clouds at larger
ranges. Furthermore, our evaluation for the SemanticKITTI
datatset [1] of variants of the PointNets [33], [34] showed
inferior performance with such point clouds.

Thus, we propose two baseline approaches combining
current state-of-the-art semantic segmentation approaches on
SemanticKITTI, namely KPConv [38] and RangeNet++ [23],
paired with a state-of-the-art object detector on the KITTI
3D object detection benchmark, namely PointPillars [19],
providing instance-level information.

To this end, we use the oriented bounding boxes of the
object detector, i.e., bounding boxes for cars, pedestrians,
and cyclists trained on the KITTI detections benchmark [10],
to determine the instance ID for points inside the bounding
boxes. By combining the predictions of the semantic segmen-
tation and assigning the instance ID of each bounding box to
each point inside of it, we obtain a panoptic segmentation.
Note that we only assign instance IDs to points from the
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Fig. 4: Top: number of (sequence-wise) objects. Bottom: number of
(scan-wise) instances. The hashed bars correspond to the training
data. The large number of scan-wise annotations in relation to the
number of objects indicates that many objects are seen over an
extended period of time.

thing classes, i.e., points under a car classified as road or
parking are not assigned an instance ID.

For the baseline, we used pre-trained models or publicly
available predictions for KPConv [38] and RangeNet++ [23],
which were trained on SemanticKITTI. PointPillars had to
be trained from scratch using the provided implementation1,
modifying the configuration of the object detector such that
it provides region proposals and bounding boxes for the full
360-degree field-of-view of the LiDAR sensor.

These networks were run independently for semantic seg-
mentation and object detection and then merged to generate
a panoptic segmentation. None of the approaches can, there-
fore, run at the frame rate of the LiDAR, i.e., 10 Hz, and
thus having computational budgets that are not suitable in an
autonomous car. Furthermore, the PointPillars detector [19]
requires training separate networks, one for the class car and
one for pedestrian combined with cyclist, which accentuates
the problem further. We provide an evaluation of the perfor-
mance of these approaches including runtime information in
the experimental section of this paper.

Note that the decision for using an object detector pro-
viding oriented bounding boxes was made to minimize
the negative effect of axis-aligned bounding boxes, which
would lead to large overlaps between cars parking near to
each other, see also Fig. 5 for an example. Thus, oriented
bounding boxes lead to more accurate instance annotations
in the depicted case.

1See the GitHub repository at https://git.io/Je25l.

https://git.io/Je25l


axis-aligned bounding box oriented bounding boxFig. 5: Overlapping of axis-aligned bounding boxes and therefore
wrong or ambiguous assignment of points inside bounding boxes
(left). With oriented bounding boxes this ambiguity due to overlap-
ping bounding boxes does not occur (right).

V. EXPERIMENTS

Before we discuss details of the baseline implementations
and the results of our baseline approaches, we shortly provide
a summary of the panoptic segmentation metric.

A. Evaluation Metric
In panoptic segmentation, each point pi not only carries

a class label yi ∈ Y , where |Y| is the number of classes, but
also can have an instance ID ni, where ni = 0 denotes no
specific instance.

To measure the quality of this joint assignment, we briefly
recapitulate the recently proposed panoptic quality (PQ)
metric [18]. Let S, Ŝ denote segments, i.e., sets of points in
our specific case, sharing an class and instance ID. Here, we
assume that the stuff classes simply get instance ID ni = 0
corresponding to no specific instance assigned.

Furthermore, let IoU(S, Ŝ) = (S∩Ŝ)·(S∪Ŝ)−1 denote the
intersection-over-union of these two sets. Let the set of true
positive matches TPc be the pairs of predicted segments Ŝ
that overlap at least with 0.5 IoU with a ground truth
segment S, TPc = {(S, Ŝ) | IoU(S, Ŝ) > 0.5}. Likewise,
let FPc the set of unmatched predicted segments Ŝ and FNc

the set of unmatched ground truth segments S.
With the above definitions, the class-wise PQc is given by

PQc =

∑
(S,Ŝ)∈TPc

IoU(S, Ŝ)

|TPc|+ 1
2 |FPc|+ 1

2 |FNc|
. (1)

The panoptic quality metric is computed for each class
independently and averaged over all classes, which makes
the metric insensitive to class imbalance [18], i.e.,

PQ =
1

|Y|
∑
c∈Y

PQc. (2)

Kirillov et al. [18] furthermore define the segmentation
quality (SQ) as average IoU over matched segments and the
recognition quality (RQ) corresponding to the F1 score.

Porzi et al. [32] proposed to alter the metric to account
for stuff classes having only a single segment since no pixels
(or, in our case, points) have an instance ID. Hence, the IoU-
based criterion could often lead to an unmatched prediction.
To account for stuff classes, Porzi et al. use

PQ†c =

{
IoU(S, Ŝ) , if c is a stuff class

PQc , otherwise.
(3)

Consequently, we denote by PQ† the average over the class-
wise modified PQ†c as defined in (2).

Furthermore, the quality of the semantic segmentation
is also measured using the mean intersection-over-union
(mIoU), which also enables the comparison with other
approaches in the semantic segmentation benchmark. This
metric is defined as follows:

mIoU =
1

|Y|
∑
c∈Y

|{i | yi = c} ∩ {j | ŷj = c}|
|{i | yi = c} ∪ {j | ŷj = c}|

, (4)

where yi corresponds to the ground truth label of point pi

and ŷi to the prediction.

B. Baseline Parameters, Training, and Inference Details

In this section, we provide more details on the training
and inference of the two-stage baselines. We, furthermore,
provide details on the modifications needed to use the models
on the SemanticKITTI [1] benchmark, which requires to use
full point clouds of a single turn for training and inference.
We will provide code for merging the predictions to enable
the reproduction of our results.

KPConv by Thomas et al. [38]. For scene classification,
Thomas et al. [38] extract 10 overlapping spheres of 10 m
radius, subsample the point clouds with a voxel grid (res-
olution of 0.1 m), and drop random points in case there
are more than 15, 000 points left. To aggregate predictions,
they perform majority vote on the overlapping parts of the
predictions. Overall, this achieves state-of-the-art single scan
performance of 58.5 mIoU and performs better than taking a
subsampled single point cloud with mIoU 56.6 (subsampling
with voxel grid of resolution 0.1 m).

RangeNet++ by Milioto et al. [23]. Here, we directly
use the predictions available in our repository2, which are
also provided for the test set. RangeNet++ uses a range
image of size 2048 × 64 for training and inferences, which
is then upsampled to the complete point cloud by using
nearest neighbors. To remove artifacts from the reprojection,
it applies a k-nearest neighbor filtering, which accounts for k
neighbors in a certain range.

PointPillars by Lang et al. [19]. We used for training of
the approach the aforementioned implementation supported
by the Point Pillar authors. Since SemanticKITTI does
not offer oriented bounding boxes, we use the 3D object
detection part of KITTI Object Detection [10] for training.
The KITTI dataset was recorded with the same sensor and
a similar environment, but there is no overlap between the
point cloud sequences of the odometry and the detection
benchmark.

For training on the KITTI object detection, we follow
the original approach of Lang et al. [19] and use 0.16 m
as voxel grid resolution with a maximum of 12.000 pillars
with at most 100 points for each pillar for training on
the KITTI Object Detection subset of the KITTI Vision
Benchmark [10]. As commonly done and also advocated by
Lang et al. [19], we trained a network for cars, car network,

2https://github.com/PRBonn/lidar-bonnetal
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Method mIoU PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt

KPConv [38] + PointPillars [19] 58.8 44.5 52.5 54.4 80.0 32.7 38.7 81.5 53.1 65.9 79.0
RangeNet++ [23] + PointPillars [19] 52.4 37.1 45.9 47.0 75.9 20.2 25.2 75.2 49.3 62.8 76.5

TABLE II: Comparison of test set results on SemanticKITTI using stuff (St) and thing(Th) classes. All results in [%].
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KPConv [38] + PointPillars [19] 44.5 84.6 60.1 34.1 8.8 80.7 72.5 17.2 9.2 30.8 19.6 77.6 53.9 42.2 29.9 59.4 22.8 49.0 46.2 46.8
RangeNet++ [23] + PointPillars [19] 37.1 90.6 63.2 41.3 6.7 79.2 66.9 6.7 3.1 16.2 8.8 71.2 34.6 37.4 14.6 31.8 13.5 38.2 32.8 47.4

TABLE III: Detailed class-wise results of test set results on SemanticKITTI in panoptic quality (PQ) [18]. All results in [%].
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KPConv [38] + PointPillars [19] 52.5 88.8 72.7 61.3 31.6 90.5 72.5 17.2 9.2 30.8 19.6 84.8 69.2 69.1 29.9 59.4 22.8 64.2 56.4 47.4
RangeNet++ [23] + PointPillars [19] 45.9 91.8 75.1 65.0 27.7 87.4 66.9 6.7 3.1 16.2 8.8 80.5 55.1 64.8 14.6 31.8 13.5 58.6 47.9 55.9

TABLE IV: Detailed class-wise results of test set results on SemanticKITTI in fixed panoptic quality (PQ†) [32]. All results in [%].

and a separate network for pedestrian and cyclist, called
pedcyclist network.

For the car network, we consider the part in front
of the sensor inside the ranges x = (0.0, 69.12), y =
(−39.68, 39.68), and z = (−3.0, 1.0), where we assume
that the sensor is located at (0, 0, 0). For the pedcyclist
network, we use x = (0.0, 48.0), y = (−20.0, 20.0), and
z = (−2.5, 0.5) as volume of the point pillar grid.

For prediction on the SemanticKITTI dataset, we are
interested in predicting bounding boxes for the full field-
of-view of the sensor. Thus, we adapted the parameters for
inference. For the car network, we use a grid volume of size
x = (−69.12, 69.12), y = (−69.12, 69.12), z = (−3.0, 1.0).
For the pedcyclist network, we use a similar grid vol-
ume of x = (−69.12, 69.12), y = (−69.12, 69.12),
z = (−2.5, 0.5). Furthermore, we increase the number
of maximal pillars to 30000 and adopt the anchor generation
strides to accommodate the large input volume.

Considering the runtime of the proposed two-stage ap-
proach, we observe a large discrepancy between the reported
runtime and our obtained runtime, which cannot be only
explained by using a different system (Nvidia Geforce RTX
2080 Ti vs. a Nvidia Geforce 1080 Ti). First, we have to
note that the implementations might be different from the
originally used implementation. We believe that the main
reason seems to be the 3.4 times increase input volume and
the increased number of pillars. The fact that the KITTI
object detection benchmark only uses a part of the point
cloud is also acknowledged in Sec. 6 of Lang et al. [19].
We furthermore do not use TensorRT for inference, which
could additionally improve the runtime.

C. Baseline Results
Tab. II summarizes the results in a breakdown according

to mean Intersection-over-Union (mIoU) and the different
panoptic quality metrics. Due to the overall stronger perfor-
mance on semantic segmentation of KPConv (58.8 mIoU vs.
52.4 mIoU in Tab. II), the panoptic baseline using KPConv is
stronger in all metrics. We believe that this discrepancy can
be directly attributed to the stronger performance on small
classes. Tab. III and Tab. IV show the detailed results for
all classes using the panoptic quality and the fixed panoptic
quality, respectively.

For the runtime, we assume that the separate object
detectors can be run in parallel (314 ms for pedestrian/cyclist
and 105 ms for car) after the semantic segmentation (200 ms
for KPConv and 95 ms for RangeNet++) resulting in 514 ms
and 409 ms respectively.

VI. CONCLUSION

We present an extension of the SemanticKITTI dataset
that enables the community to evaluate and benchmark
panoptic segmentation approaches using data generated by
an automotive LiDAR. We provide the data, code, as well
as, an online platform for evaluation using a hidden test
set. Additionally, we provide two panoptic segmentation
baselines that are built from a combination of state-of-the-art
semantic segmentation approaches and a 3D object detector.
The goal of this dataset paper is to propel the research on
LiDAR-based panoptic segmentation, since it is an important
task that will become more relevant, and provide a platform
for easy benchmarking of such approaches.
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