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A B S T R A C T

A clean and reliable map of the environment is key for a variety of robotic tasks including localization,
path planning, and navigation. Dynamic objects are an inherent part of our world, but their presence
often deteriorates the performance of various mapping algorithms. This not only makes it important
but necessary to remove these dynamic points from the map before they can be used for other tasks
such as path planning. In this paper, we address the problem of building maps of the static aspects
of the world by detecting and removing dynamic points from the source point clouds. We target
a map cleaning approach that removes the dynamic points and maintains a high quality map of
the static part of the world. To this end, we propose a novel offline ground segmentation method
and integrate it into the OctoMap to better distinguish between the moving objects and static road
backgrounds. We evaluate our approach using SemanticKITTI for both, dynamic object removal and
ground segmentation algorithms as well as on the Apollo dataset. The evaluation results show that our
method outperforms the baseline methods in both tasks and achieves good performance in generating
clean maps over different datasets without any change in the parameters.

1. Introduction
Clean and reliable maps play an essential role in au-

tonomous driving applications. The quality of the map can
influence the performance of downstream tasks like pose
estimation, localization, path planning, etc. Many differ-
ent types of sensor data are used for generating maps,
e.g. monocular images [16], stereo pairs [33], or LiDAR
scans [5, 42, 47]. In this paper, we address the problem of
detecting and eventually removing dynamic measurements
in 3D LiDAR data and generate static point cloud maps.

In a typical driving environment, besides the static parts
of the scene, there are usually many moving objects such as
vehicles, pedestrians, or bicyclists. Traditional online simul-
taneous localization and mapping (SLAM) methods [5, 47]
suffer from such dynamic objects and generate maps with
so-called "ghost artifacts" as shown in Fig. 1, which makes
the maps difficult for later use. Various approaches have
been proposed to tackle the problem of dynamic point
removal in LiDAR point cloud maps. Broadly speaking, one
can classify them into two main types; removing dynamic
objects while the construction of map [10, 12, 20, 46] and
removing dynamic objects after map generation [21, 34].
The latter are offline methods that can leverage more infor-
mation and, therefore, usually have better performance in
detecting and removing dynamic objects in the point cloud
map.
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Figure 1: The figure represents the LiDAR point cloud before
(above) and after (below) applying our approach. The red
points denote the dynamic and the white points the static
ones. The point cloud data is from the Apollo sequence 04
frames 1500 to 1780.

The main contribution of this paper is a novel dynamic
points detection and removal method to generate clean
LiDAR point cloud maps. The input of our method is the
raw point clouds together with the estimated odometry from
a LiDAR SLAM method, SuMa [5], and the output is the
point cloud map with voxel-wise binary labels, either static
or dynamic. Our method first applies ground segmentation
to distinguish between the ground and non-ground points
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and then utilizes OctoMap [20] to distinguish between
free and occupied space in a probabilistic fashion. The
initially segmented ground points are then fed to OctoMap
and marked as occupied. OctoMap [20] provides a static
and a dynamic map, as well as some unknown points,
which are added into the static or dynamic map based on
a k-Nearest Neighbor (kNN) voting algorithm. Combining
OctoMap with the proposed ground segmentation method,
our approach removes most dynamic objects while, at the
same time, keeping enough static parts to build a clean and
complete map.

In sum, we make three key claims: Our approach is
able to (i) generate clean point cloud maps by removing dy-
namics from the scene, by (ii) a probabilistic, neighborhood
aware segmentation, with a novel pre-ground segmentation
algorithm to better preserve the static environment, which
(iii) generalizes well over different datasets obtained from
different environments. These claims are backed up by
the paper describing our approach and our experimental
evaluation.

The source code of our approach can be accessed at:
https://github.com/PRBonn/dynamic-point-removal.

2. Related Work
Various approaches have been proposed to remove dy-

namic objects and clean the maps. In this work, we focus
on generating a static map using only LiDAR point clouds.
Since the proposed method has two steps, ground segmen-
tation, and point cloud cleaning, we, therefore, discuss the
related work twofold.

2.1. Ground Segmentation
Ground segmentation is a key building block for many

autonomous systems like traversable analysis and naviga-
tion [7, 29]. In this context, elevation maps have been
widely used to monitor the surface [1] but also to distin-
guish between ground and non-ground. Some approaches
investigated their height distribution [3, 15], or combined
them with classical image segmentation methods [2]. A
common heuristic for segmenting the ground is the assump-
tion of a planar horizontal surface. Principal Component
Analysis (PCA) [13, 43] and random sample consensus
(RANSAC) [17] are common tools to estimate the plane,
which can then be used to segment the points based on the
distance. Due to slopes in the terrain, it has been beneficial
to divide the scene into multiple areas and only assume local
planarity [24, 30]. Markov random fields have been used
to model the dependencies between cells on a grid level
[7, 35, 40].

When dealing with point clouds from the LiDAR scan-
ner, one can exploit additional sensor-specific information.
Polar coordinates deal better with the distant dependent
point distribution in the measurement process [9, 14, 19,
23, 24, 41]. A range image representation allows for fast
neighborhood search [6, 22, 28].

Recently more and more deep learning-based dense
semantic segmentation methods emerged. Convolutional

neural networks in the point cloud domain often operate
either on sparse voxel grids [44, 38], range images [28, 22]
or directly on point level [39]. These typically perform well
in areas that are similar to the training set, but worse when
facing different sensor modalities or setups. Additionally,
they require a lot of training data which is usually expensive
to acquire.

2.2. Static Map Generation
Related approaches which are focusing on static map

generation can be mainly classified into three different
types, namely, segmentation-, visibility-, and ray tracing-
based methods.

Some segmentation algorithms provide a dense seman-
tic segmentation [22, 28] for every single scan, which allows
filtering the points already before integrating them into the
map. For this, one can directly remove all points which
belong to movable classes like vehicles and pedestrians.
Instead of removing all potential moving objects, Chen et
al. [12] propose a LiDAR-based semantic SLAM method
that combines both semantic and geometric information
to detect and remove the moving objects, while leaving
the static objects on the map. Recently, there are also ap-
proaches focusing directly on predicting the moving objects
[10, 32, 27, 37], which typically requires significantly less
labeling effort for obtaining the training data. Non-learning-
based methods typically cluster the point clouds and utilize
multiple scans to distinguish between moving and static
parts [11, 25, 45, 46].

Visibility-based approaches check for the query to map
associations and are based on the assumption that if the
query point in consideration is detected beyond an already
existing point then the considered query point is deemed as
dynamic [21, 23, 34]. This kind of methods can easily be
corrupted by motion ambiguities which cause errors. Kim
et al. [21] provide an offline approach and clean maps using
multiresolution range images, in which the finer resolution
is used to remove the dynamic points while the coarser res-
olution reverts the wrongly classified static points. Another
different approach that used the complete map as input is
given by Lim et al. [23] by comparing descriptors. They di-
vide a single point cloud into smaller sectors and determine
the descriptors respectively. The descriptors are matched
with the one calculated for the region in the map. Lim et
al. [23] denote the importance of ground segmentation and
exploit that most of the dynamic objects are connected to
the ground.

Ray tracing methods deal naturally with dynamic ob-
jects when building the map by updating the occupancy
probability of the space along the ray. Space that has been
occupied at some point by a dynamic object gets freed the
more other rays pass through it. The relatively big memory
demand of voxel grid-based methods [36] can be bypassed
through octomaps [20, 31]. The drawback of ray tracing
methods is the discretization which can lead to errors and
usually removes also some static parts. Our approach builds
on top of OctoMap [20] and tries to tackle the problem
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Figure 2: The figure shows a complete pipeline of our approach. The input of our method is the LiDAR scans together with the
poses estimated by SLAM. In the preprocessing module i.e. the ground segmentation module, our method uses a heightmap
and canny edge detector to provide ground and non-ground points. After feeding all points to OctoMap, we assign all octants
with ground points as occupied. This results in static, dynamic, and unknown point cloud maps. The ambiguity of the unknown
points is resolved by using kNN-based voting.

Figure 3: The figure demonstrates the procedure of our ground removal method, a heightmap is generated using the 3D
LiDAR scan, which is then passed through the Canny Edge Detector, which as a result provides us with the edges (non-
Ground points). On the right-hand side, we visualize the segmentation result (ground points in white, non-ground in green).

of falsely classifying static points by combining it with
segmentation-based techniques. We assume that the ground
is static which allows us to utilize ground segmentation [24]
to label the space of the ground points as occupied.

3. Our Approach
In this paper, we propose a point cloud map cleaning

method for which the key steps are illustrated in Fig. 2.
First, we preprocess the raw point cloud using ground
segmentation approaches, which separates the ground from
the non-ground points (see Sec. 3.1). The points are then
fed to OctoMap [20], while marking the ground points as
occupied, to distinguish between static and dynamic points
(see Sec. 3.2). In the end, we use a kNN-based voting
scheme to further decide the labels of uncertain estimations
generated by OctoMap (see Sec. 3.3).

3.1. Ground Segmentation
We decided in favor of using a ground segmentation for

cleaning the point cloud map based on two assumptions.
First, a large proportion of the points belong to the ground
where we can assume that it is not moving and thus static.
Consequentially, we can pre-assign all the ground points

in advance as "static" to reduce the number of false dy-
namics. Second, most of the moving objects, e.g., vehicles,
and humans are connected to the ground. A good ground
segmentation can largely reduce the difficulty of dynamic
object detection and removal in the following steps.

We propose a novel multiresolution height-map-based
ground segmentation algorithm, which we will refer to as
HMSeg in the following. A heightmap is a 2.5-dimensional
representation that stores the height of the surface in a 2D
grid (similar to RGB values in an image; see Fig. 3 for
a visualization). First, we define the area of interest and
a certain grid resolution around the scan. Afterward, we
project each point in the scan onto the 2D grid and store
its height in the corresponding cell. We restrict the points up
to a certain height 𝜏ℎ to stop the trees and other objects to
overshadow the ground points and hence going undetected.
The limit 𝜏ℎ needs to be adjusted based on the sensor setup.
In typical urban driving environments, the value of 𝜏ℎ ndoes
not need be adjusted for a specific surrounding environment,
but it should be adjusted based on the height of the sensor,
which for most cars will not change drastically once it has
been mounted. Once the heightmap of the point cloud is
generated, we apply an edge detection algorithm to find the
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non-ground area. We use the Canny edge detector [8], which
provides us with the flexibility to distinguish between strong
and weak edges and allows the sensitivity to measure them
accordingly. A height filter is then applied on the resultant
ground points which label the points with a height above
a certain threshold as non-ground. The same approach is
applied using different resolutions, which provide probable
ground points for each resolution respectively. The final
label for each point is then achieved by voting through
the probable ground points. The main motivation behind
using an edge detection algorithm on the heightmap is that
when viewing the point cloud from a bird’s eye view, one
can easily detect the boundary edges in the grid due to the
sparsity of the heightmap. Here, the discrimination in strong
and weak edges is used to discard the ground points (weak
edges) and remain the non-ground (strong edges), which
eventually helps in segmenting the ground.

Due to the highly modularized nature of our proposed
framework, our method also works well with other ground
segmentation methods. Our proposed ground segmentation
algorithm does not assume the sensor or measuring process.
Having additional information about the kind of sensor,
one can use more sophisticated methods which exploit the
sensor characteristics. To this end, we also test our method
combined with the state-of-the-art ground segmentation
method, Patchwork, proposed by Lim et al. [24], which is
specially designed for LiDAR data.

The Patchwork method by Lim et al. [24] can be broken
down into three parts, namely, concentric zone model,
region-wise ground plane fitting, and ground likelihood esti-
mation. The concentric zone model divides the point cloud,
first into 𝑘 zones depending on its vicinity to the LiDAR
sensor and by this exploits the sparser point density at larger
distances. Then, the region-wise ground plane fitting is
applied to divide the point cloud further into 𝑛 bins/regions
and a plane is fitted to each of the bins by a PCA. The
idea behind breaking the point cloud into different bins is
that each bin is considered very small as compared to the
whole point cloud and as a result, is safe to assume it to be
planar. The region-wise ground plane fitting is an iterative
method that detects a set of inlier points and constructs the
covariance matrix using them. PCA is applied to them to
find an initial estimate of the ground plane which is then
again used to find the inlier points. This process is repeated
three times to get the final estimate of the ground plane. All
the points on this plane are then considered to be ground
points. Once an estimate for the ground points is found, a
ground likelihood estimation is conducted to further verify
the ground segmentation results. It consists of three factors,
uprightness, elevation, and flatness. Each of these factors
takes care of different end-case conditions, which helps to
filter out the wrongly classified ground points. Uprightness
considers the angle of the normal plane with the XY-axis
of the sensor. The elevation is designed to eliminate points
belonging to surfaces like the rooftop of a car, while flatness
helps with the case where surfaces have steep slopes.

3.2. OctoMap
Once the ground segmentation results for the 3D LiDAR

scans are obtained using the desired algorithm, we set those
points as static in the Octree of the point cloud created
inside the OctoMap [20]. OctoMap is a probabilistic 3D
mapping framework based on an octree data structure.
This hierarchical tree-based structure represents a cubical
volume in each node, so-called octants. Each octant can
subsequentially be broken down into eight sub-volumes
until a specific resolution is reached. The leaf nodes store
an occupancy probability 𝑝(𝑥), which indicates whether the
area is occupied, free, or unknown. While construction, it re-
duces the occupancy probability for each node along the ray
of a measured point and therefore increases the probability
of being free. The occupancy probability increases for the
Octant in which the ray ends (namely at the actual position
of the point). When fusing multiple LiDAR observations,
this process is repeated iteratively for each point in each
scan. This approach naturally deals with dynamic objects
since areas that temporarily contain dynamics (and thus
have a high occupancy value) will be lowered each time
we traverse through it. After the construction, we can query
the occupancy status of a certain point by traversing along
the tree. Unseen areas and areas where the occupancy status
is not clear (occupancy probabilities around 𝑝 ≈ 0.5) will
be stated as unknown. Due to the relatively high pace in
the automotive field, in practice, many nodes of the octree
will just be updated a couple of times and thus have no
clear occupancy status. These nodes could be either static or
dynamic, and therefore, we propose a simple but effective
way to deal with those ambiguities in the following section.

3.3. kNN-based Voting
To deal with the problem posed by the dilemma of

unknown points, a series of experiments were conducted by
either assigning the unknown nodes as static or dynamic but
both assumptions lead to errors in one or another way. We
propose a k-nearest neighbor-based voting scheme for each
unknown point, where we have a majority vote on the labels
of its 𝑘 nearest points. We assign either static or dynamic to
the unknown point based on whichever is in abundance. The
motivation behind this approach is that dynamic and static
objects often occur in clusters of points (e.g., as shown in
Fig. 1). Using this, the 𝑘 nearest points are selected from
the static and dynamic map produced by the OctoMap [20].
From those points, a ratio of static and dynamic points is
calculated and if it is above a certain threshold then the
point is labeled as static and consequentially otherwise as
dynamic. In this way, we label all points in the point cloud
either dynamic or static, and use the static points to construct
a clean map.

3.4. Implementation Details
For the purpose of reproducibility, besides releasing the

source code of our approach, we also list and explain all the
hyperparameters used in our approach. We preprocess the
scans by filtering out all points over 50m range to reduce
the impact of errors in the pose estimation and sensor noise.
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Methods Metrics KITTI Sequences
00 01 02 03 04 05 06 07 08 09 10 Avg.

Removert-R MCA [%] 79.73 79.83 84.76 89.07 87.03 77.41 76.35 77.73 78.80 92.53 64.27 80.68
DR [%] 61.24 61.97 70.73 81.26 77.22 56.70 55.58 57.51 62.74 86.67 30.59 64.16

Removert-R&R MCA [%] 75.46 71.76 80.83 85.18 82.13 69.81 72.75 75.05 78.56 87.83 61.59 76.50
DR [%] 52.27 45.74 62.80 73.14 66.79 41.00 47.54 51.64 58.98 77.08 24.59 54.78

Octomap-Empty MCA [%] 79.94 72.59 80.13 76.58 72.21 79.80 76.67 77.92 76.02 78.48 72.35 76.63
DR [%] 95.44 93.48 98.37 97.99 97.56 96.26 95.63 93.85 93.41 98.10 81.17 94.70

Octomap-Occupied MCA [%] 80.09 73.22 80.37 76.90 72.42 79.95 76.96 78.06 76.09 78.64 72.47 76.73
DR [%] 95.44 93.47 98.53 97.99 97.56 96.26 95.63 93.85 93.23 98.10 81.17 94.71

Octomap-kNN MCA [%] 80.45 73.13 80.26 76.52 72.36 80.52 76.78 77.90 75.62 78.79 72.35 76.78
DR [%] 96.79 94.12 98.56 97.85 97.69 97.96 96.24 93.81 95.38 98.39 81.21 95.27

Ours-HMSeg MCA [%] 84.62 81.63 84.98 84.54 71.36 85.21 84.79 82.11 79.44 79.74 77.44 81.44
DR [%] 92.12 81.78 93.83 95.02 77.07 92.58 88.39 89.15 85.11 85.67 78.92 87.24

Ours-Patchwork MCA [%] 85.52 82.84 87.38 86.24 80.77 86.45 86.73 83.85 82.51 86.35 78.60 84.30
DR [%] 93.20 88.27 96.85 95.11 95.90 94.67 93.38 91.96 91.17 97.83 80.17 92.59

Table 1
Quantitative map cleaning results on the KITTI dataset. The Removert-R&R represents the remove and revert version of
Removert and Removert-R represents only the remove version of Removert. OctoMap-kNN combines OctoMap with kNN.
Assigning the unknown points to static called Octomap-Occupied, and dynamic called Octomap-Empt. Ours-HMSeg means
using our proposed ground segmentation while Ours-Patchwork includes the results of our method using the Patchwork
ground segmentation method.

Methods Metrics Apollo Sequences
01 02 03 04

Removert-R MCA [%] 85.27 78.25 78.78 91.23
DR [%] 70.81 56.64 57.72 82.76

Removert-R&R MCA [%] 79.32 76.61 83.22 82.57
DR [%] 58.87 53.37 66.58 65.3

Octomap-kNN MCA [%] 67.84 73.71 75.55 76.58
DR [%] 82.12 96.21 99.75 99.51

Ours-HMSeg MCA [%] 70.96 81.21 82.11 84.48
DR [%] 68.39 90.31 93.76 96.9

Ours-Patchwork MCA [%] 76.61 83.46 84.43 85.59
DR [%] 79.75 95.6 99.33 99.35

Table 2
Quantitative map cleaning results on the Apollo dataset.
Our method is able to outperform Removert in 2 out of 4
sequences while it is able to increase the MCA (Mean Class
Accuracy) of OctoMap with only a slight decrease in the DR
(Dynamic Recall)

The height threshold for the ground segmentation 𝜏ℎ is set
to be -1.5m < 𝜏ℎ < 2.0m in the local scanner frame. For
the canny edge detector, we use 10 and 300 as the weak
and strong thresholds. These thresholds divide the edges
detected into two categories the weak edges and the strong
edges, which provides us with the flexibility to increase or
decrease the detection of points as ground and non-ground.
In the experiments, only strong edges are given as output.
We use 𝑘 = 25 in the kNN voting for assigning labels to the
uncertain points of OctoMap. We voxelized the final point
cloud with a grid of 10 cm resolution.

4. Experimental Evaluation
The main focus of this work is to remove as many

dynamic points as possible, but at the same time preserve the

static parts of the map. We present our experiments to show
the capabilities of our method. The experiments support our
key claims that our method is able to (i) generate clean point
cloud maps by removing dynamics from the scene, by (ii)
a probabilistic, neighborhood aware segmentation, with a
novel pre-ground segmentation algorithm to better preserve
the static environment, which (iii) generalizes well over
different datasets obtained from different environments.

4.1. Datasets
We evaluate our method using KITTI Odometry [18]

with the labels from SemanticKITTI [4] for the sequences 0-
10. The KITTI Odometry dataset provides 3D LiDAR scans
recorded from a Velodyne HDL-64E scanner mounted on
a car, while the SemanticKITTI dataset provides corre-
sponding point-wise semantic labels in 28 classes, where
6 classes are assigned the attribute moving or non-moving.
In this work, we evaluate both ground segmentation and
moving object detection. For evaluating the performance of
ground segmentation, we treat the classes, "road", "side-
walk", "other-ground", "lane-marking", "vegetation" and
"terrain" as ground, while the rest classes are non-ground.
For moving object detection, we reorganize all moving ob-
ject classes into one dynamic class, while the rest 22 classes
are treated as static. We use sequence 08 for tuning the
hyperparameters and sequence 00-07, 09-10 for evaluation.
The labels are only used in the evaluation and are not needed
elsewhere.

To verify the generalization ability of our method, we
also evaluate the Apollo [26] dataset. The Apollo dataset
provides 3D LiDAR scans recorded from Velodyne HDL-
64E LiDAR mounted on the roof of a car. Different from
the data of KITTI collected in German towns, the Apollo
dataset was created in the US city, which typically has
a quite different appearance. Since there is no ground
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truth static/dynamic labels available for Apollo datasets, we
manually label parts of the dataset. We used specific frames,
i.e., 6500-7500 for sequence 01, 22300-24300 for sequence
02, 3100-3600 for sequence 03, and 1500-3100 for sequence
04 of the South Bay, Columbia Park as they contain a large
number of dynamics after manually annotating the complete
dataset for static and dynamic points. We will also release
the static/dynamic labels of parts of Apollo datasets in our
open-source repository for public research use.

4.2. Metrics
Our proposed approach aims at generating a clean static

map, by removing as many dynamic points as possible, but
at the same time preserving the static areas. Taking this
aim into consideration, we use the following two metrics
to evaluate the performance of our approach: (i) Mean Class
Accuracy (MCA), and (ii) Dynamic Recall (DR)

𝑀𝐶𝐴 = 1
2

( TS
TS + FD

+ TD
TD + FS

)

, (1)

DR = TD
TD + FS

, (2)

where TS are the true static voxels, TD the true dynamic
voxels, FS the dynamic voxels classified as static voxels,
and FD the static voxels classified as dynamic voxels. We
compute our metrics on the voxelized maps rather than on
the point labels themselves to be more independent of the
point density and to ensure a regional correct classification.
We assign the voxel the label of the point closest to the
voxel center. We use the MCA to quantify our map quality,
which can be increased by correctly classifying the static
and dynamic parts of the environment. This metric deals
naturally with the imbalance of the classes. This is important
due to the substantially higher number of static parts. The
dynamic recall shows how many of the dynamics we re-
move, which is especially important for approaches that get
deteriorated by those dynamic objects. We use the classical
metrics for measuring the performance of ground removal:
IoU of Ground, Recall, Precision, and F1-Score.

4.3. Static Map Generation Results
The first experiment evaluates the performance of our

approach and supports the claim that it can generate a static
map by removing dynamic objects, while at the same time,
can preserve the quality of the static map (the absence of
holes in the map). The approach was extensively tested on
the KITTI [18] sequences ranging from 00 till 10 shown
in Tab. 1. We compare several methods with different se-
tups. The Removert-R&R represents the remove and revert
version of Removert [21] while Removert-R uses only the
remove part. Adding our kNN voting to OctoMap, named
Octomap-kNN, instead of either assigning the unknown
points to static (Octomap-Occupied) or dynamic (Octomap-
Empty) increases the Accuracy and Recall. Combining
Octomap-kNN with our proposed ground removal (Ours-
HMSeg) increases the map quality by around 5% points.

The ground segmentation can only mark points as static,
therefore we can not increase the recall since this would
require marking points correctly as dynamic. The upper
bound of the recall when using the ground segmentation
is therefore OctoMap. Consequentially, when improving
the ground segmentation (Ours-Patchwork) we increase the
dynamic recall. Our approach outperforms Removert in both
accuracies and recalls in most of the sequences.

Fig. 4 presents some qualitative results to provide a
deeper insight into the performance of our approach (see
Fig. 4). We can see that Removert [21] can preserve more
static points (points displayed in green) than our approach
but removes substantially fewer dynamic points (blue). The
plain OctoMap [20] approach has a very high detection rate
of the dynamic points (blue) but it also deteriorates the
static map quality by falsely classifying the static points as
dynamic (red). Our approach can detect more static points
while keeping high accuracy in removing the dynamics.

4.4. Generalization Ability
This experiment supports our claim that our approach

generalizes well in a different dataset i.e. Apollo dataset.
As shown in Tab. 2, when testing on the Apollo dataset,
our method retains the same performance as achieved on
the KITTI dataset. We also integrate another ground seg-
mentation method, Patchwork [24], into our approach to
show that our proposed method works well with different
segmentation methods. Moreover, a better ground segmen-
tation improves the results even further. The modularity of
our approach allows us to easily incorporate new and better
segmentation methods to boost performance.

According to Tab. 1 and Tab. 2, the improvement by
using Patchwork as seen in the results is significant, espe-
cially when considering the Apollo Dataset. The accuracy
is increased by at least 1.2% for all four sequences, and
an increase of as big as 6% is observed in sequence 01.
While the increase of overall accuracy is approximately
3% and an average increase in the recall is around 6%.
The maximum increase of approximately 9% is noted in
sequence 04. There is a similar trend in the KITTI dataset
too, as the average increase in accuracy is 3% and an average
increase in the recall by approximately 6%. A big increase
in the recall of 19% is observed in the KITTI sequence 04.
Also, our method achieves approximately 99% recall while
maintaining accuracy above 84% for two sequences out of
four in the Apollo Dataset.

4.5. Ground Segmentation
This experiment supports the claim that our relatively

simple heightmap-based ground segmentation algorithm is
well suited for separating the ground from non-ground
points. We compare our method against the classical PCA
and RANSAC-based methods as well as Patchwork [24] the
new state of the art for LiDAR. The results of the experiment
are shown in Tab. 3. Our approach is able to outperform
the classical baselines. The more sophisticated Patchwork
outperforms our method of HM-Seg in all the metrics by
exploiting the characteristics of LiDAR scanners. This is
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(a) Removert [21] (b) OctoMap [20] (c) Our

Figure 4: The figure shows a qualitative comparison between Removert [21], OctoMap [20] and our approach. The points
displayed in green are the correctly classified static points, blue-colored points represent correctly classified dynamic points
and red-colored points denote the wrongly classified points. These results are from KITTI sequence 10.

# RANSAC
Based

PCA
Based

Ours Patch
-work

IOU Ground [%] 14.66 43.27 78.46 85.45
IOU Non Ground [%] 60.55 68.22 83.95 87.75

Precision [%] 14.88 45.76 86.53 86.88
Recall [%] 90.74 88.84 89.38 98.10

F1 Score [%] 25.58 60.41 87.93 92.15

Table 3
Ground Segmentation Results

also evident by the results produced in our map cleaning
approach and supports our hypothesis that with a better
ground segmentation algorithm, the map cleaning results of
our method can be further improved. The proposed ground
segmentation method, i.e., HMSeg, is an offline approach
with a runtime of approximately 2.33 s per scan, while
Patchwork is an online method that has a runtime of 0.022 s
per scan.

4.6. Ablation Study
In this experiment, we investigate the impact of the

heightmap resolution 𝑟 on the segmentation accuracy. In
Fig. 5, we plot the IoU for ground and non-ground points
with dependence on the grid resolution 𝑟. The finer the
resolution, the better we can classify the non-ground and
ground points. As our approach utilizes multiple resolu-
tions to achieve a better segmentation, we have set the
list of resolutions in the other experiments of the paper to
𝑟 = [0.01𝑚, 0.03𝑚, 0.05𝑚, 0.07𝑚, 0.09𝑚]. Resolutions over
𝑟 > 0.1𝑚 have a low contribution due to the voxelization of
the output.

5. Conclusion
In this paper, we presented a novel approach to remove

dynamics and to generate clean maps of the static parts of a
scene and proposed a novel ground segmentation algorithm
used within mapping. Our approach operates on a ray
tracing-based approach as used in OctoMap and exploits

Figure 5: We evaluate the Intersection over Union (IoU) for
heightmaps with different resolutions. Our method is config-
ured to use multiresolution for getting a better result than
using a single resolution, so we used a set of resolutions, i.e.
[0.01𝑚, 0.03𝑚, 0.05𝑚, 0.07𝑚, 0.09𝑚] before the IoU for ground
and non-ground went below a certain level.

the assumption of a static ground by segmenting it out
in advance. Our heightmap-based segmentation algorithm
does not assume a plane ground and is, therefore, better
suited to deal with the problems caused by the slope and
alleviation. This allows us to successfully generate static
maps that are free from most dynamic objects. Our approach
performs well on different datasets which speak about its
generalisability. We implemented and evaluated our ap-
proach using SemanticKITTI and Apollo datasets, provided
comparisons to other existing techniques, and supported all
claims made in this paper. We also performed experiments
to show the performance of the proposed approach on the
accuracy of ground segmentation. The experiments suggest
that our proposed approach can remove dynamic points
while maintaining the quality of the static map hence gen-
erated, and better ground segmentation methods can further
improve the map cleaning results.
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Despite these encouraging results, there is space for
further improvements. The main drawback is time consump-
tion. Though our method produces good results but is at the
moment a completely offline approach. There are multiple
ways to make our method work online. One of those is to
train a semantic segmentation model on our output which
could infer the results in real-time and would eliminate
the need for any manual annotation as our method works
equally well on different datasets.
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