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Abstract— Dynamic objects are an inherent part of our
world, but their presence deteriorates the performance of
various localization, navigation, and SLAM algorithms. This not
only makes it important but necessary to remove these dynamic
points from the map before it can be used for other tasks. In
this paper, we address the problem of building maps of the
static aspects of the world by detecting and removing dynamic
points from the source point clouds. We target a map cleaning
approach that removes the dynamic points and maintains a high
quality of the generated static map. To this end, we propose a
novel ground segmentation method and integrate it into the
OctoMap to better distinguish between the moving objects
and static road background. We evaluate our approach using
SemanticKITTI for both dynamic object removal and ground
segmentation algorithms. The evaluation results show that our
method outperforms the baseline methods in both tasks and
achieves good performance in generating clean maps.

I. INTRODUCTION

Clean and reliable maps play an essential role in au-
tonomous driving applications. The quality of the map can
influence the performance of downstream tasks like pose esti-
mation, localization, path planning, etc. Many different types
of sensor data are used for generating maps, e.g. monocular
images [9], stereo images [18] and LiDAR scans [26], [2],
[22]. In this paper, we address the problem of detecting and
removing dynamic measurements in 3D LiDAR data and
generate static point cloud maps in the end.

In a typical driving environment, besides the static parts
of the scene, there are usually many moving objects such
as vehicles, pedestrians, or bicyclists. Traditional online si-
multaneous localization and mapping (SLAM) methods [26],
[2] suffer from such dynamic objects and generate maps with
so-called ”flying ghost” artifacts as shown in Fig. 1, which
makes the maps difficult for later use. Various approaches
have been proposed to tackle the problem of dynamic point
removal in LiDAR point cloud maps. Broadly, one can
classify them into two main types, (i) removing dynamic
objects while the construction of map [13], [25], [6] and (ii)
removing dynamic objects after generation of map [19], [14].
The latter are offline methods that can leverage more data
information and, therefore, usually have better performance
in detecting and removing dynamic objects in the point cloud
map.
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Fig. 1: The figure represents the LiDAR point cloud before (above)
and after (below) applying our approach. The red points denote the
dynamic and the white points the static ones. The point cloud data
is from the KITTI Odometry sequence 05 frame 904 to 944.

The main contribution of this paper is a novel dynamic
points detection and removal method to generate clean
LiDAR point cloud maps. The input of our method is the
raw point clouds together with the estimated odometry from
a LiDAR SLAM method, SuMa [2], and the output is the
point cloud map with voxel-wise binary labels, either static
or dynamic. Our method first applies ground segmentation to
distinguish between the ground and non-ground points and
then sends in the non-ground points into the OctoMap [13]
to distinguish between free and occupied space using ray
casting and update the map in a probabilistic fashion. By
doing this, our method produces a static and a dynamic
map as outputs. The initially segmented out ground is added
back into the static map. OctoMap [13] provides a static
and a dynamic map, as well as some unknown points,
which are added into the static or dynamic map based on
a k-Nearest Neighbor (k-NN) voting algorithm. Combining
OctoMap with the proposed ground segmentation method,
our approach removes most dynamic objects while, at the
same time, keeping enough static parts to build a clean and
complete map.



In sum, we make three key claims: Our approach is able
to (i) generate clean static point cloud maps, (ii) in a proba-
bilistic and neighborhood-aware fashion, with (iii) a novel
pre-ground segmentation algorithm to better preserve the
static environment. These claims are backed up by the paper
describing our approach and our experimental evaluation.

II. RELATED WORK

Various approaches have been proposed to remove dy-
namic objects and clean the maps. In this work, we focus
on generating a static map using only LiDAR point clouds.
Since the proposed method has two steps, ground segmen-
tation, and point cloud cleaning, we, therefore, discuss the
related work twofold.

A. Ground Segmentation

Ground segmentation is important for autonomous mobile
systems to perform traversable analysis and navigation. In-
stead of exploiting deep learning-based dense semantic seg-
mentation methods [17], [15], there are also a large number
of non-learning-based methods proposed [8], [4], [16]. The
learning-based methods perform well in the trained envi-
ronments, while they usually require expensive equipments
and difficult to obtain training data, and cannot generalize
well in different environments or different LiDAR sensors.
Therefore, we focus more on non-learning-based approaches.

Fischler et al. [10] propose RANSAC, which focuses
on detecting inliers and separating them from the outliers.
This approach can be used to detect the inlier points for
ground, and segment the ground by fitting a plane that
could accommodate those ground points [11]. The approach
proposed by Thrun et al. [21] uses probabilistic methods for
ground detection. It predicts the movable area by dividing
it into smaller grids and predicting the binary classes for
ground and non-ground. Carl et al. [24] use Markov random
fields for ground segmentation, along with some other spatial
constraints based on smooth ground and class continuity.
While some approaches target computing the ground points
for complete point clouds at once, others focus on break-
ing the region into smaller parts [16] and then applying
techniques like RANSAC [10] and PCA [23], [7]. These
approaches of breaking the point cloud into smaller patches
work better when dealing with the alleviations and slope of
the terrain which could not be monitored when taken larger
areas into account. However, it is non-trivial to merge the
small patches into one entire ground segment.

Our proposed ground segmentation combines a heightmap,
with an edge detection algorithm [5] for segmentation. Our
segmentation approach works scan-wise and does not need
to divide and afterward fuse the areas together. Also, the
proposed approach does not involve any learning.

B. Static Map Generation

While many different approaches are focusing on static
map generation, they can be mainly classified into three
different types, namely, segmentation-based, visibility-based,
and ray tracing-based methods.

Point cloud segmentation has been a very popular topic
and different techniques have been proposed to tackle the
problem. Most recently, more and more methods exploit
learning-based neural networks to achieve dense full-class
segmentation [17], [15]. Based on the full class semantic
segmentation, one could directly remove all movable classes
like vehicles and humans to clean the map. Instead of remov-
ing all potential moving objects, Chen et al. [6] propose a
LiDAR-based semantic SLAM method which combines both
semantic and geometric information to detect and remove the
moving objects, e.g. moving cars, on the fly, while leaving
the static objects, e.g. parked cars, in the map. Even though
the full-class semantic segmentation-based methods work
well, the training labels are not always available. On the
other hand, there are also lots of non-learning-based point
cloud segmentation methods [3], [25]. In this work, instead
of semantically segmenting the whole point cloud, we only
distinguish between ground and non-ground parts and do not
require any labels.

Visibility-based approaches check for the query to map
associations and are based on the fact that if the query point
in consideration is detected beyond an already existing point
then the considered query point is deemed as dynamic [19],
[14], [16]. These kinds of methods are often corrupted by
motion ambiguities and can cause errors. Kim et al. [14]
provide an offline approach and clean maps using multires-
olution range images, in which the finer resolution was used
to remove the dynamic points, while the coarser resolution
was used to revert the wrongly classified static points. The
multiresolution also helped in fixing the errors caused by
motion ambiguities. Another different approach that used the
complete map as input is given by Lim et al. [16] where
the comparison was made using descriptors. They divide a
single point cloud into smaller sectors, and the descriptors
are then calculated for each sector. The calculated descriptors
are matched with the descriptors calculated for the region in
the map. Lim et al. [16] denotes the importance of ground
segmentation and exploited the fact that most of the dynamic
objects are connected to the ground.

Instead of requiring the complete map of the journey as the
input, ray tracing methods distinct between free and occupied
space frame-wise and maintain the map in a probabilistic
fashion. For example, the OctoMap proposed by Hornung
et al. [13] used LiDAR scans along with the corresponding
poses as input and created a probabilistic occupancy grid
map of the environment formed in an Octree representation,
which could then be used to distinguish between static and
dynamic points. Schauer et al. [20] proposed a method based
on traversal of voxel grid along the line of sight of sensor and
a point to remove dynamic objects from the LiDAR scan.

The approach presented in this paper deals with the
generation of static maps based on OctoMap [13]. It exploits
a novel heightmap-based ground segmentation algorithm and
combines it with OctoMap along with a voting scheme to
produce a static map free from dynamics.



Fig. 2: The figure shows a complete pipeline of our approach. The input of our method is the LiDAR scans together with the poses
estimated by SLAM. In the preprocessing module, our method uses a heightmap and canny edge detector to provide ground and non-
ground points. It then feeds the non-ground points to OctoMap, which distinguishes between the static and dynamic points, also giving
some unknown labels to some points as output. Those unknown labels are then decided using k-NN-based voting.

III. OUR APPROACH

In this paper, we propose a point cloud map cleaning
method as shown in Fig. 2. First, we preprocess the raw point
cloud using a novel heightmap-based ground segmentation
approach, which separates the ground from the non-ground
points. The non-ground points are then fed to OctoMap [13]
to distinguish between static and dynamic points. We merge
the static map produced by OctoMap with the ground points
from our segmentation. In the end, we exploit a k-NN-
based voting scheme to further decide the labels of uncertain
estimations generated by OctoMap.

A. heightmap-based Ground Segmentation

There are two reasons why we use ground segmentation
for cleaning the point cloud map. First, a large proportion
of the points belong to the ground where we can assume
that it is not moving and thus static. Consequentially, we
can pre-assign all the ground points in advance as ”static” to
reduce the number of false dynamics. Second, most of the
moving objects, e.g. vehicles, and humans are connected to
the ground. A good ground segmentation can largely reduce
the difficulty of dynamic object detection and removal in the
following steps.

In this work, we propose a novel multiresolution height-
map-based ground segmentation algorithm to solve this issue.
A heightmap is a 2.5-dimensional representation that stores
the height of the surface in a 2D grid (similar to RGB values
in an image, visualization in Fig. 3). First, we define the
area of interest and a certain grid resolution around the scan.
Afterward, we project each point in the scan onto the 2D grid
and store its height in the corresponding cell. We restrict the
points up to a certain height τh to stop the trees and other
objects to overshadow the ground points and hence going
undetected. The limit τh needs to be adjusted based on the
sensor setup.

Once the heightmap of the point cloud is generated, we
apply an edge detection algorithm to find the non-ground
area. We use canny edge detector [5] which provides us with

the flexibility to distinguish between strong and weak edges
and allows the sensitivity to measure them accordingly. A
height filter is then applied on the resultant ground points
which labels the points with z value above a certain threshold
as non ground. The same algorithm is applied using different
resolutions which provide probable ground points for each
resolution respectively. The final label for each point is then
achieved by voting through the probable ground points.

The main motivation behind using an edge detection
algorithm on the heightmap is that when viewing the point
cloud from a bird’s eye view, one can detect the boundaries
edges in the grid. Due to the sparsity of the heightmap many
points appear as edges of some sort. Here, the discrimination
in strong and weak edges comes into play to discard the
ground points (weak edges), leaving us with the non-ground
(strong edges), which eventually helps in segmenting the
ground.

B. OctoMap

OctoMap [13] is a probabilistic 3D mapping framework
based on an octree data structure. This hierarchical tree-
based structure represents a cubical volume in each node (so-
called octants). Each octant can subsequentially be broken
down into eight sub-volumes until a specific resolution is
reached. The leaf nodes store an occupancy probability
p which indicates whether the area is occupied, free, or
unknown. While construction, it reduces the occupancy prob-
ability for each node along the ray of a measured point
and therefore increases the probability of being free. The
occupancy probability increases for the Octant in which
the ray ends (namely at the actual position of the point).
This process is repeated iteratively for each point in each
scan. This approach naturally deals with dynamic objects
since areas that temporarily contain dynamics (and thus
have a high occupancy value) will be lowered each time
we traverse through it. After the construction, we can query
the occupancy status of a certain point by traversing along
the tree. Unseen areas and areas where the occupancy status



Fig. 3: The figure demonstrates the procedure of our ground removal method, a heightmap is generated using the 3D LiDAR scan, which
is then passed through the Canny Edge Detector, which as a result provides us with the edges (non-Ground points). On the right-hand
side, we visualize the segmentation result (ground points in white, non-ground in green).

is not clear (occupancy probabilities around p ≈ 0.5) will
be stated as unknown. Due to the relatively high pace in
the automotive field, in practice, many nodes of the octree
will just be updated a couple of times and thus have no
clear occupancy status. These nodes could be either static or
dynamic, and therefore, we propose a simple but effective
way to deal with those ambiguities in the following section.

C. k-NN-based Voting

To deal with the problem posed by the dilemma of
unknown points, a series of experiments were conducted by
either assigning the unknown nodes as static or dynamic
but both experiments turned out to be a failure as it only
deteriorated the performance of OctoMap [13]. We propose
a k-Nearest neighbor-based voting scheme for each unknown
point, where we have a majority vote on the labels of its
k nearest points. We assign either static or dynamic to the
unknown point based on whichever was in abundance. The
motivation behind this approach is that dynamic and static
objects often occur in clusters of points (e.g. as shown in
Fig. 1). Using this, the k nearest points are selected from
the static and dynamic map produced by the OctoMap [13].
From those points, a ratio of static and dynamic points is
calculated and if it is above a certain threshold then the
point is labeled as static and consequentially otherwise as
dynamic.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is to remove as many dynamic
points as possible, but at the same time preserving the static
parts of the map. We present our experiments to show the
capabilities of our method and to support our key claims that
our method is able to (i) generate clean point cloud maps by
removing dynamics from the scene, by (ii) a probabilistic,
neighborhood aware segmentation, with (ii) a novel pre-
ground segmentation algorithm to better preserve the static
environment.

A. Dataset

We evaluate our method using KITTI Odometry [12] with
the labels from SemanticKITTI [1] for the sequences 0-
10. The KITTI Odometry dataset provides 3D LiDAR scans
recorded from a Velodyne HDL-64E scanner mounted on a

car, while the SemanticKITTI dataset provides corresponding
point-wise semantic labels in 28 classes, where 6 classes are
assigned the attribute moving or non-moving. In this work,
we evaluate both ground segmentation and moving object de-
tection. For evaluating the performance of ground segmenta-
tion, we treat the classes, ”road”, ”sidewalk”, ”other-ground”,
”lane-marking”, ”vegetation” and ”terrain” as ground, while
the rest classes as non-ground. For moving object detection,
we reorganize all moving object classes into one dynamic
class, while the rest 22 classes into the static class. Since our
method is non-learning-based, we, therefore, use sequence 08
for tuning the hyperparameters and sequence 00-07, 09-10
for evaluation. The labels are just used for the evaluation and
are not required elsewhere.

B. Data preparation and Hyperparameters

For the purpose of reproducibility, we list all the hyper-
parameters used in our approach. We preprocess the scans
by filtering out all points over 50m to reduce the impact
of errors in the pose estimation and sensor noise. The
height threshold for the ground segmentation τh is set to
be -1.5m < τh < 2.0m in the local scanner frame. For
the canny edge detector, we use 10 and 300 as the weak and
strong thresholds. These thresholds divide the edges detected
into two categories the weak edges and the strong edges, and
the strong edges are given as output. We use k = 25 in the
k-NN voting for assigning labels to the uncertain points of
OctoMap. We voxelize the final point cloud with a grid of
10 cm resoltuion.

C. Metrics

Our proposed approach aims at generating a clean static
map, by removing as many dynamic points as possible, but
at the same time to preserve the static areas. Taking this
aim into consideration, we use the following two metrics to
evaluate the performance of our approach: (i) Mean Class
Accuracy (MCA), and (ii) Dynamic Recall (DR)

MCA =
1

2

(
TS

TS + FD
+

TD

TD + FS

)
(1)

DR =
TD

TD + FS
(2)



Fig. 4: The list of resolutions is selected to be
[0.01m, 0.03m, 0.05m, 0.07m, 0.09m] covering the range
of resolution until the IoU Ground and Non Ground decreases
beyond a certain value.

where TS are the true static voxels, TD the true dynamic
voxels, FS the dynamic voxels classified as static voxels,
and FD the static voxels classified as dynamic voxels. We
compute our metrics on the voxelized maps rather than on
the point labels themselves to be more independent of the
point density and to ensure that a whole region is correctly
classified. We use the MCA to quantify our map quality,
which can be increased by correctly classifying the static
and dynamic parts of the environment. This metric deals
naturally with the imbalance of the classes. In practice,
the static parts outnumber the dynamic parts substantially.
When neglecting the imbalance, one could achieve very
high accuracies by simply assigning everything as static.
The dynamic recall shows how many of the dynamics we
remove, which is especially important for approaches that get
deteriorated by those dynamic objects. We use the classical
metrics for measuring the performance of ground removal:
IoU of Ground, Recall, Precision, and the F1-Score.

D. Quantitative Results

The first experiment evaluates the performance of our
approach and to support the claim that it is able to generate
a static map by removing dynamic objects, while at the same
time, is able to preserve the quality of the static map (the
absence of holes in the map). The approach was extensively
tested on the KITTI [12] sequences ranging from 0 till 10
(refer Tab. I). Our approach is able to keep the high recall
rate of OctoMap and therefore is able to detect most of
the dynamics. But in contrast to OctoMap, our approach is
also able to keep more static parts of the environment. Our
approach outperforms removert in the map quality (MCA)
and in detecting dynamics (DR).

E. Qualitative Results

In this section, we present some qualitative results to pro-
vide a deeper insight into the performance of our approach
(see Fig. 5). We can see that Removert [14] is able to

TABLE I: Static Map Generation Results

KITTI # Removert Removert OctoMap Ours
Seq (R&R) (R)

00 MCA 79.73 75.46 80.45 84.62
DR 61.24 52.27 96.79 92.12

01 MCA 79.83 71.76 73.13 81.63
DR 61.97 45.74 94.12 81.78

02 MCA 84.76 80.83 80.26 84.98
DR 70.73 62.80 98.56 93.83

03 MCA 89.07 85.18 76.52 84.54
DR 81.26 73.14 97.85 95.02

04 MCA 87.03 82.13 72.36 71.36
DR 77.22 66.79 97.69 77.07

05 MCA 77.41 69.81 80.52 85.21
DR 56.70 41.00 97.96 92.58

06 MCA 76.35 72.75 76.78 84.79
DR 55.58 47.54 96.24 88.39

07 MCA 77.73 75.05 77.90 82.11
DR 57.51 51.64 93.81 89.15

08 MCA 78.80 78.56 75.62 79.44
DR 62.74 58.98 95.38 85.11

09 MCA 92.53 87.83 78.79 79.74
DR 86.67 77.08 98.39 85.67

10 MCA 64.27 61.59 72.35 77.44
DR 30.59 24.59 81.21 78.92

Average MCA 80.68 76.50 76.78 81.44
Average Recall 64.16 54.78 95.27 87.24

TABLE II: Ground Segmentation Results

# RANSAC Based PCA Based Ours

IOU Ground 14.66 43.27 78.46
IOU Non Ground 60.55 68.22 83.95

Precision 14.88 45.76 86.53
Recall 90.74 88.84 89.38

F1 Score 25.58 60.41 87.93

preserve more static points (points displayed in green color)
than our approach but removes substantially fewer dynamic
points (blue). The plain OctoMap [13] approach has a very
high detection rate of the dynamic points (blue) but it also
deteriorates the static map quality by falsely classifying the
static points as dynamic (red color). Our approach is able to
detect more static points while keeping the high accuracy in
removing the dynamics.

F. Ground Segmentation

This experiment is presented to support the claim that
our heightmap-based ground segmentation algorithm is well
suited for separating the ground from non-ground points.
We compare our method against the classical RANSAC and
PCA-based methods. The results of the experiment are shown
in Tab. II. Our approach is able to outperform the baselines
in all the metrics substantially.

G. Ablation Study

In this experiment, we investigate the impact of the
heightmap resolution r on the segmentation accuracy. In
Fig. 4 we plot the IoU for ground and non-ground points
in dependence on the grid resolution r. The higher the
resolution, the better we can classify the non-ground points,
but the less accurate is the ground segmentation. We have set
the list of resolution in the other experiments of the paper
to r = [0.01m, 0.03m, 0.05m, 0.07m, 0.09m] as a trade-off
between both behaviors.



(a) Removert [14] (b) OctoMap [13] (c) Our

Fig. 5: The figure shows a qualitative comparison between Removert [14], OctoMap [13] and our approach. The points displayed in green
color are the correctly classified static points, blue-colored points represent correctly classified dynamic points and red-colored points
denote the wrongly classified points. These results are from KITTI sequence 10.

V. CONCLUSION

In this paper, we presented a novel approach to generate
clean maps of the static parts of a scene and proposed a
novel ground segmentation algorithm used within mapping.
Our approach operates on a ray tracing-based approach as
used in OctoMap and exploits the assumption of a static
ground by segmenting it out in advance. Our heightmap-
based segmentation algorithm does not assume a plane
ground and is, therefore, better suited to deal with the
problems caused by the slope and alleviation. This allows
us to successfully generate static maps that are free from
most dynamic objects. We implemented and evaluated our
approach using SemanticKITTI, provided comparisons to
other existing techniques, and supported all claims made
in this paper. The experiments suggest that our proposed
approach can remove dynamic points while maintaining the
quality of the static map hence generated.
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[9] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-scale direct
monocular SLAM. In Proc. of the Europ. Conf. on Computer Vision
(ECCV), pages 834–849, 2014.

[10] M. Fischler and R. Bolles. Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated
Cartography. Commun. ACM, 24(6):381–395, 1981.

[11] O. Gallo, R. Manduchi, and A. Rafii. Cc-ransac: Fitting planes in
the presence of multiple surfaces in range data. Pattern Recognition
Letters, 32(3):403–410, 2011.

[12] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages
3354–3361, 2012.

[13] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard.
OctoMap: An Efficient Probabilistic 3D Mapping Framework Based
on Octrees. Autonomous Robots, 34:189–206, 2013.

[14] G. Kim and A. Kim. Remove, then revert: Static point cloud map
construction using multiresolution range images. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Las Vegas, Oct. 2020. Accepted. To appear.

[15] S. Li, X. Chen, Y. Liu, D. Dai, C. Stachniss, and J. Gall. Multi-
scale interaction for real-time lidar data segmentation on an embedded
platform. arXiv preprint arXiv:2008.09162, 2020.

[16] H. Lim, S. Hwang, and H. Myung. Erasor: Egocentric ratio of pseudo
occupancy-based dynamic object removal for static 3d point cloud
map building. IEEE Robotics and Automation Letters, 6:2272–2279,
2021.

[17] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss. RangeNet++: Fast
and Accurate LiDAR Semantic Segmentation. In Proceedings of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2019.

[18] T. Pire, T. Fischer, G. Castro, P. De Cristóforis, J. Civera, and
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