
Visual Servoing-based Navigation for Monitoring Row-Crop Fields

Alireza Ahmadi Lorenzo Nardi Nived Chebrolu Cyrill Stachniss

Abstract— Autonomous navigation is a pre-requisite for field
robots to carry out precision agriculture tasks. Typically, a
robot has to navigate through a whole crop field several times
during a season for monitoring the plants, for applying agro-
chemicals, or for performing targeted intervention actions. In
this paper, we propose a framework tailored for navigation in
row-crop fields by exploiting the regular crop-row structure
present in the fields. Our approach uses only the images from
on-board cameras without the need for performing explicit
localization or maintaining a map of the field and thus can
operate without expensive RTK-GPS solutions often used in
agriculture automation systems. Our navigation approach al-
lows the robot to follow the crop-rows accurately and handles
the switch to the next row seamlessly within the same frame-
work. We implemented our approach using C++ and ROS and
thoroughly tested it in several simulated environments with
different shapes and sizes of field. We also demonstrated the
system running at frame-rate on an actual robot operating on
a test row-crop field. The code and data have been published.

I. INTRODUCTION

Autonomous agricultural robots have the potential to
improve farm productivity and to perform targeted field
management activities. In crop fields, agricultural robots are
typically used to perform monitoring tasks [15], [19] or
targeted intervention such as weed control [26], [17]. Several
crops such as maize, sugar beet, sunflower, potato, soybean,
and many others are arranged along multiple parallel rows in
the fields as illustrated in Fig. 1. This arrangement facilitates
cultivation, weeding, and other farming operations. For ac-
complishing such tasks, robots must be able to autonomously
navigate through the crop-rows repeatedly in the field.

Currently, a popular solution for navigating autonomously
in fields is to use a high-precision, dual-frequency RTK-
GNSS receiver to guide the robot along pre-programmed
paths. However, the high cost of these systems and vulner-
ability to outages has led to an interest in solutions using
observations from on-board sensors. Such solutions typically
use observations from a laser scanner or a camera to localize
the robot in the environment and then navigate along crop
rows, often with the help of a map. The crop field scenario
poses serious challenges to such systems due to high visual
aliasing in the fields and lack of reliable sensor measurements
of identifiable landmarks to support localization and mapping
tasks. Additionally, as the field is constantly changing due to
the growth of plants, a map of the field needs to be updated
several times during a crop season.

In this paper, we address navigation in row-crop fields
only based on camera observations and by exploiting the row
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Fig. 1: Robot navigation in a test row-crop field. Top-right: on-
board camera image. The visual servoing based controller executes
the velocity control that brings the crop row (red arrow) to the
center of the camera image (green arrow). The blue box shows the
sliding window used for tracking the row along which the robot
navigates.

structure inherent in the field to guide the robot and cover the
field. An example illustrating our robot navigating along a
crop-row is shown in Fig. 1. We aim at controlling the robot
without explicitly maintaining a map of the environment or
performing localization in a global reference frame.

The main contribution of this paper is a novel navigation
system for agricultural robots operating in row-crop fields.
We present a visual servoing-based controller that controls
the robot using local directional features extracted from
the camera images. This information is obtained from the
crop-row structure, which is continuously tracked through a
sliding window. Our approach integrates a switching mech-
anism to transition from one row to the next one when the
robot reaches the end of a crop-row. By using a pair of
cameras, the robot is able to enter a new crop-row within
a limited space and avoids making sharp turns or other
complex maneuvers. As our experiments show, the proposed
approach allows a robot to (i) autonomously navigate through
row-crop fields without the maintaining any global reference
maps, (ii) monitor the crops in the fields with a high coverage
by accurately following the crop-rows, (iii) is robust to fields
with different row structures and characteristics, as well as
to critical user-defined parameters.

Note that the source code of our approach, the data from
the real-world experiments as well as the simulated environ-
ment are available at: http://github.com/PRBonn/
visual-crop-row-navigation.

http://github.com/PRBonn/visual-crop-row-navigation
http://github.com/PRBonn/visual-crop-row-navigation


Fig. 2: Scheme for navigation in a crop field: the robot enters the field and navigates along a crop row ( 1©), exits the row ( 2©), transitions
to the next crop row ( 3©), and exits the row on the opposite side ( 4©).

II. RELATED WORK

Early autonomous systems for navigation in crop fields
such as the one developed by Bell [3] or Thuilot et al. [22]
are based on GNSS while others use visual fiducial markers
[20] or artificial beacons [16]. More recently, agricultural
robots equipped with a suite of sensors including GNSS
receiver, laser-scanner, and camera have been used for pre-
cision agriculture tasks such as selective spraying [23] or
targeted mechanical intervention [13]. Dong et al. [9] as well
as Chebrolu et al. [5] address the issue of changing appear-
ance of the crop fields and proposed localization systems,
which fuse information from several on-board sensors and
prior aerial maps to localize over longer periods of time.
While most of these systems allow for navigation in crop
fields accurately, they require either additional infrastructure
or reference maps for navigation. In contrast to that, our
approach only requires local observations of the crop rows
from obtained from a camera.

Other approaches also exploit the crop row structure in
the fields and developed vision based guidance systems for
controlling the robot [4] and perform weeding operations in
between the crop rows [1]. These methods require a reliable
crop row detection system as they use this information for
computing the control signal for the robot. As a result,
several works focus on detecting crop rows from images
under challenging conditions. Winterhalter et al. [24] propose
a method for detecting crop rows based on hough transform
and obtain robust detections even at an early growth stage
when are plants are very small. English et al. [10] and
Søgaard et al. [21] show reliable crop row detections in the
presence of many weeds and under challenging illumination
conditions. Other works such as [18], [12], [14] aim at
estimating the stem locations of the plants accurately. While
we use a fairly simple method for crop row detection in
this paper, more robust methods for detection can be easily
integrated in our approach for dealing with challenging field
conditions with a high percentage of weeds. The proposed
controller is independent of the used detection technique.

Traditionally, visual servoing techniques [11] are used for
controlling robotic arms and manipulators. These techniques
aim to control the motion of the robot by directly using
vision data in the control loop. Cherubini et al. [6], [7], [27]
propose visual servoing techniques for the controlling mobile
robots along continuous paths. De Lima et al. [8] apply these
visual servoing techniques to autonomous cars for following
lanes in urban scenarios, whereas Avanzini et al. [2] control
a platoon of cars using a guiding vehicle. We have built upon

these ideas to develop our controller for crop field navigation
including a mechanism to transition from one row to the next
row within the same framework.

III. NAVIGATION ALONG ROW-CROP FIELDS

In this paper, we consider a mobile robot that navigates
in row-crop fields to perform tasks such as monitoring of
the crops or removing the weeds and has to cover the
field row by row. Thus, the robot must be able to navigate
autonomously along all the crop rows in the field.

A. Navigation Along Crop Rows

In row-crop fields, crops are arranged along multiple
parallel curves. We take advantage of such an arrangement to
enable a mobile robot to autonomously navigate and monitor
the crops in the field. The main steps to achieve this are
illustrated in Fig. 2. The robot starts from one of the corners
of the field ( 1©), enters the first crop row and follows it
until the end ( 2©). As it reaches the end of a row, it needs to
enter the next one and follow it in the opposite direction ( 3©).
This sequence of behaviors is repeated to navigate along all
the crop rows in the field. We achieve this by using a visual-
based navigation system that integrates all of these behaviors
which leads the robot to autonomously navigate and monitor
the crops in a row-crop field.

B. Robotic Platform

We consider a mobile robotic platform that is able to
navigate on crop fields by driving seamlessly forward and
backwards. We equip this robot with two cameras FCfront

and FCback
mounted respectively looking to the front and to

the back of the robot as illustrated in Fig. 3. The cameras are
symmetric with respect to the center of rotation of the robot
denoted as FR. The cameras have a fixed tilt angle ρ and
are positioned on the robot at a height tz from the ground
and with an horizontal offset ty from FR. A camera image
is illustrated in Fig. 3(c), where W and H are respectively
its width and height in pixels.

IV. OUR NAVIGATION APPROACH

We propose to use a visual-based navigation system that
relies only local visual features and exploits the arrangement
of the crops in fields to autonomously navigate in row-
crop fields without requiring an explicit map. Our visual-
based navigation system builds upon the image-based visual
servoing controller by Cherubini et al. [6] and extends it by
considering an image that presents multiple crop-rows and
integrating a mechanism for switching to the next row.



(a) Our self-built robot (b) Robot side view (c) Camera image

Fig. 3: Robot, frames and variables. The robot navigates by following the path (cyan) along the crop row. In (a), FW and FR are world
and robot frames, θ is the orientation of the robot in FW . In (b), FCfront , FCback are the front and back camera frames. The cameras
are mounted at an offset tx from the robot center FR and tz above the ground, and with tilt ρ. In (c), FI is the image frame and
s = [X, Y, Θ] is the image features computed from the crop row.

A. Visual Servoing Controller

Visual servoing allows for controlling a robot by process-
ing visual information. Cherubini et al. [6] propose an image-
based visual servoing scheme that allows a mobile robot
equipped with a fixed pinhole camera to follow a continuous
path on the ground. It uses a combination of two primitive
image-based controllers to drive the robot to the desired
configuration.

We define the robot configuration as q = [x, y, θ]T . The
control variables are the linear and the angular velocity of
the robot u = [v, ω]T . We impose that the robot moves with
a fixed constant translational velocity v = v∗. Thus, our
controller controls only the angular velocity ω.

The controller computes the controls u by minimizing the
error e = s − s∗, where s is a vector of features computed
on the camera image and s∗ is the desired value of the
corresponding features.The state dynamics are given by:

ṡ = J u = Jv v
∗ + Jω ω, (1)

where Jv and Jω are the columns of the Jacobian J that
relate u to ṡ, the controller computes the controls by applying
the feedback control:

ω = −J+
ω (λe+ Jvv

∗), λ > 0, (2)

where J+
ω indicates the Moore-Penrose pseudo-inverse of Jω .

From the camera image, we compute an image feature s =
[X, Y, Θ] illustrated in Fig. 3(c) where P = [X, Y ] is the
position of the first point along the visible path and Θ is the
orientation of the tangent Γ to the path. We use uppercase
variables to denote the quantities in the image frame I.
The controller computes a control u such that it brings P
to the bottom center of the image s∗ = [0, H

2 , 0]. The
desired configuration corresponds to driving the robot along
the center of the path. The image feature and its desired
position are illustrated in Fig. 1 (top-right).

The interaction matrix Ls allows for relating the dynamics
of the image features s to the robot velocity in the camera
frame uc. The velocity in the camera frame uc can be ex-
pressed as a function of the robot velocity u as uc = CTR u,
where CTR is the homogeneous transformation from FR

to FC . Therefore, we can write the relation between the

image feature dynamics ṡ and the robot controls u as:

ṡ = Ls uc = Ls
CTR u. (3)

B. Crop Row Detection for Visual Servoing

The visual-servoing approach described in the previous
section allows the robot to follow a continuous path drawn
on the ground. In fields, we can exploit the arrangement of
the crops in rows to enable the robot to navigate using a
similar visual-servoing scheme.

To navigate along a crop-row, we extract the curve along
which the crops are arranged. To this end, for each new
camera image we first compute the vegetation mask using
the Excess Green Index (ExG) [25] often used in agricultural
applications. It is given by IExG = 2IG − IR − IB where
IR, IG and IB correspond to the red, green and blue
channels of the image. For each connected component in
the vegetation mask, we compute a center point of the crop.
We then estimate the path curve along which the robot
should navigate by computing the line that best fits all the
center points using a robust least-squares fitting method. This
procedure allows for continuously computing a path curve
in the image that the robot can follow using the visual-
servoing controller described in Sec. IV-A. In this paper,
we use a fairly straight-forward approach to detect the crop
rows as our main focus has been on the design of the visual
servoing controller and more sophisticated detection methods
are easily implementable.

Typically, fields are composed by number of parallel crop-
rows. Thus, multiple rows can be visible at the same time in
the camera image. This introduces ambiguity to identify the
curve that the robot should follow. This ambiguity may cause
the robot to follow a different crop-row before reaching the
end of the current one. If this is case, there is no guarantee
that the robot will navigate through the whole field. To
remove this ambiguity, we use a sliding window W of fixed
size in the image that captures the row that the robot is
following, as illustrated on the bottom of Fig. 1. For every
new camera image we update the position of the window W
by centering it at the average position of the crops detected
in that frame. Updating this window continuously allows for
tracking a crop row and ensures that the robot follows it up
to its end.



Algorithm 1 Crop row navigation scheme

1: W ← INITIALIZEWINDOW . Initialization.
2: repeat . Control loop.
3: cropsP ← DETECTCROPS(camP)
4: cropsW ← CROPSINWINDOW(cropsP , W)
5: if ISEMPTY(cropsW) then
6: if ISEMPTY(DETECTCROPS(camS)) then
7: W ← SHIFTWINDOW . Enter next row.
8: else . Exit row.
9: SWITCHCAMERAS(camP , camS)

10: W ← INITIALIZEWINDOW
11: cropsP ← DETECTCROPS(camP)

12: cropsW ← CROPSINWINDOW(cropsP , W)

13: FOLLOWCROPROW(cropsW)
14: W ← UPDATEWINDOW(cropsW)
15: until ISEMPTY(cropsW) . Stop navigation.

C. Scheme for Autonomous Navigation in Crop-Row Fields

The visual-based navigation system described in the pre-
vious section allows the robot to navigate by following a
single crop row. To cover the whole field, the robot should
be able to transition to the next row upon reaching the end of
the current one. However, as the rows are not connected to
each other, the robot has no continuous path curve to follow
over the whole field. Therefore, we introduce a visual-based
navigation scheme that allows the robot to follow a crop-
row, to exit from it, and to enter the next one by exploiting
both the cameras mounted on the robot and its ability to
drive both in forward and backward directions. Our scheme
to navigate in crop fields is illustrated in Alg. 1.

The visual-servoing controller described in
section Sec. IV-A uses the image of one camera to
compute the controls. We extend this approach to using both
the front camera FCfront

and the back camera FCback
. We

set in turn the camera used by the visual-servoing controller,
which we refer to as the primary camera camP . Whereas,
we denote the other camera as the secondary camera camS .
We define the size of the sliding window W used by the
controller and a shift offset to capture the next crop row
based on the tilt angle of the camera ρ and an estimate of
the distance between the crop rows δ.

Our navigation scheme assumes that the starting position
of the robot is at one of the corners of the field (see for
example 1© in Fig. 2). We initially set the camera looking in
the direction of the field as the primary camera camP and
initialize the position of the window W at the center of the
image (line 1 of Alg. 1).

In the control loop (line 2), we first detect the centers of the
crops cropsP in the image of the primary camera (line 3) us-
ing the approach described in Sec. IV-B. We select the crops
in the image that lie within the windowW , cropsW (line 4).
The robot navigates along the crop row by computing the
line that fits the cropsW and follows it using the visual
servoing controller (line 13). Then, it updates the position of
the sliding windowW in the image at the average position of

the cropsW (line 14). This corresponds to the robot following
the red path in Fig. 2. When the robot approaches the end of
the row ( 2©), the primary camera does not see crops anymore
as it is tilted to look forward.

In this position, the secondary camera can still see the
crops belonging to current row (line 8). Therefore, we switch
the primary and secondary camera, re-initialize the window,
re-compute the detected crops, and drive the robot in the
opposite direction to which the primary camera is facing.
This setup guides the robot to exit the crop row (light blue
path in Fig. 2) until it does not detect crops anymore in the
window W ( 3©). At this point, the secondary camera also
does not see any crops and the robot needs to enter in the
next crop row. Therefore, we shift the sliding window in the
direction of the next row (line 6) to capture the crops in it.
By doing this, the robot starts tracking the next crop row
and can navigate by following it (blue path in Fig. 2). When
no crops are present in the sliding window ( 4©), the robot
switches the camera as in 2©, exits the row and shift W to
start following the next one. This control loop repeats until
the robot reaches the end of the field and can not see any
crop row with both its cameras.

Note that our navigation scheme allows the robot to tran-
sition from one crop row to the next one only by switching
the cameras and without requiring the robot to perform
a complex maneuver to enter the next row. Furthermore,
following our navigation scheme the robot requires a smaller
space for maneuvering than the one that it would require to
perform a sharp U-turn.

V. EXPERIMENTAL EVALUATION

The experiments are designed to show the capabilities of
our method for navigation in row-crop fields and to support
our key claims, which are: (i) autonomous navigation through
row-crop fields without the need of maintaining any global
reference map or an external positioning system such as
GNSS, (ii) monitoring the crops with a high coverage by
accurately following the rows in fields with different row
structures, (iii) robustness to fields with varying properties
and to the input parameters provided by the user.

A. Experimental Setup

In the experiments, we consider our self-built agricultural
robot as well as a Clearpath Husky. Both robots are equipped
with two monocular cameras placed in the front and the back
of the robot with the camera tilt ρ set to 75◦. Our agricultural
robot uses a laptop as the main computational device along
with a Raspberry Pi 3 as a device communication manager.
We implemented our approach on a real robot using C++
and ROS. We also created a simulated version of the robot
in Gazebo, which is built on a 1:1 scale and has the same
kinematics as the real robot. We have generated several
simulated crop fields of different shapes and sizes and
evaluated our navigation system both on the simulated crop
fields, as well as on the real robot. The experiments with
the Clearpath Husky are provided here as it is a common



Fig. 4: Trajectory of the robot following our visual-based navigation
scheme in a simulated field environment.

Fig. 5: Angular velocity control (top), error in X (middle) and
error in Θ (bottom) computed by the visual servoing controller to
navigate along the trajectory illustrated in Fig. 4. We highlighted the
steps of our navigation scheme as in Fig. 2 and the robot behaviors.

platform in the robotics community and thus easier for the
reader to interpret the results.

B. Navigation in Crop Fields

The first experiment is designed to show that we are
able to autonomously navigate through crop fields using
our navigation system. To this end, we use our simulated
robot that navigates in a crop field environment in Gazebo.
We consider a test field with a dimension of 20 m×10 m
composed by 8 rows as illustrated in Fig. 4. The rows have an
average crop-row distance of 50 cm and a standard deviation
of 5 cm. The crops were distributed along the row with a gap
ranging from 5 cm to 15 cm to mimic real crop-rows. In our
setup, the robot starts at the beginning of the first crop row
in top left corner of the field. The goal consists of reaching
the opposite corner by navigating through each row.

The trajectory along which the robot navigated is illus-
trated in Fig. 4. The robot was successfully able to follow
each of the rows until the end and transition to the next
ones until it covered the whole field. At the end of the
row, the robot was able to transition to the next row within
an average maneuvering space of around 1.3 m. Thus, our
navigation scheme allows the robot to enter the next row
using a limited maneuvering space which is often a critical
requirement while navigating in a field.

In Fig. 5, we illustrate the error signals in X and Θ, which
was used by the visual servoing controller to compute the
angular velocity ω for the robot. Both, the error signals in X

Fig. 6: Fields with different shapes used in the experiments. Field 1
is large and long; Field 2 is short and requires many turns in quick
succession; Field 3 is S-shaped; Field 4 is parabola shaped.

Field 1 0.651 ± 0.826 cm 2.28 100%
Field 2 0.872 ± 1.534 cm 2.17 100%
Field 3 0.814 ± 1.144 cm 2.46 100%
Field 4 0.830 ± 1.155 cm 4.38 100%

Avg. and std. dev.
distance to crop rows

Avg. missed
crops per row

Percentage of
visited rows

TABLE I: Field coverage analysis in the fields illustrated in Fig. 6
using our navigation scheme.

and Θ show peaks at the times which correspond to the
transition to the next crop row (see for example 3©). This
is the normal behavior whenever a new row is selected and
the robot must align itself to the new row. The controller
compensates for this error using large values of ω as shown
in Fig. 5 (top). Also, note that the direction of ω is flipped
at the end of each row since the robot alternates between
a left and right turn to go through the crop rows. In this
experiment, we demonstrated that our navigation scheme
allows the robot to autonomously monitor a row-crop field
by accurately following the crop-rows.

C. Field Coverage Analysis

The second experiment is designed to evaluate the capa-
bility of a robot using our navigation scheme to cover fields
of different shapes and lengths. We consider four different
fields to evaluate our navigation scheme, which are shown
in Fig. 6. Field 1 presents a typical scenario having long crop
rows, whereas Field 2 is a short but wide, which requires
the robot to turn several times in quick succession. Field 3
and 4 have curved crop rows which are typically found in
real world fields. To evaluate the navigation performance, we
consider the following metrics: (i) the average and standard
deviation of the distance of the robot from the crop rows,
(ii) the average number of crops per row missed by the robot
and, (iii) the percentage of crop rows in the field missed by
the robot during navigation.

Tab. I summarizes the performance of our navigation
scheme for each of the four fields. The robot is able to
navigate along all of the fields with an average distance from
the crop rows of 0.8 cm and a standard deviation of 1.15 cm
(without relying on any map or an external positioning
system). This shows that the robot was able to follow the crop
rows closely during traversal. The number of crops covered
by the robot is computed by considering all of the crops that
are within a range of 10 cm from the trajectory of the robot.
This threshold ensures that the crops we are monitoring are
visible in the center region of the image for our robot setup.



Fig. 7: Robustness of our navigation system to errors in camera
tilt ρ (top) and crop-row distance δ (bottom) with respect to the
assumed values.

In all of the fields, the average number of plants missed per
row is negligible with respect to the number of plants in a
real crop row. These missed crops are the ones which the
robot misses while entering the next row as shown in Fig. 4.

Finally, we also evaluate the number of crop rows in the
field that were visited by the robot. We consider a row to be
visited only if the robot misses less than 5 crops in a row
(i.e. it does not take a shortcut at the end of the row). For
each of the four fields, the robot was able to traverse all of
the crop rows successfully. These results indicate that our
system is able to monitor the crops in the field with a high
coverage even in fields presenting different characteristics.

D. Robustness to User-Defined Parameters

In this experiment, we evaluate the robustness of our
navigation scheme to the critical parameters which needs to
be provided by the user. The first parameter is the camera
tilt angle ρ which is used by the visual servoing controller
for following the crop row. Another critical parameter is the
crop row distance δ which the navigation scheme uses for
estimating the shift of the window W at the end of the row.
The crop row distance δ may not be accurately measured
or varies in different parts of the field. Therefore, to account
for these errors, we analyzed the robustness of our navigation
scheme to the camera tilt angle ρ and the row distance δ.

To analyze the robustness of the navigation scheme, we
use the percentage of the crop rows in the field traversed
by the robot. This measure is indicative of how successful
the robot is in transitioning to the next row. To test the first
parameter, we fix the camera tilt ρ in the visual servoing
controller to 75◦and vary the actual tilt of the camera on
the robot in the range from 50◦to 90◦. In Fig. 7 (top), we
observe that the robot is able to traverse all the crop-rows in
the field (100% coverage) for ρ in the range from 62◦to 80◦.
This range corresponds to an error in the camera tilt varying
from -13◦to +5◦with respect to the assumed value. Thus, we
suggest to know the tilt parameter up to ± 5◦which is easy
to achieve in practice.

For the second parameter, we assume the crop row dis-
tance δ to be 50 cm in the controller and compute the shift
for the window W based on this value. We evaluate the
robustness of the system to this parameter by considering

Fig. 8: Real robot following our visual-based navigation scheme to
navigate in a test row-crop field, and the trajectory (blue) of the
robot recorded with a RTK-GPS.

fields with a crop-row distances δ that range from 20 cm to
80 cm. We observe in Fig. 7 (bottom) that the robot is able
to perform all the transition to the next rows successfully
for δ varying from 40 cm to 60 cm. This corresponds to a
difference of -10 cm to +10 cm from the assumed δ which is
a reasonable variation considering that most fields are sown
with precision agricultural machines today. These results
indicate that our system it is robust to reasonable error which
is expected in real-world scenarios.

E. Demonstration on Real Robot

In the last experiment, we demonstrate our navigation
system running on a real robot operating in an outdoor
environment. For this experiment, we used a Clearpath
Husky robot equipped with two cameras arranged in the
configuration shown in Fig. 1. All the computations were
performed on a consumer grade laptop running ROS. We
setup a test-field with 4 parallel rows each 15 meters on a
rough terrain. The robot was able to successfully navigate
along the crop-rows and switch to the correctly the end of
each crop row. We recorded the robot’s trajectory using a
RTK-GPS system but only to visualize it by overlaying on
a aerial image of the field as shown in Fig. 8. We observed
that the robot traverses the rows by navigating close to the
crops rows within a deviation of 4 cms and transition to the
next rows within a average maneuvering length of 1.2 m at
the start/end of each row.

VI. CONCLUSION

In this paper, we presented a novel approach for au-
tonomous robot navigation in crop fields, which allows an
agricultural robot to carry out precision agriculture tasks
such as crop monitoring. Our approach operates only on the
local observations from the on-board cameras for navigation.
Our method exploits the row structure inherent in the crop
fields to guide the robot along the crop row without the
need for explicit localization system, GNSS, or a map of the
environment. It handles the switching to new crop rows as
an integrated part of the control loop. This allows the robot
to successfully navigate through the crop fields row by row
and cover the whole field. We implemented and evaluated
our approach on different simulated datasets as well as on a
self-built agricultural robot. The experiments suggest that our
approach can be used by agricultural robots in crop fields of
different shapes and is fairly robust to the critical user defined
parameters of the controller.
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