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Abstract— Learning from demonstrations is an intuitive way
for instructing robots by non-experts. One challenge in learning
from demonstrations is to infer what to imitate, especially when
the robot only observes the teacher and does not have further
knowledge about the demonstrated actions. In this paper, we
present a novel approach to the problem of inferring what
to imitate to successfully reproduce a manipulation action
based on a small number of demonstrations. Our method em-
ploys techniques from recommender systems to include expert
knowledge. It models the demonstrated actions probabilistically
and formulates the problem of inferring what to imitate via
model selection. We select an appropriate model for the action
each time the robot has to reproduce it given a new starting
condition. We evaluate our approach using data acquired with
a PR2 robot and demonstrate that our method achieves high
success rates in different scenarios.

I. INTRODUCTION

Learning from demonstrations is a promising approach
in robotics as it exploits activities shown by a teacher to
speed up the learning process of the robot. There are two
major challenges in this paradigm, namely the questions
of what to imitate and how to imitate [4]. The first one
aims at identifying the features, constraints, or symbols that
are relevant for reproducing an action, whereas the latter
addresses the issue of generating feasible trajectories of the
robot’s manipulators when imitating a motion. The focus of
this paper is on what to imitate. Given a set of demonstrations
of an action, we want to infer the relevant aspects of these
demonstrations so that a robot can replicate the action when
the actual starting configuration differs from the ones seen
during the demonstrations. In general, it is hard to infer
which aspects are important to successfully replicate an
action. This is particularly challenging if the number of
demonstrations is small.

In this work, we propose an approach to deal with the
identification of the relevant features that describe an action.
The most direct solution to this problem is to detect these
features by making use of large sets of training data. From a
robotics standpoint, it is highly impractical to generate them
for every action. Our take to this problem is different: we
only use a few training examples to build the model for
the action by leveraging expert knowledge in a non-greedy
manner. We encode this expert knowledge by borrowing
ideas from the recommender systems theory. Recommender
systems typically identify patterns in user preferences either
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Fig. 1. The teacher demonstrating a manipulation action to the PR2 robot.
He shows the action of how to place a cup in a certain pose relative to a
plate and a fork. The robot has to infer relevant features of the action given
a small number of demonstrations.

through leveraging similarities between users [8], [13] or by
analyzing a user’s purchase history [3], [17]. A widespread
application of such techniques is the product recommenda-
tion system of large online retail stores. The idea of our
approach is to let multiple experts provide recommendations
about which set of features is relevant for an action. These
recommendations are functions of the state perceived by the
robot and of the training demonstrations. The experts are
users that have in-depth knowledge of robot manipulation.
Their rules and their recommendations are collected offline,
before training, and without knowledge of which specific ac-
tion will be demonstrated. Based on the many recommended
features, our system builds multiple probabilistic models of
the action. Thus we formulate a model selection problem to
evaluate which is the best explanation of the perceived state
each time a new condition is presented to the robot.

We implemented and tested our approach in simulation
and by using data recorded by kinesthetic teaching on a real
PR2 robot. As we illustrate in the experimental evaluation,
we are able to successfully replicate several kinds of tabletop
actions based on a small number of demonstrations. Overall,
we obtain high success rates for different tabletop manipu-
lation action scenarios.

II. RELATED WORK

Learning from demonstrations is a framework for teaching
actions or tasks to robots [4]. There exist a number of
approaches that address the issue of determining the relevant
constraints for reproducing a demonstrated motion, i.e. how



to imitate [6], [10]. Calinon et al. [5] presented an approach
that models the trajectories of the robot arm as a mixture
of Gaussians. When reproducing a demonstrated action, the
robot generates trajectories optimized with respect to a cost
function that takes into account the spatial and the temporal
correlations between the features along the trajectories. Epp-
ner et al. [7] and Mühlig et al. [16] consider the variance
in the demonstrations to determine less relevant parts of the
tasks. The approach by Asfour et al. [2] models demonstrated
arm movements using hidden Markov models and detects
key points across demonstrations that the robot needs to
reproduce. Similarly, Kulic et al. [14] use hidden Markov
models to encode and reproduce demonstrated actions.

Other approaches focus on learning the relevant features
or frames of reference for generalizing demonstrated actions,
i.e. what to imitate. The method of Abdo et al. [1] ana-
lyzes the variations in the state during the demonstrations
to identify the preconditions and effects of the individual
actions. Veeraraghavan and Veloso [19] also learn sym-
bolic representations of actions for planning by instantiating
preprogrammed behaviors and learning the corresponding
preconditions and effects. Jäkel et al. [9] use demonstrations
to generate a so-called strategy graph that segments tasks into
sub-goals. An evolutionary algorithm is used to eliminate
irrelevant spacial and temporal constraints using a motion
planner in simulation.

Song et al. [18] propose an approach that models the
relations between object- and action-related features using a
Bayesian network for learning strategies of grasping objects.
Konidaris and Barto presented an approach for choosing be-
tween different state abstractions in a hierarchical reinforce-
ment learning context where an agent learns different options
(macro actions) out of primitive ones [11]. They applied
their approach when segmenting demonstrated trajectories
into different options represented in a skill tree [12]. Each
option is assigned to a different abstraction that defines a
small subset of relevant variables using a trade-off between
model likelihood and model complexity. Our approach also
considers several state/feature abstractions when learning
a new action. However, we do not tackle the problem of
decomposing tasks into sequences of actions.

Our approach relies on expert knowledge to make recom-
mendations about subsets of features to use for learning new
actions. This can be seen as a form of content-based rec-
ommendation systems, which make recommendations based
on previously indicated user preferences [3], [17]. This
typically requires learning user profiles describing which
product categories a person is interested in. Similarly, our
system recommends sets of features that could be used to
explain a demonstrated action also from different initial
conditions. The recommendations are computed by using the
observed feature values in the demonstrations. Additionally,
they leverage the expert knowledge about different manipula-
tion actions. Related to this topic is the work of Matikainen et
al., who have applied concepts of recommender systems
in the context of action recognition in videos [15]. Their
approach is based on collaborative filtering and recommends

which classifiers to use for addressing a certain vision task.

III. LEARNING AN ACTION
FROM KINESTHETIC DEMONSTRATIONS

The idea of this work is to learn an action through
kinesthetic demonstrations where the teacher moves the
manipulator of the robot from different starting states to the
intended goal state of the action. We consider point-to-point
tabletop actions that are defined by a start-to-goal motion of
the robot’s end-effector while it interacts with objects in its
workspace.

The typical purpose of such actions is to reach a goal
configuration. This goal configuration is often not a single
state but all states that satisfy an unknown set of constraints.
Often, some of the constraints can be described by the ge-
ometrical relationships (relative distances, orientations, etc.)
of the objects to each other and to the robot. Actions such as
sorting or tidying up also depend on properties of the objects
like their colors, types, sizes, etc.

Given only a small number of demonstrations, an action
can be “explained” in a number of different ways. For
example, features describing the poses of some objects can
be seen as relevant or irrelevant to the action depending on
the observed variations in the starting conditions. Different
explanations often conflict or restrict the ability of the robot
to generalize that action to new situations. Note that we
assume that the teacher demonstrates actions without errors.

We describe an action at any discrete point in time t by
a collection of features. We compute features based on the
perceived state. We define two different kinds of features:
features that describe object properties and features that
describe pairwise relations between objects. “Object color”
is an example for the first kind, “distance” for the second.
We generate features by feature functions:

f(o1)→ R, (1)
g(o1, o2)→ R, (2)

where o is an object from O, the set of all objects in the
scene and the robot end-effectors. We define a feature vector
for the action as:

f = [f, . . . , fN1 , g1, . . . , gN2 ] , (3)

where M = N1 + N2 are the number of available feature
functions. Note that all f are computed ∀o ∈ O, and all g
with ∀{o1, o2} ∈

(|O|
2

)
(the two-combinations of |O|). By

design, f is a high-dimensional feature vector. Assuming a
time-discrete system, we represent an action by a sequence
of feature vectors over time:

F := (fts , . . . , fte ), (4)

where ts and te are respectively the starting and ending time
steps of a demonstration.

Note that we do not address the perception problem in this
paper. Rather, we assume that the robot can identify relevant
objects in the scene along with their poses. In our current
implementation, we solve this by using fiducial markers
attached to the objects and an out-of-the-box detector.
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Fig. 2. An example of two feature distributions for the action of placing a
grasped object A on top of another object B, based on ten demonstrations.
The left side shows feature 1, which describes the pose of A relative to B
along the x direction. The right side depicts feature 2 describing the pose of
the gripper relative to the robot’s torso frame along the x direction. Given a
new starting point s∗i , the distribution of the goal states for the first feature
is more concentrated compared to the second one. This results in a higher
likelihood for the first feature dimension, indicating a higher relevance to
the action compared to feature 2.

This work is also not concerned with modeling or gen-
eralizing trajectories, i.e., how to imitate. Rather, we only
consider the feature values at the start and end of an action
as relevant. Thus, we rewrite Eq. (4) as:

F := (fts , fte ). (5)

A. Modeling an Action

Learning an action is the process of building a model for
the action that is based on the demonstrations D. To describe
an action, we are interested in learning a probability density
function that models the relations between features at the
start and the end of an action.

For an action a, we assume that each element of the vector
f is independent from the others. Let si be the i-th dimension
of fts and ei the i-th dimension of fte , we construct a
bivariate probability density function φi that describes the
start and goal distribution for each feature in Eq. (5):

φi(si, ei) := ηiIi(bsic, beic), (6)

where the operator b·c is a quantization operator that returns
the bin in the histogram Ii that corresponds to dimension i.
The term η is a normalizer. We learn the entries of Ii by
accumulating data from the training set D.

When the robot reproduces an action from a new initial
state, only f∗ts is available but not f∗te . We do not have direct
access to the goal features because, in general, the action
has never been executed starting from f∗ts . Thus, we compute
φi | f∗ts , the conditional bivariate distribution. We do this by
taking the column vector of I relative to bf∗tsc for each i-th
feature and then calculating the normalization. The shape of
this distribution is important as it models the distribution of
possible goals in D with respect to a given starting pose in
the i-th feature dimension. If the distribution is concentrated
in a few possible values, we can interpret it as an indication
of goodness. According to the observed demonstrations, the
goal state corresponding to that feature is known with high
certainty. Fig. 2 depicts an example.

To evaluate the uncertainty in this distribution, we compute
the entropy Hi of the conditional distribution φi | f∗ts , where

the entropy of a discrete random variable X is:

H(X) = −
∑

P (X) lnP (X). (7)

Based on the entropy value Hi, we define the model
likelihood of an action a as:

p(f∗ts | Φ) :=
∏
i

e−Hi , (8)

where Φ is the set of all φ. Note that if the new starting
state for some feature dimension corresponds to a bin where
no data points are available, we use the distribution over all
starting states observed in the demonstrations for computing
the entropy of the conditional distribution.

The problem of this procedure lies in the dimensionality
of f . Many features, each measuring different aspects of
the scene, play a role in Eq. (8). These features may have
contrasting effects and render the action unlikely. This is
especially true when data is scarce. The standard solution
is to use large amounts of data to add samples for Eq. (6).
This, however, is impractical in our application.

B. Feature Selection by Using a Recommender System

From a robotics standpoint, it is impractical to generate
large sets of training examples for each action. Instead of
collecting a large amount of data, we seek to reduce the
dimensionality of the problem.

The key element of our approach is to perform feature
selection by means of a recommender system. This system
proposes a portfolio of various low dimensional feature
spaces that are able to explain an action. We compute
these spaces from a set of feature functions and they are
provided by domain experts. The experts are users who
have in-depth knowledge of robot manipulation. We collect
their recommendations offline, before training, and without
knowledge of the demonstrated action.

For brevity, we define a template T that is a a set of
feature functions. A template is not necessarily tailored for
one action and may be used for describing more than one
action. In practice, an expert gives an informed opinion about
what is usually relevant given D. We consider the case of
multiple experts suggesting multiple templates.

The next step is to define a way of making use of the expert
knowledge. This can be interpreted as a form of content-
based recommender systems. Such systems predict the pref-
erence of a user by analyzing his profile or purchase history.
In our context, we aim to predict which template to use from
an expert by analyzing the teacher demonstrations and the
new starting state from which the robot has to reproduce
the action. For example, if the teacher demonstrates to the
robot how to place object A on top of object B, one expects
small variations in the relative pose between the two objects.
Therefore, an expert could recommend a template involving
these features for reproducing the action. Note that the same
template (features) can be recommended for the action of
placing object C inside or next to object D.

To apply this theory to our problem, we need each
expert e to define a relevance function b(·), which performs



a selection of templates based on the perceived situation and
the demonstrations D. The Boolean function b(Ti,D) is true
iff conditions defined on features that the expert defines hold.
An example for that is: b(Ti,D) = 1 iff there is a change
bigger than σ in any feature dimension belonging to Ti and
the gripper moved an object.

Based on b(·), we build a binary rating matrix E. For
clarification, we illustrate an example with three experts and
only three relevance functions:

E =

e1 e2 e3
T1 b1(T1,D) b2(T1,D) b3(T1,D)
T2 b1(T2,D) b2(T2,D) b3(T2,D)
T3 b1(T3,D) b2(T3,D) b3(T3,D)

(9)

where e.g.: T1 is the distance of an object to the robot and
T3 is color. We can now select the features for the action
demonstrated by D. For this, we take all templates related to
the K rows that have at least a 1. We call this set Θ. Each
T ∈ Θ generates a low dimensional feature space of size
L � M . Our aim is not to find a minimum set of features
but to find a valid set able to describe an action.

Note that learning stops here, i.e., models are fit and evalu-
ated each time a request for reproduction of an action arrives.
The reasoning behind this choice is that a template consists
of feature functions. Feature functions depend on the number
of objects and on the perceived state of the environment.
With our technique, we want to be able to generalize to
changing conditions between training and testing.

IV. PREDICTING AND REPRODUCING AN ACTION

After completing the training phase, Θ is available and
we can use our system to allow the robot to reproduce the
action. Given the new start position f∗ts , the system has to
determine how to successfully complete the action. The idea
is to select the best feature subset Ti ∈ Θ that explains the
perceived state to then reproduce the action.

As a first step, we instantiate all feature functions that
occur in Ti by using the training data D with respect to the
current number of objects and other aspects of the perceived
state. We compute the likelihood of the action by evaluating
Eq. (8) but considering only the feature dimensions of Ti.
At this point, the system has to select which model from the
ones proposed by the templates is the one that best represents
reality. We address this as a model selection problem for
selecting a template. For each Ti ∈ Θ, we compute a score
βi that combines model fitting and maximizing the number
of features used:

βi = − 2 ln(p(f∗ts | Φ̂i))− αLi ln(|D|), (10)

where Φ̂i are the distributions related to the features of Ti.
The first term of Eq. (10) is the likelihood and the second
term, weighted by α, encourages the usage of templates
consisting of a large number of features. We select the best
template T ∗ as:

T ∗ = argmin
i

(βi). (11)

Fig. 3. We demonstrated to the robot how to reach for a specific object
(red cup). The positions of the other objects on the table do not change in
the demonstrations.

Fig. 4. We demonstrated to the robot how to place a grasped cup next to
a plate on the table. The cup is always placed on the side opposite to that
of the fork.

We carry out this procedure for each new action reproduc-
tion request as it depends on the start state f∗ts . In this way,
we do not commit to a model before seeing the state to start
the reproduction from. Instead, we keep multiple possible
explanations of the action that we select depending on the
starting condition. After selecting T ∗, the final task is to
reproduce the action.

In this paper, we aim at reproducing the action with
the closest resemblance to a demonstration. Specifically, the
robot reproduces the trajectory found in D by:

F∗ = argmin ‖fts − f∗ts‖T ∗ , ∀fts ∈ D, (12)

where ‖ · ‖T ∗ is the distance that considers only the dimen-
sions selected by T ∗ and the i-th dimension is weighted by
e−Hi . In this way, we can introduce a confidence measure on
the selection of the trajectories based on the same criterion
we use for computing the model likelihood. For executing the
selected trajectory, the robot uses its trajectory execution sys-
tem to reproduce the most similar demonstration transformed
in the relevant frames defined by the template features.

V. EXPERIMENTAL EVALUATION

This section summarizes the evaluation of our approach
conducted using kinesthetic demonstrations of tabletop ac-
tions recorded with a Willow Garage PR2 robot. As we do
not address perception in the scope of this paper, we used
fiducial markers attached to the objects and measured their
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Fig. 5. Results for the action of placing a grasped object onto another
object on the table. The left figure shows the selection of templates given
five and ten demonstrations for learning the action. Out of the large number
of available templates, the recommender system suggested only two. Our
system selected T0 most of the time, as this template considers features
describing the pose of the gripper and the grasped object relative to the target
object on the table. The right figure shows that the success rate increases
up to 93.6% with ten demonstrations.

pose using a camera mounted on the robot’s head, see Fig. 1.
We present our evaluation on three scenarios.

A. Placing an Object on Another

In this experiment, we provided the robot with ten demon-
strations of how to place a grasped cup on a coaster. We
ran 500 simulation runs where the robot has to reproduce
the action from different starting poses of its gripper and
the coaster. The success rates are shown in Fig. 5-right
for increasing numbers of initial demonstrations. The figure
shows that the robot is able to solve more cases with the
increase in the number of demonstrations used in training.
Fig. 5-left shows the selection of templates given five and ten
demonstrations for learning the action. The robot explained
the action using two templates, T0 and T1, achieving a
success rate of 75.8% when given five demonstrations. With
ten demonstrations, the robot solved 93.6% of the cases using
T0. This template includes features that describe the poses
of the gripper and the cup relative to the coaster. On the
other hand, T1 contains features describing the pose of the
coaster relative to the robot torso frame and less successfully
explains the action.

B. Reaching for a Specific Object

In this experiment, we consider an action where the robot
has to reach for a specific object. We provided only ten
demonstrations of reaching for a red cup placed on the
table in front of the robot. In all demonstrations, we varied
the starting position of the cup while leaving two other
cups (green and blue) in fixed positions on the table, see
Fig. 3. We ran experiments by starting the action from 500
different random starting poses of the gripper, from different
placements of all the cups, and by changing the table height
in simulation. In each run, we recorded the number of times
the robot correctly executed the action by reaching for the
red cup.

Fig. 6-right shows the results. When using the full training
dataset, the overall success rate is 88.8%. We quantified the
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Fig. 6. Results for the action of reaching for a specific object. The left
figure shows that by increasing the number of demonstrations, the system
prefers T2 to the other templates. This template contains features describing
the pose of the gripper relative to the target object. The right figure shows
the success rate as a function of the number of training demonstrations. The
success rate increases with the number of training demonstrations, reaching
up to 92.6%.

influence of the number of training demonstrations on the
success rate by increasing the number of training demonstra-
tions from five to ten. As expected, the success rate increases
with the size of the training set. Additionally, we analyzed
which templates are selected over the varying number of
training demonstrations, see Fig. 6-left. The system fre-
quently selected three templates, T2 - T4, when reproducing
the action from varying starting poses. T2 contains features
describing the pose of the gripper relative to the red cup.
On the other hand, T3 and T4 contain features involving
the poses of the other two cups as well as the pose of
the gripper relative to the robot. Combined, they explained
74% of the 500 trials given five demonstrations. With ten
demonstrations, T2 successfully explained 88.8% of all the
initial configurations.

We compared our method with Abdo et al. [1]. That
method is unable to reproduce the action starting from po-
sitions that are substantially different from the ones demon-
strated by the teacher. This is due to learning false-positive
constraints related to the poses of the blue and green cups
relative to the robot, as that method does not include feature
selection strategies.

C. Setting a Table

In this experiment, we considered a table arrangement
action. We provided the robot with twelve demonstrations
of how to place a grasped cup next to a plate and a fork
on the table. The teacher always placed the cup on one side
of the plate and the fork on the other, providing six training
demonstrations for each setting (see Fig. 4).

We ran simulation experiments by starting the action from
500 different poses of the objects and with varying table
heights. In all starting configurations, we placed the fork to
the left of the plate. We recorded the success rate as the
number of times the robot placed the cup on the right side
of the plate (i.e., opposite to the fork). The results are shown
in Fig. 7-right. As can be seen, we achieved a success rate
of 96% when using all twelve training examples.
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Fig. 7. Results for the action of placing a grasped cup next to a plate
and fork. The left figure shows the selection of templates given five and
twelve demonstrations of the action. The system prefers templates that
describe the pose of the cup relative to the other objects on the table. The
right figure shows the success rate as a function of the number of training
demonstrations, reaching up to 96% given twelve demonstrations.

Additionally, we analyzed the influence of the number of
training data on the success rate. As expected, the success
rate increased with the quantity of the learning examples. We
also analyzed the template selection over the varying number
of training demonstrations, see Fig. 7-left. With five training
demonstrations, four templates were selected approximately
the same number of times during the 500 trials. Even with
such a small number of demonstrations, our method succeeds
in 65% of the times by finding for each initial starting pose
a suitable explanation. The most selected templates included
features describing the pose of the grasped cup relative to
the fork and plate. With twelve training demonstrations,
there is an increasing preference for explaining the action
by template T8 which considers features of the pose of the
gripper and the grasped cup relative to the fork. Using the
recommended templates, our system achieved 96% success
rate given twelve demonstrations.

We compared our method with Abdo et al. [1]. Also here,
that method failed to reproduce the action if features such as
the distance of the objects relative to the robot varied largely
compared to the initial demonstrations. Instead, our approach
successfully reproduced the action under different starting
conditions. To illustrate this, we ran the experiment again
after removing the fork from the table and by requesting the
robot to reproduce the action. In this case, we consider a run
a success when the robot places the cup on either side of
the plate. Our method is able to adapt when the number of
objects changes. In that case, it often selected a template that
considers the pose of the cup relative to the plate. Under these
settings, we achieved a success rate of 82% given twelve
initial training demonstrations.

VI. CONCLUSIONS

In this paper, we presented an approach for learning
manipulation actions from a small number of demonstrations

by leveraging expert knowledge. Our method uses techniques
inspired from recommender system theory to select which
features are relevant for reproducing an action given the cur-
rent state of the scene. By following these recommendations,
our method builds multiple probabilistic models that are
evaluated for each new initial condition. In this way, we are
able to account for several models of the demonstrations and
select the best one depending on the scene. We conducted
extensive experiments in different tabletop scenarios. Our
method achieves an high success rate and is able to select
appropriate sets of features for reproducing each action.
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