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Abstract— As service robots become more and more capable
of performing useful tasks for us, there is a growing need to
teach robots how we expect them to carry out these tasks.
However, learning our preferences is a nontrivial problem, as
many of them stem from a variety of factors including personal
taste, cultural background, or common sense. Obviously, such
factors are hard to formulate or model a priori. In this paper,
we present a solution for tidying up objects in containers,
e.g., shelves or boxes, by following user preferences. We learn
the user preferences using collaborative filtering based on
crowdsourced and mined data. First, we predict pairwise object
preferences of the user. Then, we subdivide the objects in
containers by modeling a spectral clustering problem. Our
solution is easy to update, does not require complex modeling,
and improves with the amount of user data. We evaluate
our approach using crowdsoucing data from over 1,200 users
and demonstrate its effectiveness for two tidy-up scenarios.
Additionally, we show that a real robot can reliably predict
user preferences using our approach.

I. INTRODUCTION

One of the goals in robotics research is to develop au-
tonomous service robots that assist humans in their everyday
life. Robots are envisioned to undertake a variety of tasks
including tidying up, cleaning, and attending to the needs
of disabled people. As robots get more and more capable
of performing such tasks, there is a growing need to teach
robots how their users expect them to do so. Learning user
preferences, however, is a nontrivial problem. In a home
scenario, each user has a preferred way of sorting and
storing groceries, kitchenware items, or clothes in different
shelves or other containers. Many of our preferences stem
from factors such as personal taste, cultural background,
or common sense, which are hard to formulate or model
a priori. At the same time, it is highly impractical for the
robot to constantly query users about their preferences.

This paper provides a solution for how to arrange objects
in tidy-up tasks, such as organizing a shelf, or sorting
objects in boxes. The key idea of our approach is to first
be able to predict user preferences of pairwise object ar-
rangements based on partially-known preferences, and then
to compute the best subdivision in shelves or boxes. To
achieve this, we build our approach upon the framework of
collaborative filtering, which is a popular paradigm from the
data-mining community. Collaborative filtering is generally
used for learning user preferences in a wide variety of

Nichola Abdo, Wolfram Burgard, and Luciano Spinello are with the
University of Freiburg, 79110 Freiburg, Germany. Cyrill Stachniss is with
the University of Bonn, Inst. of Geodesy and Geoinformation, 53115 Bonn,
Germany. This work has partly been supported by the German Research
Foundation under research unit FOR 1513 (HYBRIS) and grant number
EXC 1086.

Fig. 1. A robot arranging objects on shelves by predicting user preferences.
First, it predicts pairwise preferences between objects, and then it assigns
objects to different shelves by maximally satisfying user preferences.

practical applications including suggesting movies on Netflix
or products on Amazon. By leveraging this theory, we are
able to encode multiple user preferences for each object.
Our method does not require that all user preferences are
specified for all object-pairs. Additionally, our solution is
able to provide preferences even when a completely novel
object, unknown to all users, is presented to the system.
For this, we combine collaborative filtering with a mixture
of experts that compute similarities between objects by
using object hierarchies. These hierarchies consist of product
categories downloaded from online shops, supermarkets, etc.
Finally, we organize objects in different containers by finding
object groups that maximally satisfy the predicted pairwise
constraints. For this, we solve a minimum k-cut problem
by efficiently applying self-tuning spectral clustering. Our
prediction model is easy to update and simultaneously offers
the possibility for lifelong learning and improvement.

Our approach proceeds in two phases. First, we bootstrap
our learning by collecting many user preferences, e.g., by
crowdsourced surveys. In this phase, we build a model for
object-pair preferences for a tidy-up task. In the second step,
the robot queries the user about some preferences, predicts
all the remaining ones, and then sorts the objects accordingly.

We present an extensive evaluation for two relevant tidy-
up scenarios, arranging toys in different boxes and grocery
items on shelves, as well as a real-robot experiment. For
training, we collected preferences from over 1,200 surveys.
The results demonstrate that our method is able to accurately
predict the preferences of the users about objects and their
organization in boxes/shelves.



II. RELATED WORK

Recent progress in the areas of perception, manipulation,
and control has enabled service robots to attend to a variety
of chores like cleaning and tidying up [10, 18, 24]. However,
as highlighted by a number of researchers, service robots
should be able to perform such tasks in a manner that
corresponds to our personal preferences [3, 8, 22, 23]. For
example, the results of Pantofaru et al. show that people
exhibit strong feelings with respect to robots organizing
personal items, suggesting the need for the robot to ask
humans to make decisions about where to store them [22].

Our environments are rich with cues and information that
can assist robots when reasoning about objects and their
locations. In this context, several approaches addressed the
problem of predicting the locations of objects by leveraging
knowledge about how humans use them, typical 3D struc-
tures in indoor environments, or co-occurrences of everyday
objects in a scene [2, 12, 20].

Recently, Kunze et al. presented an approach that uses
object-object spatial relations to predict the locations of
everyday objects (e.g., desk arrangements) by training a
Gaussian mixture model [15]. However, they address an
active search problem where a robot has to locate a certain
object. In contrast to that, our work is concerned with tidying
up everyday objects by predicting user preferences for object-
object relations. In the context of service robots, Schuster
et al. presented an approach for predicting the location for
storing different objects (e.g., cupboard vs drawer) based
on the objects observed in the environment [25]. They train
classifiers that consider features for object-object relations.
As one of their features, they make use of similarities
between objects based on a given hierarchy or ontology. We
also make use of a similarity measure based on hierarchies
mined from the Web and use it for making predictions for
unknown objects. However, in contrast to Schuster et al.,
our approach leverages collaborative filtering theory to learn
organizational patterns from different users without the need
for specifying relevant features. Moreover, we formulate
a spectral clustering problem that allows us to satisfy as
many user preferences as possible when allocating objects
to specific shelves. To cope with new objects, our method
combines collaborative filtering with a mixture of experts
approach based on information from resources such as online
stores. Similarly, Nyga et al. recently presented an ensemble
approach where different perception techniques are combined
in the context of detecting everyday objects [20]. The ap-
proach by Pangercic et al. also leverages information from
online stores but in the context of object detection [21].

We predict user preferences for organizing objects based
on the framework of collaborative filtering, a successful
paradigm used in the data mining community for addressing
personalized user recommendations [13, 14]. Recently, col-
laborative filtering has been applied to problems in robotics
and computer vision [16, 17]. For example, Matikainen et al.
combine a recommender system with a multi-armed bandit
formulation for selecting good floor coverage strategies to
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Fig. 2. The ratings matrix R. Each entry rij corresponds to the rating
of a user uj for an object-pair pi = {ok, ol}, which denotes whether the
two objects should be placed in the same container or not. Our goal is to
predict the missing ratings denoted by * and to compute a partitioning of
the objects into different containers that satisfies the user preferences.

a vacuum-cleaning robot. However, they do not consider
personal user preferences related to robotic tasks. Finally,
to learn different user preferences, we collect data using
a crowdsourcing platform. Recently, other works have also
leveraged crowdsourcing to transfer human knowledge to
robots in different contexts [5, 6, 11].

III. COLLABORATIVE FILTERING
FOR PREDICTING PAIRWISE PREFERENCES

The problem of predicting an object-object preference for
a user closely resembles the problem of suggesting items
based on user tastes. This problem is widely addressed
by employing recommender systems, popularly used on
websites (e.g., Amazon). They suggest items to users based
on their purchase history. Instead of relating items and users,
our method relates pairs of objects to users. Our technique
predicts a user preference, or rating, for an object-pair based
on two sources of information: i) known preferences of how
the user has previously organized other objects, ii) how other
users have organized these objects in their environments.

Let O = {o1, o2, . . . , oO} be a set of objects, each
belonging to a known class, e.g., book, toy, pencil, etc.
We assume to have a finite number of containers C =
{c1, c2, . . . , cC}, which the robot can use to organize the
objects, e.g., shelves, drawers, boxes, etc. We model each
container as a set which could be ∅ or could contain a subset
of O. We call P = {p1, p2, . . . , pM} the set of all pairs of
objects. We assign a rating rij to a pair pi = {ol, ok} to
denote the preference of user uj for placing ol and ok in the
same container. Each rating takes a value between 0 and 1,
where 1 means that the user prefers the pair together and vice
versa. We construct a ratings matrix R of size M×N , where
the rows correspond to the elements in P and the columns to
the users, see Fig. 2. Note that the ratings matrix is typically
missing most of its entries. This is due to the fact that each
user typically rates only a small subset of object-pairs.

A. Prediction

To predict an unknown object-pair user preference r̂ij , we
take from factorization-based collaborative filtering [13, 14].



First, we decompose R into a bias matrix B and a residual
ratings matrix R:

R = B+R. (1)

Each entry bij in B is formulated as follows:

bij = µ+ bi + bj , (2)

where µ is a global bias term, bi is the bias of the pair
pi, and bj is the bias of user uj . We compute µ as the
mean rating over all users and object-pairs in R. The bias bj
describes how high or low a certain user uj tends to generally
rate object-pairs compared to the average user. Similarly, bi
captures the tendency of a pair pi to receive high or low
ratings. For example, the pair {salt, pepper} tends to receive
generally high ratings compared to the pair {sugar, tuna}.

After removing the bias, the residual ratings matrix R
captures fine user preferences. Due to the large amount of
missing ratings, we follow the factorization procedure from
Koren [13] to express R as the product of an object-pair
factors matrix ST , and a user factors matrix T of sizes M ×
K and K × N , respectively. Each column si of S is a K-
dimensional factors vector corresponding to an object-pair pi.
Similarly, each column tj in T is a K-dimensional factors
vector associated with a user uj . We compute the residual
rating rij as the dot product of the factor vectors for object-
pair pi and user uj , i.e.,

rij = sTi · tj . (3)

The vectors s and t are low-dimensional projections of the
pairs and users, respectively. Pairs or users that are close to
each other in that space are similar with respect to some
property. For example, some users could prefer to group
objects together based on their shape, whereas others do so
based on their function.

We predict the rating r̂ij of an object-pair pi by a user uj

r̂ij = bij + rij

= µ+ bi + bj + sTi · tj .
(4)

We learn the biases and factor vectors from all available
ratings in R by formulating an optimization problem. The
goal is to minimize the difference between the observed
ratings rij made by users and the predictions r̂ij of the
system over all known ratings. Let the error associated with
rating rij be eij = rij − (µ+ bi + bj + sTi · tj). We jointly
learn the biases and factors that minimize the error over all
known ratings, i.e.,

argmin
b∗,S,T

∑
pi,uj

(eij)
2 +

λ

2
(b2i + b2j + ‖si‖2 + ‖tj‖2), (5)

where b∗ denotes all object-pair and user biases, and λ is
a regularizer. To do so, we use L-BFGS optimization [19].
At every step of the optimization, we update the value of
each variable based on the error gradient with respect to that
variable derived from Eq. (5).

After learning the biases and factor vectors for all users
and object-pairs, we use Eq. (4) to predict the requested
rating r̂ij .

B. Probing

To learn the biases and factors for a user uj for computing
a prediction r̂ij as explained in Sec. III-A, at least one
entry in the jth column of R is required. The set of known
preferences for a certain user are sometimes referred to as
probes in the recommender system literature; we use probing
to refer to the process of eliciting knowledge about a user.

In a tidy-up service robot context, we envision two strate-
gies to do so. In the first probing approach, the robot observes
C in the environment, detects objects in them and sets the
probe ratings based on whether two objects are in the same
container or not:

rij =

{
1, if ol, ok ∈ cm
0, if ol ∈ cm, ok ∈ cn,m 6= n.

(6)

We compute Eq. (6) for all object-pairs that the robot
observes in the environment.

In the second probing approach, we rely on actively
querying the user about her preferences for a set of object-
pairs. On the robot, we implemented this with a simple text-
based interface. Let P be the maximum number of probe
ratings that the robot queries the user. One trivial solution
is to acquire probe ratings by randomly querying about P
object-pairs. However, we aim at making accurate predictions
with as few probes as possible. Thus, we propose an efficient
strategy based on insights into the factorization of Sec. III-
A. The columns of the matrix S can be seen as a low
dimensional projection of the rating matrix describing only
object-pair similarities. We cluster the columns of S in P
groups, randomly take one column from each cluster, and
query the user about the associated pair. For clustering, we
use k-means with P clusters. In this way, the queries to
the users are selected to capture the complete spectrum of
preferences.

The nature of a collaborative filtering system allows us
to continuously add probe ratings for a user, either through
observations of how objects are organized in the environment
or by active querying as needed.

IV. MIXTURE OF EXPERTS FOR PREDICTING
PREFERENCES OF UNKNOWN OBJECTS

Thus far, we presented how our approach can make
predictions when objects are included in the object database.
Now, we introduce how to compute predictions when objects
are not present in O. There, we cannot rely on standard
collaborative filtering to find similarities between pairs, as
no user has rated pairs related to the new object yet.

The idea is to leverage the known ratings in R as
well as mined object information from the internet. The
latter consists of object hierarchies provided by popular
websites, including online supermarkets, stores, dictionaries,
etc. (see Fig. 3 for an example of a grocery scenario).
Formally, we adopt a mixture of experts approach where
each expert Ei makes use of a mined hierarchy that provides
information about similarities between different objects. The
idea is to query the expert about an unknown object o∗



and retrieve all the object-pair preferences related to it. The
hierarchy is a graph or a tree where a node is an object and
an edge represents an “is-a” relation.

As a first step, we ignore the new object and follow
our standard collaborative filtering approach to estimate
preferences for all the missing object-object entries of the
user column, i.e., Eq. (4). To make predictions for object-
pairs related to the new object, we compute the similarity ρ
of o∗ to other objects using the hierarchy graph of the expert.
For that, we employ the wup similarity [27], a measure
between 0 and 1 used to find semantic similarities between
concepts

ρlk =
depth(LCA(ol, ok))

0.5(depth(ol) + depth(ok))
, (7)

where depth is the depth of a node, and LCA denotes the
lowest common ancestor. In the example of Fig. 3, the lowest
common ancestor of Canned Tuna and Canned Beans is
Canned Foods, and their wup similarity is 0.4.

The idea is to use the known ratings of objects similar
to o∗ in order to predict the ratings related to it. For
example, if salt is the new object, we can predict a rating for
{salt , coffee} by using the rating of {pepper , coffee} and the
similarity of salt to pepper . We compute the expert rating
rEi(o∗, ok) for the pair {o∗, ok} as the sum of a baseline
rating taken as the similarity ρ∗k and a weighted mean of
the residual ratings for similar pairs, i.e.,

rEi(o∗, ok) = ρ∗k + η1
∑
l∈L

ρ∗l (r(ol, ok)− ρlk), (8)

where η1 = 1/
∑

l∈L ρ∗l is a normalizer, and L is the set of
object indices such that the rating of pair {ol, ok} is known.
Each expert computes Eq. (8) by using their associated
hierarchy. The final prediction is a combined estimate of all
the experts:

r̂E∗(o∗, ok) = η2
∑
i

wi rEi(o∗, ok), (9)

where wi ∈ [0, 1] represents the confidence of Ei, E∗
denotes the mixture of experts, and η2 = 1/

∑
i wi is a

normalizer. We compute the confidence by a leave-one-out
cross-validation of known object-object ratings as in Eq. (8)
and set it to zero if it is below a threshold of 0.6. We
disregard the rating of an expert if o∗ cannot be found in
its hierarchy or the associated ρ similarities are very small.

V. OBJECT GROUPING
WITH PREDICTED PREFERENCES

Now that it is possible to compute pairwise object prefer-
ences about known or unknown objects, we can sort the ob-
jects into different containers. In general, finding a partition-
ing of objects such that all pairwise constraints are satisfied
is a non-trivial task. For example, the user can have a high
preference for {pasta, rice} and for {pasta, tomato sauce},
but a low preference for {rice, tomato sauce}. Therefore,
we aim at satisfying as many of the preference constraints as
possible when grouping the objects into C ′ ≤ C containers,
where C is the total number of containers the robot can use.

Groceries

Canned Foods

Canned Tuna Vegetables

Canned Beans

Condiments

Spices and Herbs

Salt Pepper

Fig. 3. Example of an hierarchy used by an expert to compute similarities
across grocery items. We use this to make predictions related to a new object
given its similarity to known objects in the system.
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Fig. 4. A graph depicting relations between objects. Each node corresponds
to an object, and the weights (different edge thickness) are the pairwise
ratings. We partition the graph into subgraphs by spectral clustering. All
objects in the same partition are assigned to the same container.

First, we construct a weighted graph where the nodes
represent the objects, and each edge weight is the rating of
the corresponding object-pair, see Fig. 4. The subdivision of
objects into C ′ containers can be formulated as a partitioning
of the graph into C ′ subgraphs such that the cut (the sum
of the weights between the subgraphs) over all pairs of
subgraphs is minimized. This is called the minimum k-cut
problem [9]. Unfortunately, finding the optimal partitioning
of the graph into C ′ ≤ C subgraphs is NP-hard. In practice,
we efficiently solve this problem by using a spectral clus-
tering approach [4]. The main idea is to partition the graph
based on the eigenvectors of its Laplacian matrix, L, as this
captures the underlying connectivity of the graph.

Let V be the matrix whose columns are the first C ′

eigenvectors of L. We represent each object by a row of the
matrix V , i.e., a C ′-dimensional point, and apply k-means
clustering using C ′ clusters to get a final partitioning of the
objects. To estimate the best number of clusters (containers)
to use, we implement a self-tuning heuristic which takes the
number of clusters as the number of eigenvalues of L that
are equal to 0. This is a good approximation of the biggest
eigen-gap, which typically indicates a reliable way to split
the graph based on the similarities of its nodes [26, 28].

VI. EXPERIMENTAL EVALUATION

We tested our method on two tidy-up scenarios: organizing
toys in boxes, and organizing grocery items on shelves. We
demonstrate that: i) our approach can accurately predict per-
sonalized user preferences for organizing objects ii) our mix-



Fig. 5. We consider two tidy-up scenarios: organizing toys in different
boxes, and grocery items on different shelves.

ture of experts approach enables predictions for previously
unknown objects, iii) our approach improves at the increase
of the amount of user ratings, iv) our approach is applicable
on a real tidy-up robot scenario. In all experiments, we set
the number of factor dimensions to K = 3 and λ = 0.01.

A. Organizing Toys

In this experiment, we asked 15 people to sort 26 different
toys in boxes, see Fig. 5-top. This included some plush toys,
action figures, a ball, cars, a flashlight, books, and different
building blocks. Each participant could use up to six boxes
to sort the toys. Overall, four people used four boxes, seven
people used five boxes, and four people used all the six
available boxes to sort the toys.

We collected these results in a ratings matrix with 15
user columns and 325 rows representing all pairs of toys.
Each entry in a user’s column is based on whether he/she
placed the corresponding objects in the same box or not,
see Sec. III-B. For a fine quantification, we used these
ratings to generate a bigger ratings matrix. For this, we
randomly selected 78 ratings out of 325 from each column.
We repeated this operation 50 times for each column and
constructed a ratings matrix of size 325×750 where 76% of
the ratings are missing.

We computed a factorization of the ratings matrix as
described in Sec. III-A. Fig. 6-left shows the user factors
T projected to the first two dimensions. This gives a visual-
ization of the user tastes.

1) Predicting User Preferences for Pairs of Toys: We
evaluated our approach for predicting the preferences of the
15 participants by using the partial ratings in the matrix we
constructed above. For each of the participants, we queried
for the ratings of P probes as described in Sec. III-B. We hid
all other ratings from the user’s column and predicted them
using the ratings matrix and our approach. We rounded each
prediction to the nearest integer on the rating scale [0,1]
and compared it to the ground truth ratings. We evaluated
our results by computing the precision, recall, and F-score

of our predictions with respect to the two rating classes: no
(r = 0), and yes (r = 1).

We set the number of probes to P = 50, 100, . . . , 300
known ratings, and repeated the experiment 20 times for
each value, selecting different probes each run. The mean F-
scores of both rating classes averaged over all runs are shown
in Fig. 6-middle, where our approach is indicated by CF.
Additionally, we compare our results to three approaches:
i) CF-rand selects probes randomly and then uses our collab-
orative filtering approach to make predictions; ii) Baseline-I
uses our probing approach in Sec. III-B and then predicts
each unknown pair rating as the mean rating over all users
who rated it; iii) Baseline-II selects probes randomly and
then predicts each unknown pair rating as the mean rating
over all users.

Our collaborative filtering technique outperforms all base-
lines. On average, CF maintains an F-score between 0.98 and
0.99 over all predicted pair ratings. Using CF-rand, we are
also able to achieve an average F-score of 0.98 over all runs.
On the other hand, Baseline-I and Baseline-II only achieve
an F-score of 0.89. These baselines are only able to make
good predictions for object-pairs that have a unimodal rating
distribution over all people and cannot generalize to multiple
tastes w.r.t. an object-pair.

2) Sorting Toys into Boxes: We evaluated our approach
(Sec. V) for grouping toys into different boxes based on the
predicted ratings in the previous experiment. For each user,
we partitioned the objects into boxes based on the probed
and predicted ratings and compared that to the original
arrangement. We computed the success rate, i.e., achieving
the same number and content of boxes, see Fig. 6-right. Our
approach has a success rate of 80% at P = 300. As expected,
the performance improves with the number of known probe
ratings. On the other hand, even with P = 300 known
ratings, Baseline-I and Baseline-II have a success rate of
only 56% and 58%. Whereas CF-rand achieves a success
rate of 82% at P = 300, it requires at least 200 known probe
ratings on average to obtain over 50%. On the other hand,
CF achieves a success rate of 55% with only 100 known
probe ratings. The probes chosen by our approach tend to
correspond to pairs with multi-modal rating distributions,
which is precious information to distinguish a user’s taste.

3) Predicting Preferences for New Objects: We evaluated
the ability of our approach to make predictions for object-
pairs that no user has rated before (Sec. IV). For each of
the 26 toys, we removed all ratings related to that toy from
the ratings of the 15 participants. We predicted those pairs
using a mixture of three experts and the known ratings for the
remaining toys. We evaluated the F-scores of our predictions
as before by averaging over both no and yes ratings. We
based our experts on the hierarchy of an online toy store
(toysrus.com), appended with three different hierarchies for
sorting the building blocks (by size, color, or function). The
expert hierarchies contained between 165-178 nodes. For
one of the toys (flash light), our approach failed to make
predictions since the experts found no similarities to other
toys in their hierarchy. For all other toys, we achieved an
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Fig. 6. Left: a visualization of user tastes with respect to organizing toys by plotting the user factor vectors projected to the first two dimensions. For
example, the cluster U1 corresponds to users who grouped all building blocks together in one box. Cluster U2 corresponds to users who separated building
blocks into standard bricks, car-shaped blocks, and miscellaneous. Middle: the mean F-score of the predictions of our approach (CF) in the toys scenario
for different numbers of known probe ratings. We achieve an F-score of 0.98-0.99 on average over all predicted ratings. CF-rand selects probes randomly
and then uses our approach for predicting. It is able to achieve an F-score of 0.98. On the other hand, baselines I and II are unable to adapt to multimodal
user preferences. Right: the percentage of times our approach is able to predict the correct arrangement of boxes for sorting different toys. We outperform
both baselines and improve with more probe ratings as expected, reaching a success rate of 80%. By selecting probes based on object-pair factor vectors,
we are able to achieve high success rates with less probes compared to CF-rand.

average F-score of 0.91 and predicted the correct box to
place a new toy 83% of the time.

B. Organizing Groceries

In this scenario, we considered the problem of organizing
different grocery items on shelves. We collected data from
over 1,200 users using a crowdsourcing service [1]. We
consider a set of 22 common grocery item types, e.g., cans
of beans, flour, tea, etc. We asked each user about her
preferences for a subset of pairs related to these objects. For
each pair, we asked the user whether she would place the two
objects together on the same shelf. Each user could answer
with no, maybe, or yes, which we translated to ratings of
0, 0.5, and 1, respectively. The resulting R has dimensions
179×1284. Each user column contains between 28 and 36
known ratings, and each of the 179 object-pairs was rated
between 81 to 526 times. Only around 16% of the matrix
is filled with ratings. Due to the three possible ratings and
the noise of crowdsourced surveys, the ratings are largely
multi-modal.

1) Predicting User Preferences for Pairs of Grocery
Items: We tested our approach for predicting user ratings
of pairs through 50 runs of cross-validation. In each run,
we randomly sampled 50 user columns and queried them
with P of their known ratings. We hid the remaining ratings
from the matrix and predicted them using our approach. We
rounded each prediction to the closest rating (no-maybe-yes)
and evaluated our results by computing the precision, recall,
and F-score. Additionally, we compared the predictions of
our approach (CF) to CF-rand, Baseline-I, and Baseline-II
as in Sec. VI-A.1. The average F-scores over all runs and
rating classes are shown in Fig. 7-top for P = 4, 8, . . . ,
20. Both collaborative filtering approaches outperform the
baseline approaches, reaching a mean F-score of 0.63 at
P = 20 known probe ratings. Baseline-I and Baseline-II
are only able to achieve an F-score of 0.45 by using the
same rating of a pair for all users. Note that by employing
our probing strategy, our technique is able to achieve an
F-score of 0.6 with only 8 known probe ratings. On the

other hand, CF-rand needs to query a user at least 12 times
on average to achieve the same performance. Furthermore,
we found interesting similarities based on S. For example,
users tend to rate {coffee, honey} similarly to {tea, sugar}.
Also, the closest pairs to {pasta, tomato sauce} included
{pancakes,maple syrup} and {cereal , honey}, i.e., people
often group objects based on whether they can be used
together or not.

Additionally, we analyzed the average error in the pre-
dictions of each pair over all users and runs. Fig. 7-bottom
shows the total number of pairs with a prediction error over
0.25 with increasing values of P . With only four known
probe ratings, our approach results in an error of 0.25 or more
for only 80 of the 179 object-pairs, dropping to 21 given 16
or more probes. This shows that most false predictions made
by our approach correspond to mixing no or yes with maybe,
but not no with yes. Note that using our probing method, we
are able to select probes in a way that reduces the prediction
error across more pairs compared to CF-rand. With a high
number of probes, a random strategy offers slight advantages.
Random probing is not biased to selecting samples from
specific P modes, as our approach does. Note that this
happens after probing with almost all pairs. On the other
hand, the performance of the baselines does not improve
with more probes due to multi-modal user preferences.

2) Predicting Preferences for New Objects: We defined
three experts by mining the hierarchies of the groceries sec-
tion of three large online stores (amazon.com, walmart.com,
target.com). This includes up to 550 different nodes in the
object hierarchy. For each of the 22 grocery objects, we
removed ratings related to all of its pairs from R. We used
the mixture of experts to predict those ratings using the
remaining ratings in each column and the expert hierarchies
as explained in Sec. IV. The mean F-score over all users
for three grocery objects is shown in Fig. 8-top, where the
mixture of experts is denoted by E∗. We also show the indi-
vidual expert results (E1-E3) and their corresponding baseline
predictions (E ′1-E ′3), which take only the wup similarity of
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Fig. 7. Results for the scenario of organizing grocery items on different
shelves. Top: the mean F-score of our predictions averaged over all rating
classes no, maybe, and yes. Despite the large degree of multi-modality
and noise in the user preferences we collected through crowdsourcing, our
approach (CF) is able to achieve an F-score of 0.63 with 20 known probes
and to outperform the baselines. Moreover, our performance improves with
more knowledge about user preferences as expected. Bottom: the number
of object-pairs where the average prediction error is higher than 0.25 on
the rating scale of [0,1]. Most false predictions made by our approach
correspond to only confusing no or yes with maybe, and not no with yes.
Moreover, by selecting probes using our approach, we are able to achieve
a better performance with less probes compared to CF-rand.

two objects as the rating of the pair but do not consider the
ratings of similar pairs. The results of each individual expert
significantly outperform the baseline predictions. Note that
E∗ is able to overcome the shortcomings of the individual
experts, as in the case of rice. There, E1 is unable to
find similarities between rice and any of the rated objects,
whereas E2 and E3 are able to relate it to pasta in their
hierarchies. For two of the objects (bread and candy), we
were unable to make any predictions, as none of the experts
found similarities between them and other rated objects. For
all other objects, we achieve an average F-score of 0.61.

3) Improvement with Number of Users: We evaluated our
approach with respect to the number of users in the system.
For each object, we removed from R all columns with ratings
related to that object. Over 20 runs, we randomly sampled
10 different user columns from these and hid their ratings
for pairs related to the object. We predicted those ratings
using our approach (Sec. III-A) by incrementally adding
more columns of the other users who rated that object to the
ratings matrix in increments of 25. We evaluated the mean
F-score for the predictions for the 10 users. The results are
shown in Fig. 8-bottom averaged over 20 different types of
objects (those where we had at least 300 user ratings). We
also show the improvement with respect to two of the objects
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Fig. 8. Top: we predict preferences related to new objects by using a
mixture of experts approach. The experts E1-E3 are based on the hierarchies
of three online grocery stores. The mixture of experts E∗ is a merged
prediction of all three experts based on their confidence for a specific user.
Therefore, it is able to recover if a certain expert cannot find similarities for
a new object, as in the case of rice. The predictions E ′1-E ′3 make predictions
based only on the similarity of two items without considering the ratings of
similar pairs rated by the user, see Sec. IV. Bottom: as soon as some users
have rated pairs related to a new object, our collaborative filtering approach
is able to make predictions about it. The performance improves with more
users rating pairs related to a certain object.

individually. The performance of our approach improves
steadily with the number of users who rate pairs related
to a new object, as opposed to a baseline that updates the
mean rating over all users and uses that for predicting. This
shows that collaborative filtering is suitable for lifelong and
continual learning of user preferences.

4) Real Robot Experiments: We tested our approach on a
real tidy-up robot scenario, see Fig. 9. We asked 15 people
to organize 17 different grocery items according to their
preferences, using up to six shelves. Four people grouped
the items on four shelves, three people used five shelves,
and eight people used all six shelves. We constructed the
corresponding user columns and added them to the ratings
matrix from the crowdsourcing surveys. We then conducted
25 experimental runs where we selected a random user
column and organized the shelves as he/she did in the survey.
We randomly selected two objects, removed them from their
shelves, and placed them on a table. The task of the robot is
to fetch those objects and place them back on the shelves
based on the predictions of our approach, see Fig. 1 for
an example where the robot successfully placed coffee on
the same shelf as tea. In this work, we rely on existing
techniques for object recognition. In each run, we used
fiducial markers to recognize the objects on the table and



Fig. 9. The robot has to assign the two objects that are on the table to
shelves according to predicted user preferences. In this example, the robot
places coffee on the same shelf as tea, and rice next to pasta.

provided the robot with information about the objects on the
shelves to use as probe ratings, see Sec. III-B. For navigating
between the table and the shelves, we relied on a state-of-
the-art planner [7] that generates a sequence of actions for
the robot, and formulated goals based on the target shelf
of each object. For manipulation, we used an out-of-the-
box motion planner. Overall, our approach predicted the
correct shelf assignment for 82% of the objects, either by
placing them in empty shelves or together with other objects.
A video showing parts of the experiments can be found
at: http://www.informatik.uni-freiburg.de/
%7Eabdon/videos/icra15/abdo_icra15.mp4.

VII. CONCLUSIONS

This paper presents a novel approach that enables robots
to predict user preferences with respect to tidying up objects
in containers, such as shelves or boxes. In our approach,
we first predict pairwise object preferences of the user
by formulating a collaborative filtering problem. Then, we
subdivide the objects in containers by modeling and solving
a spectral clustering problem. Our technique allows for easily
updating knowledge about user preferences, does not require
complex modeling, and improves with the amount of user
data, allowing for lifelong learning of user preferences.
We trained the system by using surveys from over 1,200
users through crowdsourcing, and thoroughly evaluated the
effectiveness of our approach for two tidy-up scenarios:
arranging groceries on shelves and sorting toys in boxes.
Additionally, we presented an experiment with a real robot
that has to arrange groceries on shelves. Our technique is
accurate and is able to sort objects into different containers
according to user preferences.
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