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Abstract— To efficiently plan complex manipulation tasks,
robots need to reason on a high level. Symbolic planning, how-
ever, requires knowledge about the preconditions and effects
of the individual actions. In this work, we present a practical
approach to learn manipulation skills, including preconditions
and effects, based on teacher demonstrations. We believe that
requiring only a small number of demonstrations is essential for
robots operating in the real world. Therefore, our main focus
and contribution is the ability to infer the preconditions and
effects of actions based on a small number of demonstrations.
Our system furthermore expresses the acquired manipulation
actions as planning operators and is therefore able to use
symbolic planners to solve new tasks. We implemented our
approach on a PR2 robot and present real world manipulation
experiments that illustrate that our system allows non-experts
to transfer knowledge to robots.

I. INTRODUCTION

Future service robots should have the ability to continu-
ously adapt to our changing needs by easily acquiring new
skills or generalizing their knowledge to new situations.
However, it is infeasible to preprogram a robot to handle
all possible scenarios in the real world before deployment.
Instead, we need means that allow non-experts to interact
with robots and teach them new actions efficiently—with
as few demonstrations as possible. In addition to that, it
is difficult to solve most real world manipulation tasks by
reasoning purely in terms of low-level motions due to the
high-dimensionality of the problems. Instead, robots should
reason on a symbolic level and appropriately chain the
learned actions to solve new tasks. Such a planning step,
however, requires knowledge of the important preconditions
and effects of the actions.

In this paper, we present an approach based on teaching by
demonstration that allows a robot to learn the preconditions
and effects of manipulation actions from a human teacher. A
key focus is the ability to learn from a few demonstrations—
generating large sets of training data is a nuisance to end-
users. However, following the approach of requiring a few
demonstrations only is unlikely to result in learning perfect
models straightaway. Therefore, we complement the initial
learning step with the concept of requesting additional inputs
from the teacher. This is done whenever the current model
is insufficient or the current situation is conflicting with
previously-acquired knowledge. By following this practice,
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we greatly reduce the teaching overhead and eliminate the
need for extensive simulations. Essentially, we give a practi-
cal solution to the problem of teaching manipulation actions
to a robot in the absence of large amounts of training data.

Our method furthermore enables the robot to combine
the learned actions by means of planning to solve new
tasks that are more complicated than the learned individual
actions. This work aims to bring real robotic systems and
symbolic planning closer together by describing a way to
learn actions that allows real robots to exploit the planners
developed in the AI world. In this paper, we focus on a
class of manipulation actions where the preconditions and
goals depend on spatial or geometrical constraints between
the involved objects. This includes a variety of pick-and-
place actions, operating and opening doors, tidying up, etc.
We implemented our approach and carried out real-world
experiments using a PR2 robot to illustrate the capabilities
and flexibility of our system. In brief, our system (i) esti-
mates the important preconditions and effects of the actions
by analyzing the state at the beginning and end of the
demonstrations in a training phase, (ii) interacts with the
teacher to correct potential false positive conditions that
have been learned previously, and (iii) generates a symbolic
representation of the actions based on their preconditions and
effects and uses it to plan for solving new tasks.

II. RELATED WORK

Recently, imitation learning methods have become increas-
ingly popular as means for transferring task knowledge to
robots [4]. The key idea is to speed up the learning process by
exploiting demonstrations given by a teacher. For instance,
Bentivegna et al. [3] show a humanoid robot how to play
air hockey by learning primitives that the robot can use
in new situations. Asfour et al. [2] as well as Kulic et
al. [14] use hidden Markov models to encode and repro-
duce demonstrated actions. Calinon and Billard [5] propose
Gaussian mixture models to represent the variance over time
in the demonstrated trajectories of a manipulator and exploit
this information in the reproduction step. Similarly, Eppner
et al. [7] and Mühlig et al. [17] consider the variance in
the demonstrations to determine less relevant parts of the
tasks. Our approach also inspects the variance among the
demonstrations to determine relevance. However, as opposed
to analyzing the trajectory of the manipulator, our method
analyzes the variations in the state at the beginning and
end of the demonstrations to identify the preconditions and
effects of the individual actions.



Jäkel et al. [9] use demonstrations to generate a so-called
strategy graph that segments tasks into sub-goals. The system
generates temporal and spacial constraints for the transitions
between the sub-goals, and an evolutionary algorithm is used
to eliminate irrelevant constraints using a motion planner
in simulation. Instead of simulation, our approach allows
the robot to eliminate irrelevant conditions incrementally by
requesting feedback from the teacher in case it encounters
problems when executing a learned action. Exploiting teacher
feedback has also been explored in the context of learning
motion primitives from demonstrations, for example [15].

There are also a number of approaches that aim at teaching
robots skills on a symbolic level for task planning based
on teacher demonstrations. Veeraraghavan and Veloso [24]
demonstrate sequences of actions to teach a robot a plan
for solving sequential tasks that involve repetitions. They
instantiate preprogrammed behaviors and then learn the
corresponding preconditions and effects. Pardowitz et al. [20]
extract task-specific knowledge from sequences of actions.
The robot extracts the relevant elementary actions and task
constraints from teacher demonstrations of pick-and-place
actions when setting a table.

Ekvall and Kragic [6] provide a robot with demonstrations
of tasks related to setting a table. The robot incrementally
learns the constraints for each task with respect to the order
of executing the actions. This knowledge is then used to
choose the best strategy for solving a new task. To identify
the different states observed during the demonstrations, they
cluster the relative positions and orientations of the objects
and inspect the cluster variances. Related to Ekvall and
Kragic, our system applies k-means clustering to features
to identify preconditions and effects of actions.

Many researchers adopt object action complexes (OACs),
as presented by Krüge et al. [13], as a representation that
combines low-level robot control and high-level planning.
OACs consider objects as important to the robot in terms
of the actions that can be applied to them. Pastor et al. [21]
suggested adding a symbolic meaning to dynamic movement
primitives (DMPs) learned from demonstrations, such that
they can be used for high level planning in the context of
OACs. However, this has not been realized in their work so
far.

Kroemer and Peters [12] propose a framework for ma-
nipulation tasks that comprises two planning layers: a mid-
level layer that optimizes the parameters of the motor prim-
itives and a high-level layer that relies on preconditions
and effects of the actions. However, the preconditions and
effects are provided to the system and not learned. Chain-
ing basic actions to perform more complex tasks has also
been investigated in the reinforcement learning context [18],
[11]. Recently, Niekum et al. [19] proposed an approach
that segments unstructured demonstrations using the Beta
Process Autoregressive Hidden Markov Model to identify
and learn repeated skills. In contrast, our approach assumes
a given segmentation and addresses the problem of extracting
preconditions and effects for task planning. Also related to
our work, Rudolph et al. [22] monitor the change in feature

values to identify the effect of actions. Although the overall
idea of monitoring changes is similar to our work, they
apply a Bayesian network and concentrate on identifying the
effects. This paper is an extension of [1], as this work allows
for removing false positive constraints through interacting
with the teacher.

III. OVERVIEW

This work aims at allowing a robot to learn different
manipulation actions from a few teacher demonstrations and
to then combine them in order to solve more complex tasks
than the individual actions. To use actions in a planning
system, their preconditions and effects need to be learned,
which is the key focus of this work. An example for a
precondition is the fact that an object must be grasped by the
robot before placing it on top of another object. An example
for an effect is the relative position of the two objects
at the end of the motion. Identifying preconditions and
effects is done by estimating the distribution of world states
to recognize patterns while the teacher demonstrates the
same action multiple times. These patterns are represented
as logical predicates, allowing the robot to translate low-
level sensory data into a high-level logical representation
and verify when the preconditions or effects are satisfied.
This enables the robot to use existing symbolic planners to
solve more complex manipulation tasks. Furthermore, we
introduce the possibility to incorporate additional teacher
feedback to refine the learned conditions. Note that the
segmentation of demonstrations into actions is not addressed
in this work and is assumed to be provided by the teacher.

IV. STATE REPRESENTATION
AND KINESTHETIC DEMONSTRATIONS

To compactly encode the state of the world, our system
uses a set of features. This includes features describing
properties of the objects such as their color and dimensions
as well as their positions, distances, and orientations relative
to each other. We also encode robot-specific features such as
the opening of the endeffector and its pose with respect to
objects in the scene. Furthermore, we use boolean or discrete
features to capture a high-level, simplified, description of
a complicated world state. For example, to indicate if an
object is occluded (e.g., when another object is placed on
it), we used a boolean feature that describes if the object
is visible or not. When demonstrating how to open a door,
we defined a discrete feature to describe the state of the
door (closed, partially open, completely open) based on the
measured position of the door edge. New features that may
be needed when teaching other tasks can be added easily
without affecting already learned actions.

When observing the demonstrations, our system considers
only features related to objects that are close to the robot
during the demonstrations (e.g. on a table in front of it).
This allows us, for example, to ignore the state of a window,
potentially in a different room, while the teacher shows the
robot how to operate the door.



Fig. 1. Examples of kinesthetic training showing how to position a bottle
above a cup and how to operate a door handle.

Note that we do not address the perception problem in this
paper. We assume that the robot can identify relevant objects
in the scene along with their poses. In our experiments, we at-
tached checkerboard markers to the relevant objects and used
an out-of-the-box detector available in the Robot Operating
System (ROS). As an alternative to markers, we also used
depth imaging from a Kinect camera for matching learned
pointclouds of objects in the surrounding environment. For
perception, we rely on existing technology and do not claim
a novel contribution.

To teach the robot basic actions, we use kinesthetic train-
ing, i.e., the teacher moves the manipulators of the robot,
as illustrated in Fig. 1. This method is rather accurate and
does not require extra sensors since the robot can directly
record the movements using its own encoders. We assume
that the teacher always demonstrates the actions successfully.
The trajectory of the end-effector in task space during the
motion is encoded using the DMP formulation as proposed
by Pastor et al. [21].

V. IDENTIFYING PRECONDITIONS AND EFFECTS

To identify the preconditions and effects of actions based
on a set of demonstrations, we inspect the recorded feature
values at the beginning and at the end of each demonstration.
For each feature, we look for patterns in its values to decide
whether or not it is important for an action.

In our approach, three questions have to be answered:
First, which features are relevant for an action as a pre-
condition or as an effect? Second, if a feature is regarded
as relevant, which values are typically observed and how to
derive a logical predicate that encodes the decision whether
the precondition or effect is fulfilled? Third, given two
logical predicates, how to decide whether both represent the
same condition? The last question is essential for a planning
system to chain actions together by verifying whether the
effects of an action match the preconditions of another. The
answers are provided in the remainder of this section.

A. Expressing Preconditions and Effects Through Features

In the most general case, the robot cannot be sure that an
action can be carried out unless the current state of the world
is identical to a state observed in one of the demonstrations.
Otherwise, a precondition might not be satisfied and execut-
ing the action might fail. Such a requirement, however, is
far too restrictive, and a smoothness assumption is needed
to generalize to new but similar situations.

When deciding which features are relevant for the execu-
tion of an action, we make the assumption that the individual

features are independent in terms of their relevance to the
action (not in their values). Let Mf be a model for feature
f that is learned using the observed values of this feature
during the demonstrations. We do not pose any constraints on
Mf , except that we can compute the probability of a feature
value v, i.e., P (v | Mf ). In order to make the decision if a
feature value v is consistent with the model, we use a gating
threshold Pmin , which is the minimal probability of v that
we want to accept:

P (v | Mf ) > Pmin . (1)

One question here is how to compute the modelMf for each
feature f and how to make the decision given in Eq. (1).

A central problem for learning a model in practice is that
the robot only observes positive examples, i.e. successful
demonstrations of the actions. Consider now a feature that is
irrelevant for an action, i.e., the execution of the action is not
affected no matter what value the feature takes. This in turn
would require Eq. (1) to be always true , which can only be
achieved if the full feature space is populated by samples.
This is obviously infeasible as this would require a huge
number of demonstrations. Therefore, we need a criterion
in addition to Eq. (1) in order to determine if a feature is
relevant or not.

B. Estimating Preconditions and Effects by Analyzing the
Variations in the Demonstrations

We regard features as relevant only if they exhibit small
variations in their values over the demonstrations. As pre-
conditions, we consider features that take the same or similar
values at the beginning of all demonstrations of an action.
The same holds for the effects: features that always take
similar values after having executed an action are considered
to be an effect of that action. Informally speaking, for each
action independently, we estimate for each feature the region
in space that includes the samples corresponding to the
demonstrations. By analyzing the size of such regions, we
decide whether the feature is relevant.

For doing that, we require a measure of “data dispersion”
or “variance” for Mf . Let this measure be H(Mf ); the
smaller it is, the less spread the feature values are. Then,
we impose a maximum value, Hmax , so that we regard the
feature f as relevant, i.e.

f is relevant =

{
true if H(Mf ) < Hmax

false otherwise.
(2)

Note that it is up to the designer to specify how H(·)
is implemented. Possible realizations are the entropy or the
variance in the feature values.

1) Features Taking Continuous Values: We have to define
how to model Mf and H(·) for features taking contin-
uous values. There exist multiple ways for estimating the
boundaries of regions in a potentially high-dimensional space
that are populated by samples. Approaches to one-class
classification belong to this class of algorithms, e.g. single-
class SVMs [23], k-means, PCA, and k-nearest neighbor [10]
are all possible solutions.



In contrast to many other learning setups, we suffer
from scarcity of training examples. A teacher provides a
small number of demonstrations of an action, leading to a
few sample points in feature space. Given a few training
examples, applying techniques such as SVMs is likely to
provide results that do not generalize well. Since we consider
training sets in the order of ten sample points, we propose
to apply a k-means clustering method.

As our function H(·), we consider the average squared
intra-cluster distances considering each cluster c with mean
µc, i.e.,

H(Mf ) =
1

KN

K∑
k=1

Nc∑
i=1

dist(vci , µc)
2
, (3)

where N is the overall number of demonstrations and K is
the number of clusters. Furthermore, Nc is the number of
data points assigned to cluster c and vci is the value of the
ith data point in the cluster. The function dist(·) is a distance
measure for the feature under consideration. This can either
be the Euclidean distance between objects or the angular
difference between rotations. Since the teacher demonstrates
an unknown number of ways of performing an action, the
system typically does not know the number of clusters K to
look for in advance. We therefore perform multiple iterations
of k-means with increasing values for K from 1 up to

√
N/2,

where N is the number of data points. This upper limit is a
heuristic suggested by Mardia et al. [16].

If the condition in Eq. (2) using this definition of H holds,
then our system has identified a multi-modal pattern in the
input data and considers this pattern as a precondition or
effect. No further increase of K is then needed. However, if
this criterion fails for all values of K, the system determines
that the feature is irrelevant to the action since no pattern
could be found.

For each relevant feature cluster related to an action, we
then define a logical predicate Pf , which is used by the
symbolic planner later on to express when the condition
represented by a cluster is satisfied. For a continuous feature,
the predicate is defined as

Pf,c(v) =

{
true if dist(v, µc) ≤ dmax

false otherwise,
(4)

where dmax is a threshold defining the maximum allowed
distance to the centroid. The value of dmax is related to the
variation that is allowed during the execution, the accuracy
of the perception system, and the calibration of the robot’s
arms. In our current implementation, we set dmax = 3 cm
for distances and dmax = 20◦ for angles.

2) Features Taking Discrete Values: Besides features tak-
ing continuous values, we also consider features taking
discrete values. An example of such a feature is object-is-
visible, which can be true or false . To decide whether a
discrete-valued feature is relevant for an action, we compute
the entropy of the distribution of the feature values during
the demonstrations. The entropy is a measure of uncertainty

and is defined as

H(Mf ) = −
L∑

l=1

P (f = vl) log2 P (f = vl), (5)

where P (f = vl) is the probability that the feature f
takes the value vl (out of L possible values), i.e., Mf is
a histogram with L bins. The distribution over the values
is computed based on the observations. A low entropy
indicates that the probability mass is concentrated in a few
feature values and thus indicates a low variation over the
demonstrations.

The value that the feature has to take to satisfy the
precondition or effect is then given by

vf = argmax
vl∈{v1...vL}

P (f = vl). (6)

Similar to the continuous case, we can derive a boolean
predicate Pf (v) that is later on used in the planning process
to test whether a discrete precondition is fulfilled as:

Pf (v) =

{
true if v = vf

false otherwise.
(7)

C. Identifying Identical Predicates

To allow a planner to chain actions, we need to identify
which predicates learned from one action are the same as
the predicates from other actions. Consider two predicates
Pa1

f and Pa2

f generated from two different actions a1 and
a2 but from the same feature f . To decide if they represent
the same condition, we consider the feature values from the
demonstrations of a1 and a2 as a merged sample set. The
predicates Pa1

f and Pa2

f are merged into one predicate if the
merged sample set still fulfills the criterion given in Eq. (2).
Otherwise, Pa1

f and Pa2

f remain individual predicates.

VI. ELIMINATING FALSE POSITIVES
THROUGH INTERACTION WITH THE TEACHER

The technique described above allows for identifying pre-
conditions and effects based on the variations in demonstra-
tions given by the teacher. If the teacher, however, does not
provide enough variations in the demonstrations, the robot
may learn false positive constraints that do not need to be
fulfilled in reality when executing the action. Moreover, the
larger the set of predefined features, the more demonstrations
may be needed to obtain enough variations in order to
eliminate all irrelevant features. For example, if the color of
an object never varies during the demonstrations, the robot
may learn the color as a relevant condition.

In this work, we explicitly incorporate the concept of
teacher feedback to eliminate false positive conditions.
Whenever the robot observes a starting state that contradicts
the already-learned preconditions, it asks for a confirmation
by the teacher that the action is in fact executable given
the current state. The preconditions whose corresponding
feature values are contradicted by that state are consequently
removed from the learned action description.

Another problem can occur due to wrongly learned effects.
To execute an action, the robot attempts to compute a pose



of its end-effector that satisfies all the effects it learned. In
new situations, the presence of false positive conditions can
result in the robot’s inability to compute a pose satisfying
all constraints because in reality only a subset of them must
be satisfied. For example, the robot may not be able to
compute a pose of its end-effector that satisfies conflicting
distance constraints to two objects where only the distance
to one object is relevant. In such cases, the robot requests
that the teacher illustrates how that case can be solved by
providing a new demonstration. The system then records
the feature values at the end of the new demonstration and
evaluates which of the effect predicates are violated. Those
are identified as false positive conditions and removed from
the learned action description.

Note that our system distinguishes between the robot’s
inability to execute the action due to conflicting goal con-
straints and its inability to do so due to the failure of the
motion planner to find a collision-free trajectory to the goal.

VII. PLANNING USING THE ACQUIRED ACTIONS

To outsource the planning task to an existing sym-
bolic planner, our systems transforms the actions and
learned predicates into the Planning Domain Definition Lan-
guage (PDDL). For expressing each action in terms of its
preconditions and effects, we consider the different possible
cases for each relevant feature f . Since f could be relevant
as a precondition, an effect, or both, our system adds the
appropriate predicate, Pf , or its negation in the preconditions
or effects part of the PDDL operator. An example of a
generated PDDL operator for approaching a block from the
top to grasp it is:

(:action reachBlockTop
:parameters (?b-block ?g-gripper)
:precondition (and (visible ?b)

(gripperOpen ?g))
:effect (and (not (visible ?b))

(gripperAroundBlockTop ?g ?b)))

The operator has been learned from demonstrating the
reaching motion to the robot. The parameters part represents
the typed variables ?b and ?g that are involved in the
predicates. The types of objects are not learned but are
provided by the perception system during the demonstrations.
The terms in the precondition and effect parts correspond to
learned predicates. Note that we replaced the automatically
generated names such as predicate123 by meaningful ones.
Furthermore, a few general physical constraints such as
information about the robot’s workspace need to be provided
in PDDL. For more details, we refer the reader to [1].

For a new task, the system generates a PDDL problem
description based on the current and goal states and uses
the fast downward planner by Helmert [8] to generate a
sequence of actions for the robot to execute. Each step in the
plan corresponds to executing a learned action. To physically
execute an action, our system first chooses one of the
recorded movement primitives corresponding to it. The DMP
is propagated using the new endpoints to produce a trajectory
that is similar to the one demonstrated by the teacher, as is

described in [1]. Before executing it, we simulate the arm
trajectory and perform a collision check with any of the
obstacles in the scene. In case no safe trajectory can be
found, we use a geometric motion planner (from the arm
navigation stack of ROS) as our fallback solution.

In the real world, a robot may not carry out all actions
as expected or the environment may change. Therefore, we
implemented a module that monitors plan execution, updates
the truth values of the predicates from the observed feature
values, and compares the current state to the expected effects
of the actions. In case of a contradiction, the execution
monitor triggers a replanning command using the current
state of the world as a starting state. The fast downward
planner is efficient enough to compute a new plan online so
that the robot can proceed without significant interruptions.

VIII. EXPERIMENTS

The goal of this evaluation is to show the capabil-
ities and flexibility of our approach. We learn differ-
ent actions such as: grasping blocks and bottles, pouring
from bottles, and fairly complicated door opening actions.
All components of the system have been implemented as
ROS modules and our experiments are carried out with a
real PR2 robot. Videos of the experiments can be found
at: http://www.informatik.uni-freiburg.de/
%7Eabdon/videos/icra13/

A. Training Phase

The first set of experiments is designed to illustrate how
our system can reliably identify the important preconditions
and effects of the actions after the initial training phase. The
teaching is performed kinesthetically as illustrated in Fig. 1
and the initial training set consisted of 10 demonstrations
per action. The robot recorded all features at the beginning
and end of each demonstration as described in Sec. IV.
The computations involved in learning the preconditions
and effects from the recorded feature values varied between
0.1 s (15 features) and 0.8 s (64 features), depending on the
number of features used in the indivdiual experiments.

1) Door Opening Scenario: In this set of experiments,
we demonstrated to the robot how it can open a door using
5 simple actions: reaching the handle, turning the handle to
unlatch the door, pulling the door from its handle, moving
the gripper to the edge of the door, and pushing the door to
open it completely. The position of the handle is detected via
a checkerboard pattern and the opening angle of the edge of
the door was measured using the robot’s laser sensor.

As an example, the preconditions learned for pulling the
door are: the door is partially open; the handle is visible; the
gripper is closed and in a fixed (grasping) pose relative to
it. For the effects: the handle is not visible after pulling the
door; the door edge and the gripper relative to the robot are
in a consistent position; the door is still partially open. For
the sake of brevity, only a small subset of the results can be
presented here.

http://www.informatik.uni-freiburg.de/%7Eabdon/videos/icra13/
http://www.informatik.uni-freiburg.de/%7Eabdon/videos/icra13/


Fig. 2. Left: The robot requested a new demonstration after failing to grasp the bottle, which was lying on the table, due to a false-positive upright
orientation condition. Second left: After learning that the angle of the bottle to the robot is irrelevant, the robot was able to grasp it from arbitrary initial
orientations. Third left: The robot requested a demonstration for achieving a pouring pose with a cup of a different color and height than the one in the
initial training. Right: After removing the false positive color and height conditions, it is able to repeat the action for different cup colors and sizes.

TABLE I
EXAMPLES OF RELEVANT CONDITIONS LEARNED FOR GRASPING A BOTTLE

feature bottle-robot bottle-robot gripper-bottle gripper-bottle gripper-robot gripper-robot bottle
position orientation position orientation position orientation color . . .

preconditions - upright - - - - whiteorientation

effects - upright grasping perpendicular - perpendicular whiteorientation pose

TABLE II
LEARNING THE PRECONDITIONS AND EFFECTS FOR GRASPING A BLOCK

# demonstrations 5 6 9 10 > 10
success rate 17/20 19/20 19/20 20/20 20/20

2) Tabletop Scenario: We considered a set of actions
involving multiple blocks, a bottle, and several cups placed
on a table in front of the robot. The teacher demonstrated
how to reach for an object to grasp it. The system correctly
inferred that the pose of the object relative to the robot
or the gripper are irrelevant as preconditions, whereas the
pose of the gripper relative to the object is a relevant
effect. For example, after reaching the bottle, the gripper
is perpendicular to it and at a consistent distance from its
center and top (see Tab. I).

The teacher also demonstrated how to place a grasped
block on top of another one, and how to move a grasped
bottle to a pouring pose. The pose of the gripper relative
to the grasped object was learned as a relevant precondition
and the corresponding object-to-object and gripper-to-object
poses and distances at the goal were learned as effects.
For the pouring example, this included the pouring angle
between the bottle and the cup, and the relative translation
and distance of the bottle to the top and center of the cup.
Note that we learn the goal state of the pouring action and not
the dynamics of pouring itself. Moreover, the robot learned
consistent gripper openings in all experiments.

To provide a quantitative evaluation, we recorded 20
demonstrations for the action of reaching a block to grasp
it. Instead of using all of them for learning, we sampled
only a set and learned the preconditions and effects. We
repeated this process 20 times and obtained the results
shown in Tab. II. When using 10 or more demonstrations,
the robot learned the action correctly. With less than 10
demonstrations, the system fails on average 1 to 3 out of 20
times, i.e., it learns at least one false positive precondition
or effect. This is due to insufficient variations in the feature
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Fig. 4. Effect of teacher feedback evaluated on a task where the robot has to
place a ball in a cup after learning this action from N initial demonstrations.
In this experiment, we placed a second, irrelevant cup on the table, causing
the system to learn false positive conditions related to its position in some
situations. The red curve shows the number of successfully executed place-
ball-in-cup tasks in 200 randomly sampled configurations of the scene. In
contrast to that, the blue curve shows the number of successfully executed
tasks when the robot was allowed to ask for feedback immediately after
a failure. The number of such teacher interactions is given by the blue
numbers. As the robot explicitly obtains feedback in situations it cannot
solve, it can quickly remove the false positives and then solve the remaining
test scenarios most of the time. Note that this experiment was conducted in
simulation and the values are averaged over 50 independent runs.

values in the demonstrations. For example, the robot learns
a specific starting pose of the gripper as relevant to the
action. Such conditions restrict the application of the action
to scenes where this condition holds. However, this issue can
be fixed through additional teacher feedback. This becomes
also important if significantly larger feature sets are used.

B. Eliminating False Positive Conditions
This experiment is designed to illustrate the possibility

to eliminate false positive conditions that resulted from too
little variation in the training phase. For example, the teacher
demonstrated to the robot how to grasp a bottle and how to
move it to pour something into a cup. The bottle was always
placed in an upright standing pose on the table, causing the
robot to learn conditions describing the orientation of the
bottle and the gripper when grasping it (see Tab. I).



Fig. 3. The robot computes a plan to build a tower using the basic actions learned from the demonstrations.

When asked to execute the action while the bottle is
lying on the table, the robot indicated that the learned
preconditions are violated. The teacher confirmed that this
is a valid starting state, hence removing the false positive
orientation precondition. However, due to the conflicting
effects describing the gripper-to-bottle and gripper-to-robot
angles at the goal, the robot could not proceed, and requested
a demonstration of how to perform this task. After showing
the grasping pose for that case, the robot successfully elim-
inated the false positive angular constraints, and was able
to repeatedly reach the bottle when lying down or placed at
arbitrary angles on the table (Fig. 2, first two images).

A similar situation occurs when learning the pouring pose
using the same cup in all demonstrations. After requesting
a new demonstration for a different cup, the robot was able
to eliminate false positive conditions related to the color and
height features of the cup (see Fig. 2, last two images).

To further evaluate the effect of teacher interactions, we
considered a task where the robot has to place a grasped
ball in a cup. To induce the system to learn false positive
conditions, we placed a second irrelevant cup on the table so
that the relative positions to this cup were falsely identified
as relevant in some situations. Training was done using 2-10
initial demonstrations with random placements of the two
cups in a uniformly discretized rectangular region of 0.5m
by 0.9m. We then evaluated the robot’s ability to repeat the
action in 200 new configurations. The number of successfully
executed actions is depicted by the red curve in Fig. 4. We
then repeated the experiment and allowed the robot to request
teacher feedback in case it cannot solve a given scenario,
thereby incrementally eliminating false positive conditions
it had learned initially. The results are given by the blue
curve in Fig. 4. Both plots show the results averaged over 50
simulation runs. As can be seen from the plots, false positive
conditions significantly limit the number of new scenarios the
robot can solve without teacher feedback. In contrast to that,
by allowing the robot to ask for help after a failure, it was
able to eliminate the wrong conditions related to the second
cup after at most three additional demonstrations.

C. Computing Plans to Solve New Tasks

This set of experiments is designed to show how the robot
can use the learned actions to solve tasks that have not been
demonstrated beforehand. In one experiment, we instructed
the robot to stack three blocks in a specific order using the
learned pick-and-place actions. The robot was always able to
come up with a valid plan to the goal state. To execute each
step, it selects a DMP learned during the demonstrations and
used it to get to a desired gripper goal pose. Fig. 3 depicts the

plan execution, and a video of this experiment is available
under the URL above.

In another experiment, we placed the robot in front of the
door and instructed it to keep it fully open while a human
repeatedly closed it to different configurations. The robot
came up with three different plans depending on the starting
state. If the door is completely closed, our robot needs to
carry out the following actions: reachHandle; graspHandle;
turnHandle; pullDoor; releaseHandle; moveArmToInnerSide;
pushDoor. If the door latch was not locked, it is sufficient to
execute: reachHandle; graspHandle; pullDoor; releaseHan-
dle; moveArmToInnerSide; pushDoor. If the door is already
partially open but the robot does not see the handle, the
plan was: moveArmToInnerSide; pushDoor. Some of these
actions are visible in parts of Fig. 5. Further images had to be
omitted due to limited space but the reader may consider the
video showing parts of this experiment. We conducted this
experiment for more than 20 min. Due to errors in estimating
the handle or door edge position, the gripper sometimes
failed to grasp the handle or push the door successfully.
However, the system was always able to detect unsatisfied
action effects and recover by computing a new plan.

D. Reacting to Unexpected Changes in the Environment

The last experiment was designed to illustrate how the
robot can deal with unexpected changes in the environment
while executing plans. For the purposes of this experiment,
motion commands for navigating between a door and a table
were manually provided. The goal was to take two blocks and
bring them to the corridor outside the room. Initially, both
blocks lay on a table in the room and the door is open. While
the robot picks up the two blocks with its manipulators, a
person closes the door. After detecting the change, the robot
computes a new plan and decides to bring one block back to
the table to free one gripper. It then opens the door with the
free hand, moves back to the table, picks up the block again,
and finally brings both blocks outside the room. Pictures
from this experiment are shown in Fig. 5.

IX. CONCLUSION

We addressed the problem of learning manipulation ac-
tions based on a small number of teacher demonstrations.
Our method infers the preconditions and effects that need
to be satisfied when applying an action directly from the
demonstrations and represents them symbolically using log-
ical predicates. Our system furthermore allows the robot
to incrementally eliminate false positive conditions it may
have learned by requesting teacher feedback as soon as it



Fig. 5. The robot computes a plan to grasp the two blocks and to bring them outside. Once the robot has grasped the blocks, a person closes the door.
After having detected that, the robot computes a new plan and clears its left gripper by first going back to the table and placing the yellow block there.
The robot then moves back to open the door and then to the table to regrasp the yellow block. Finally, the robot leaves the room with both blocks and
reaches the goal state. See also http://www.informatik.uni-freiburg.de/%7Eabdon/videos/icra13/ for a video of this experiment.

encounters situations in cannot solve. Moreover, the sym-
bolic representation allows the robot to use state-of-the-art
planners to combine the learned actions to solve new tasks.
We implemented our approach and presented experiments
using a real PR2 robot to illustrate the capabilities and
flexibility of our system.

Despite these encouraging results, there is space for fur-
ther improvements. We are currently investigating learning
probabilistic models of the actions to cope with perception
noise, imperfect demonstrations, and manually set thresholds.
Moreover, it would be interesting to extend the list of
considered features and investigate learning more complex
actions and incorporating more informative teacher feedback.
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[9] R. Jäkel, P. Meissner, S. R. Schmidt-Rohr, and R. Dillmann. Dis-
tributed generalization of learned planning models in robot program-
ming by demonstration. In Int. Conf. on Intelligent Robots and
Systems, 2011.

[10] K. Kennedy, B. Mac Namee, and S.J. Delany. Learning without de-
fault: A study of one-class classification and the low-default portfolio
problem. In Conf. on AI and Cognitive Science, 2009.

[11] G. Konidaris and A. Barto. Skill discovery in continuous reinforcement
learning domains using skill chaining. In Conf. on Neural Information
Processing Systems, 2009.

[12] O. Kroemer and J. Peters. A flexible hybrid framework for modeling
complex manipulation tasks. In Int. Conf. on Robotics & Automation,
2011.
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[20] M. Pardowitz, R. Zöllner, and R. Dillmann. Incremental acquisi-
tion of task knowledge applying heuristic relevance estimation. In
Int. Conf. on Robotics & Automation, 2006.

[21] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and
generalization of motor skills by learning from demonstration. In
Int. Conf. on Robotics & Automation, 2009.

[22] M. Rudolph, M. Mühlig, M. Gienger, and H.-J. Böhme. Learning the
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