
From Low-Level Trajectory Demonstrations to Symbolic Actions for Planning

Nichola Abdo and Henrik Kretzschmar and Cyrill Stachniss
University of Freiburg

Department of Computer Science
Georges-Köhler-Allee 079
79110 Freiburg, Germany

Abstract

Robots that should solve complex manipulation tasks
need to reason about their actions on a symbolic level
to compute plans comprising sequences of actions. Plan-
ning, however, requires knowledge about the precon-
ditions and effects of all the actions. In this work, we
present an approach that allows a robot to learn manipu-
lation skills from teacher demonstrations. Our approach
enables the robot to learn to physically execute the mo-
tion needed to perform the actions, and, most importantly,
to infer the preconditions and effects. Our system can
express the acquired manipulation action as symbolic
planning operators and thus can use any modern planner
to solve tasks that are more complex than the individual,
demonstrated actions. We implemented our approach on
a PR2 robot and present real world manipulation experi-
ments that illustrate that our system allows non-experts
to transfer knowledge to robots.

Introduction
Future service robots must be flexible enough to carry out
a variety of day-to-day tasks under diverse conditions. It is,
however, practically impossible to preprogram a robot for all
kinds of situations that occur in the real world. Therefore, we
need means for easily instructing robots and teaching them
new skills by non-experts.

Planning for solving complex manipulation tasks can be
done using low-level motor commands or on a symbolic level.
Computing solutions based on low-level motor commands
is infeasible due to the high-dimensionality of the resulting
planning problem and thus robots need to reason about their
actions on a higher level. Computing plans of high-level
actions to achieve some goal, however, requires a high-level
symbolic representation describing the preconditions and
effects of the robot’s actions.

In this work, we aim for a fast and intuitive learning pro-
cess that allows the robot to learn new actions such that it
can later on reason about the actions on both, the motion
level and a symbolic level. Our approach is based on learning
by demonstration. The robot observes a human teacher and
learns how to physically execute the movements in order
to solve a manipulation task. In addition to that, the robot
learns the preconditions and effects of the actions, which are
both needed for planning. While using the learned actions

to solve manipulation tasks, the robot monitors its perfor-
mance and reacts to unexpected changes. In summary, our
system (i) encodes the low-level movements, (ii) estimates
the preconditions and effects of the individual actions, and
(iii) generates a planning problem definition that allows state-
of-the-art planning systems to solve new tasks using the
learned actions. We implemented our approach and carried
out extensive experiments using a PR2 robot to illustrate the
capabilities and flexibility of our system. We demonstrate
that our approach enables the robot to autonomously solve
tasks that are more complex than the basic actions that have
been demonstrated to the robot.

Related Work
In the literature, there are various approaches for transfer-
ring task knowledge from humans to robots. In recent years,
imitation learning methods have become popular to encode
robot motion. See Billard et al. (2008) for an overview. The
key idea is to speed up the learning process by exploiting
demonstrations given by a teacher. For example, Bentivegna
et al. (2004) demonstrate to a humanoid robot how to play air
hockey by learning primitives that the robot can use in new sit-
uations. The robot learns how to choose a primitive in a given
situation and practices these primitives to improve its perfor-
mance. Asfour et al. (2006) use hidden Markov models to
encode and reproduce demonstrated actions. Dynamic move-
ment primitives (DMPs) are popular to learn control policies
for robotic manipulators from demonstrations and to gener-
alize the movements to new situations. Our approach also
relies on these movement primitives as proposed by Pastor et
al. (2009) to encode the low-level movements of the actions.
Calinon and Billard (2008) propose Gaussian mixture mod-
els to represent the variance over time in the demonstrated
trajectories of a manipulator to exploit this information in
the reproduction step. Also Eppner et al. (2009) consider the
variance to guess less relevant parts of the demonstrations.
Our method analyzes the variations in the state during the
demonstrations to identify the preconditions and effects of
the individual actions. This allows our approach to generate
a symbolic representation of the actions, which is then used
for planning purposes.

There are also a number of approaches that aim at teaching
robots skills on a symbolic level for task planning based on
teacher demonstrations. Veeraraghavan and Veloso (2008)

demonstrate sequences of actions to teach a robot a plan for
solving sequential tasks that involve repetitions. They instan-
tiate preprogrammed behaviors and then learn the correspond-
ing preconditions and effects. Pardowitz, Zöllner, and Dill-
mann (2006) extract task-specific knowledge from sequences
of actions. The robot extracts the relevant elementary actions
and task constraints from teacher demonstrations of pick-and-
place actions when setting a table. Manipulation skills are
arranged in a hierarchical manner with macro actions encom-
passing elementary ones. The preconditions and effects of
actions are expressed by predetermined properties like the
relative positions of the objects. Ekvall and Kragic (2006)
also provide a robot with demonstrations of tasks related to
setting a table. The robot incrementally learns the constraints
for each task with respect to the order of executing the actions.
This knowledge is then used to choose the best strategy for
solving a new task. To identify the different states observed
during the demonstrations, they apply k-means clustering
to the relative positions and orientations of the objects and
inspect the cluster variances. Zhuo et al. (2009) learn action
preconditions and effects for hierarchical task networks from
given observed decomposition trees. Such trees describe how
a task can be broken down into smaller subtasks.

Similar to Ekvall and Kragic, our system applies k-means
to features to identify preconditions and effects of actions.
By inspecting the variance within the extracted clusters, our
system additionally tries to determine if a certain feature or
aspect of the action is relevant as a precondition or effect
and to recognize similar states across different actions. Un-
like the approaches above, we do not require to demonstrate
sequences of actions to the robot or to provide task decompo-
sition information. Instead, our system learns the individual
actions by demonstration, and uses the identified conditions
to chain the actions in plans for solving a variety of tasks.

Many researchers adopt object action complexes (OACs),
as presented by Krüger et al. (2009), as a representation that
combines low-level robot control and high-level planning.
OACs consider objects as important to the robot in terms of
the actions that can be applied to them. Pastor et al. (2009)
suggested adding a symbolic meaning to DMPs such that
they can be used for high level planning in the context of
OACs. However, this was not realized in their work. There
are approaches that learn simple cause-effect rules based on
simulated actions or exploration so that they can be integrated
into the OAC frameworks (Petrick et al. 2008). Furthermore,
Omrcen, Ude, and Kos (2008) present an approach that allows
a robot to learn the effect of poking different objects by
exploration. The approach uses a neural network to learn the
relation between pushing actions and the predicted motion
of the object. This is then used to plan for applying several
poking actions to move objects to desired locations.

In contrast to these techniques, our approach does not rely
on exploration or simulation to learn the effects of carrying
out actions. Instead, our system learns both the preconditions
and effects of the actions from a few teacher demonstrations
and represents the actions as high-level planning operators.
From the same demonstrations, our approach learns the tra-
jectories of the manipulator using dynamic movement primi-
tives.

Overview
Our approach allows a robot to acquire and combine actions
to solve complex tasks. By observing a teacher, the robot
learns how to physically execute individual actions. The robot
then infers symbolic information that allows it to combine
the learned actions via a planning system to solve complex
tasks that have not been shown to it.

Our work enables a robot to identify preconditions that
have to be satisfied to carry out a certain action as well as the
effects of an action. An example of such a precondition is
the fact that the gripper of the robot needs to be open before
an object can be grasped. Identifying preconditions and ef-
fects is done by estimating the distribution of world states to
identify patterns while the teacher repeatedly demonstrates
the same action. These patterns lead to logical predicates,
allowing the robot to translate low-level sensory data into a
high-level logical representation and verify when the precon-
ditions or effects are satisfied. Consequently, our robot can
associate the low-level movements of its end effector with
symbolic information and to derive a definition of the action
in the Planning Domain Definition Language PDDL. Given
the PDDL description, the robot is able to use any modern
planning system to solve tasks that are more complex than
the individual actions that have been demonstrated to it.

Perception and Predefined Features
Our approach assumes that the robot can identify relevant
objects in the scene along with their poses. For this work, we
attached checkerboard markers to the relevant objects and
used an out-of-the-box detector that is available in the robot
operating system ROS. The detector provides the robot with
the types of the objects (e.g. block, table, . . .) and their poses.
The robot also uses its laser scanner, for example to estimate
the state of doors or for 2D obstacle avoidance. Note that our
approach is orthogonal to the perception problem. Therefore,
our method should be applicable in the same way when using
a system for marker-free detection of objects.

To encode the state of the world, our approach relies on
features, which can take continuous or discrete values. We
derive the preconditions and effects of the different actions
using the values of these features during the demonstrations.
So far, we applied our system to solve blocks world-like
tasks and to operate doors. We defined continuous features
such as the opening of the gripper, the relative poses between
the gripper and manipulated objects, and the relative poses
between objects. We furthermore defined discrete features
such as the visibility of objects, and the state of the door.
Depending on what the user demonstrates, new features may
need to be defined. This can be done easily and does not
affect already learned actions.

Recording and Encoding Demonstrations
To teach the robot basic actions, we use kinesthetic training,
i.e., the teacher moves the manipulators of the robot, as il-
lustrated in Fig. 1. This method is rather accurate and does
not require extra sensors since the robot can directly record
the movements using its own encoders. Our approach allows

Figure 1: Examples of kinesthetic training showing how to
place a block on another one and how to operate a handle.

for demonstrating individual actions one by one and does not
require demonstrating sequences of actions.

A popular way to encode movements of a manipulator
are DMPs. Our approach uses DMPs as described by Pas-
tor et al. (2009) to encode the trajectory of the robot’s end
effector as observed in the demonstrations. DMPs allow us
to easily adapt the movement to different situations such as
new starting or goal points. Our system groups the learned
DMPs together so that multiple DMPs for each action are
available to the robot. In our experiments, we recorded 10
demonstrations per action. Moreover, we propose in the next
section a method for extracting the preconditions and effects
from these demonstrations.

Identifying Preconditions and Effects
The preconditions of actions and their effects are expressed
in terms of features. To identify the preconditions and effects
based on a set of demonstrations, we inspect the recorded
values of all features at the beginning and at the end of each
demonstration. For each feature, we then seek to find patterns
in its values to decide whether or not it is important for an
action.

General Problem and Assumptions
In the most general case, the robot cannot be sure that an ac-
tion can be carried out unless the current state of the world is
identical to a state observed in one of the demonstrations. Oth-
erwise, a precondition might not be satisfied and executing
the action might fail. Finding the preconditions only based
on successful demonstrations does not lead to satisfying re-
sults without further assumptions. The resulting unsupervised
learning problem can be viewed as a one-class classification
problem in which only positive examples are provided. In our
case, the examples correspond to demonstrations in which
the preconditions and the effects are satisfied.

Such problems can be addressed using density estimation
methods or by only estimating the boundaries of the distribu-
tion (Schölkopf et al. 2000). A simple nearest neighbor ap-
proach considers all states to be fulfilling the conditions that
are similar under a distance function to the states observed
during the demonstrations. In our setting, a key disadvantage
of the nearest neighbor approach is the fact that a large subset
of the features are not relevant as preconditions and effects
of most actions. As a result, the entire feature space would
have to be populated by samples to make the robot ignore
irrelevant feature values. This is infeasible in practice since
only a few demonstrations can be provided by a teacher. In

contrast to the nearest neighbor approach, one-class classifi-
cation methods such as single-class support vector machines
(SVMs) could be more appropriate approaches in this set-
ting (Schölkopf and Smola 2002).

To tackle the above mentioned problem, we assume that
the preconditions and effects of the actions can be expressed
in terms of the predefined features and their corresponding
values, and that the individual features are independent of
each other. We consider that a feature is relevant as a precon-
dition or an effect of an action if its values follow certain pat-
terns throughout the demonstrations. Moreover, we assume
that the teacher provides demonstrations with variations. If
the teacher demonstrates actions with too few variations, the
robot may identify additional preconditions or effects that are
irrelevant in reality.

Estimating Preconditions and Effects by Analyzing
the Variations in the Demonstrations
In our approach, three questions have to be answered: First,
which features are relevant for an action as a precondition
or as an effect? Second, if a feature is regarded as relevant,
which values are typically observed and how to derive a logi-
cal predicate that encodes the decision whether the precondi-
tion or effect is fulfilled? Third, given two logical predicates,
how to decide whether both represent the same condition?
The last question is important to allow a planning system to
verify beforehand whether the effects of an action match the
preconditions of another one. This is essential for planning.

As preconditions, we consider features that take the same
or similar values at the beginning of all demonstrations of an
action. The same holds for the effects: features that always
take similar values after having executed an action are con-
sidered to be an effect of that action. Informally speaking,
for each action independently, we estimate for each feature
the region of the feature space that covers the samples corre-
sponding to the demonstrations. By analyzing the volumes of
such regions, we can decide whether the feature is relevant
or not. This allows us to derive the logical predicates and to
estimate whether two predicates model the same condition or
not.

Note that for an action, we only consider those features
that involve objects or things that are close to the robot dur-
ing the demonstrations or that involve only the robot itself.
This allows us, for example, to ignore the state of a window,
potentially in a different room, while the teacher shows the
robot how to operate the door.

Features Taking Continuous Values There exist multiple
ways for estimating the boundaries of regions in a potentially
high-dimensional space that are populated by samples. Ap-
proaches to one-class classification belong to this class of
algorithms such as single-class SVMs (Schölkopf et al. 2000).
Alternative approaches are the one-class k-means, the one-
class PCA, and the one-class k-nearest neighbor (Kennedy,
Namee, and Delany 2009).

Compared to most other learning problems, we suffer from
having only a small number of training examples. A user is
expected to provide around ten demonstrations of one action.
This will lead to ten sample points in feature space. With so

few training examples, applying techniques such as SVMs
is likely to provide results that do not generalize well. For
example, in the context of image classification based on a
small number of training images, simpler methods such as
nearest neighbor approaches are reported to perform better
than SVMs (Boiman, Shechtman, and Irani 2008). Since we
consider training sets in the order of 10 sample points, we
propose to not use single-class SVMs but follow a simpler
approach and apply one-class k-means. Note that one-class
k-means does not mean that k = 1 but that all centroids
represent the single class jointly, which allows for covering
multiple modes. Additionally, we consider the variance of
the samples within each of the identified clusters.

If all samples are concentrated in one cluster, we can di-
rectly compute the variance in the individual feature values
over multiple demonstrations. If the variance is small, we can
regard the feature as relevant and thus to be a precondition
or an effect. There are, however, situations in which such a
simple criterion is not successful. For example, before grasp-
ing a block, the gripper must be open and the gripper must
either be on top of the block or at its side (top grasp or side
grasp). For the robot, it can be advantageous to consider this
as two distinct actions, but the teacher may teach that as one
grasping action. To allow for considering such situations in
which feature values can be centered around multiple pos-
sible values, we apply k-means clustering to the individual
feature values and then analyze the variances in each cluster.

Since the teacher demonstrates an unknown number of
ways of performing an action, the system typically does not
know the number of clusters k to look for in advance. We
therefore perform multiple iterations of k-means with increas-
ing values for k from 1 up to

√
N/2, where N is the number

of data points. Note that this upper limit is a heuristic, as
suggested by Mardia, Kent, and Bibby (1979).

For a cluster to be considered as representing an impor-
tant aspect of the action, its average squared intra-cluster
distances should not exceed a certain limit. This predefined
limit reflects the desired accuracy of executing the manipula-
tion action. For a cluster c with mean µc, this condition can
be expressed as

1

Nc

Nc∑
i=1

dist(vci , µc)
2 ≤ ε1, (1)

where Nc is the number of data points assigned to cluster
c and vci is the value of the ith data point in the cluster.
Here, dist(., .) is a distance measure for the feature under
consideration. This can either be the Euclidean distance or
the angular difference based on an angle/axis representation
in case of a rotation, i.e.,

distrot(Rv, Rµ) = angleOf (RvR
−1
µ), (2)

where Rv and Rµ are the corresponding rotation matrices.
The value ε1 is the maximum allowed variance for each
cluster (that is separately defined for the Euclidean and the
angular distance function). If the condition in Eq. (1) is satis-
fied for all clusters, our system could identify a potentially
multi-modal pattern in the input data and considers this pat-
tern as a precondition or effect. Then, no further increase

of k is needed. However, if this criterion fails for all values
of k, the system determines that the feature is irrelevant to
the action since no pattern could be found.

To finally make the decision if a state satisfies a precon-
dition or an effect, we have to check, according to the one-
class k-means formulation, whether the minimum distance be-
tween the centroids and the current feature value v is smaller
than a threshold or not. We represent this fact by so-called
predicates that are used by the planning system. A predi-
cate Pf is defined for each action for which the feature f
is relevant as a precondition or effect. We may generate an
individual predicate for the precondition and effect as well as
for each cluster c. The predicate is defined as:

Pf,c(v) =
{
true if dist(v, µc) ≤ dmax

false otherwise,
(3)

where dmax is a threshold defining the maximum allowed
distance to the centroid.

Features Taking Discrete Values Besides features taking
continuous values, we also consider features taking discrete
values. An example of such a feature is object-is-visible,
which can be true or false. To decide whether a discrete-
valued feature is relevant for an action, we compute the en-
tropy of the distribution of the feature values during the
demonstrations. The entropy H is a measure of uncertainty
and is defined as

H(f) = −
L∑
l=1

P (f = vl) log2 P (f = vl), (4)

where P (f = vl) is the probability that the feature f takes the
value vl (out of L possible values). The distribution over the
values is computed based on the observations. A low entropy
indicates that the probability mass is concentrated in one
state (or a few states, depending on the number of possible
states) and thus indicates a low variation of the feature value
over the demonstrations. To avoid overfitting in case of few
demonstrations, a Dirichlet prior can be added.

In our approach, we consider a feature f as relevant if
H(f) < ε2, where ε2 is a threshold specifying the certainty
the system should have about the value of this feature. The
value that the feature has to take to satisfy the precondition
or effect is then given by

vf = argmax
vl∈{v1...vL}

P (f = vl). (5)

In most cases, the discrete features are binary variables taking
true and false as possible values, but there exist also features
that can take more than two values. An example of a feature
that we found useful in our experiments is a three-state rep-
resentation of a door: the door can be completely open so
that the robot can go through it, or it can be partially open
so that the robot first needs to open it further to pass through
without having to operate the handle, or the door may be
closed completely.

Similar to the continuous case, we can derive a boolean
predicate Pf (v) that is later on used in the planning process

to test whether a discrete precondition is fulfilled as:

Pf (v) =
{
true if v = vf and H(f) < ε2
false otherwise.

(6)

Identifying Identical Predicates
Whenever the user teaches actions individually and not as a
sequence, the predicates have to be learned for each action
individually. To allow a planner to compute a plan, we need
to identify which predicates from one action are the same as
the predicates from other actions. Consider two predicates
Pa1f and Pa2f generated from two different actions a1 and
a2 but from the same feature f . To decide if they represent
the same condition, we consider the feature values from the
demonstrations of a1 and a2 as a merged sample set. The
predicates Pa1f and Pa2f will be merged into one predicate if
the merged sample set still fulfills the criterion given in Eq. (1)
(or the entropy criterion for the discrete case). Otherwise,Pa1f
and Pa2f remain individual predicates.

Generating the PDDL Description
Over the last 15 years, the Planning Domain Definition Lan-
guage PDDL has been established as a standard language
for defining planning problems. Therefore, we developed a
system that automatically derives a PDDL description which
allows us to easily use most out-of-the-box planning compo-
nents.

To generate a PDDL description, we first need to define
the objects involved in the planning process and their types.
This is obtained from the perception system as mentioned
before. Second, we need the predicates that define the state
of the planner, and which are computed using the method
described above. Third, the start and goal states need to be
specified. The start state is simply obtained by evaluating all
predicates according to the current observations. The goal,
obviously, has to be provided by the user in terms of the
predicates. Finally, the actions with their preconditions and
effects on the state have to be provided.

For expressing each action in terms of its preconditions
and effects, we consider the different possible cases for each
relevant feature f . Since f could be relevant as a precondition,
an effect, or both, our system adds the appropriate predicate,
Pf , or its negation in the preconditions or effects part of the
PDDL operator. An example of a generated PDDL operator
for approaching a block from the top to grasp it is:
(:action reachBlockTop
:parameters (?b-block ?g-gripper)
:precondition (and (visible ?b)

(gripperOpen ?g)
:effect (and (not (visible ?b))

(gripperAroundBlockTop ?g ?b)))

The operator has been learned from demonstrating the
reaching motion to the robot. The parameter block represents
the typed variables ?b and ?g that are involved in the predi-
cates. The types of objects are not learned but are provided by
the perception system during the demonstrations. The terms
in the precondition and effect blocks correspond to learned
predicates. Here, we replaced the automatically generated
names by meaningful ones.

Accounting for Physical Constraints
After implementing our approach, we identified that the robot
misses background knowledge about its capabilities and the
physical world. For example, the robot should not move away
from a door if its gripper is still grasping the handle of the
door. The robot simply cannot move the door although that
might be a valid plan from the PDDL definition point of view.
Such constraints could in theory be identified based on a
physical simulation system that operates in parallel to the
planner and verifies that a plan does not violate any physical
constraints. However, such simulations are considerably ex-
pensive and complex. We therefore added a few additional
constraints manually to the PDDL description. In particular:
(i) The robot cannot move away from a door while grasping
its handle. A similar rule needs to be added for any object that
the teacher grasped during the demonstrations but that cannot
be carried away. (ii) The robot is not allowed to release an
object from its gripper without placing it somewhere, for
example on a table. Otherwise, the object may break or the
robot may not be able to pick it up again from the ground—
this actually happened during our first experiments. (iii) The
robot cannot reach any object that is further away than 70 cm
from its torso without navigating first. This encodes the size
of the workspace which is given by the size of the robot’s
arm.

Planning using the Acquired Actions
Given the collection of actions including the PDDL descrip-
tion, the planning problem can be outsourced to any standard
symbolic planning system capable of interpreting PDDL. In
our system, we use the fast downward planner proposed by
(Helmert 2006). We used Helmert’s implementation and inte-
grated it into a ROS module.

To execute the next action of a computed plan, the robot
has to choose one of the DMPs from its library that belongs to
the corresponding action. The DMPs can be adjusted easily to
situations that have a different starting or goal point compared
to the learning phase. The DMP will generate a new trajectory
whose shape resembles the demonstration but generalizes to
the new situation. To only enforce minor adaptations due to a
new start and goal point, our approach selects the DMP for
which the relative pose of the end effector between the goal
point g and start point s during training was most similar
to the current situation. The relative pose is described by its
translational t(s, g) and rotational component r(s, g). We
select a DMP using the cosine similarity measure

dt(s, g, i) =
t(s, g) · t(si, gi)
||t(s, g)|| ||t(si, gi)||

, (7)

where si and gi are the start and goal pose during the demon-
stration from which the i-th DMP has been learned. Similarly,
dr (s, g, i) is defined for the rotational component and takes
into consideration the angle and direction of rotation.

Additionally, we simulate the trajectory for the i-th DMP
after setting the new start and goal to check for collisions
between the end effector and obstacles. The term do(s, g, i)
is the minimum distance to the closest obstacle along the

Figure 2: The robot builds a tower of three blocks. To do so, the robot only uses the basic actions that it has learned from
demonstrations and combines them in a new way.

trajectory. Then, we choose the DMP with the index

i∗ =argmax
i

αtdt(s, g, i) + αrdr (s, g, i)

+ αodo(s, g, i), (8)

where αt , αr , and αo are scaling coefficients chosen to reflect
the relative importance of the different criteria. Finally, the
chosen DMP is instantiated with s and g and executed.

Note that even when properly selecting appropriate DMPs,
in the real world a robot may not carry out all actions as
expected or the environment may change. Especially for long
action sequences, it is unlikely that the individual steps can be
executed without corrections. For example, if the gripper slips
off the door handle, the robot should be able to detect that and
compute a new plan. We therefore implemented a separate
module that monitors the execution of the plan, computes
the current values of the features, updates the values of the
individual predicates, and compares the actual state to the
expected effects of the actions. In case something unforeseen
happens, the execution monitor triggers replanning using the
current state of the world as the start state. The fast downward
planner is efficient enough to compute a new plan online so
that the robot can proceed without significant interruptions.

Experiments
The evaluation is intended to show the capabilities of
our approach. All components of the system have been
implemented as ROS modules and our experiments are
carried out with a real PR2 robot. We considered tasks
from two different manipulation domains: blocks world-
like tasks like moving and stacking blocks as well as
operating and opening doors. Videos covering the ex-
periments can be found at: http://www.informatik.uni-
freiburg.de/%7Estachnis/videos/tampra/

Training and Learning Preconditions and Effects
The first set of experiments is designed to illustrate how our
system can learn individual actions from multiple demon-
strations and is able to identify the preconditions and effects
reliably. Teaching was done by kinesthetic training as illus-
trated in Fig. 1. We demonstrated 11 different actions to the

Table 1: Success rate for learning preconditions and effects.
#demonstrations 5 6 9 10 >10
success rate 17/20 19/20 19/20 20/20 20/20

robot and provided 10 demonstrations per action. Actions
include reaching for objects and grasping them, placing an
object on a target, turning a door handle, pushing a door, etc.
In all our experiments, the DMPs were learned without any
problems and stored in the robot’s action library. Moreover,
the correct set of preconditions and effects was identified by
our system, i.e., no necessary conditions were missing and
all relevant ones were identified.

For example, for the action reachHandle, the system
correctly identified as preconditions that (a) the gripper has
to be open and that (b) the handle must be visible. As effects,
it identified that (a) the door handle is inside the gripper, (b)
the gripper stays open, and (c) the handle is still visible. At
the same time, the system correctly identified that all other
features, like the relative pose of the gripper to the robot’s
torso and the exact distance of the door handle relative to the
robot, are irrelevant.

To provide a more quantitative evaluation, we recorded
20 demonstrations for the action reachBlock. We then ran-
domly sampled demonstrations, performed the learning step,
and compared the extracted preconditions and effects to the
real ones. We repeated this process 20 times and obtained
the results shown in Tab. 1. When using 10 or more demon-
strations, the system produced the correct results in all cases.
With less than 10 demonstrations, the system often failed 1
to 3 out of 20 times in the sense that our approach found at
least one false positive precondition or effect. This is due to
too little variations in the feature values in the small number
of demonstrations.

Building a Tower of Three Blocks
The second set of experiments is designed to show how the
robot can use the learned actions to solve novel tasks, i.e.,
tasks that have not been demonstrated to it beforehand. In this
example, the robot was placed in front of a table with three

Figure 3: The robot computes a plan to grasp the two blocks and go through an open door. Once the robot has grasped the
two blocks, a person closes the door. After having detected that, the robot computes a new plan to clear its left gripper by first
going back to the table and placing the yellow block there. The robot then moves back to open the door, and then back to the
table to grasp the yellow block again. Finally, the robot leaves the room with both blocks and reaches the goal state. See also
http://www.informatik.uni-freiburg.de/%7Estachnis/videos/tampra/ for a video of this experiment.

blocks on top of it. As the goal configuration, the three blocks
should be stacked on top of each other (yellow-blue-red). The
planner computed a plan using the learned pick-and-place
operators. This involves reaching, grasping, placing, and re-
leasing blocks. Furthermore, the system correctly merged
identical predicates. For example, the effect of grasping is
equivalent to the precondition of placing. Moreover, each
step was executed by choosing a DMP and adapting it to the
new situation. Fig. 2 depicts the plan execution.

We repeated this experiment 20 times. In all cases, the
robot was able to generate a valid plan to the goal. The only
sources of failure that occurred during the execution were
checkerboard markers not being detected by the perception
system, or an error in estimating the pose of a block.

Reacting to Unexpected Changes in the
Environment

This experiment is designed to illustrate how the robot can
deal with unexpected changes in the environment while exe-
cuting plans. The goal was to take two blocks and bring them
to the corridor outside the room. Initially, both blocks lie on a
table in the room and the door is open. While the robot picks
up the two blocks with its manipulators, a person closes the
door. After detecting that change, the robot computes a new
plan and decides to bring one block back to the table to free
one gripper. It then opens the door with the free hand, moves
back to the table, picks up the block again, and finally brings
both blocks outside the room. Pictures from this experiment
are shown in Fig. 3.

Maintaining a Goal State
The last experiment illustrates how the robot can use the
learned actions to plan for reaching a goal state from different
possible starting states. We placed the robot in front of a
door and instructed it to keep it fully open. Then, a human
repeatedly closed the door and the robot opened it from
basically any possible configuration.

During this experiment, the robot came up with three
different plans depending on the current configuration
of the door and the visibility of its handle. If the door is
completely closed, our robot needs to carry out the following
actions: reachHandle; graspHandle; turnHandle;
pullDoor; releaseHandle; moveArmToInnerSide;
pushDoor. If the door latch was not locked, it is sufficient
to execute: reachHandle; graspHandle; pullDoor;
releaseHandle; moveArmToInnerSide; pushDoor.
If the door is already partially open but the robot does not
see the handle, then executing: moveArmToInnerSide;
pushDoor is sufficient. Some of these actions are visible
in the second and third rows of Fig. 3 showing the previous
experiment. Further images had to be omitted due to limited
space but the reader may consider the video showing parts
of this experiment. We conducted this experiment for more
than 20 min without any critical failures. It may happen that
the execution of an action fails but the execution monitor
always detects that and compensates for it immediately by
replanning.

Limitations
Despite these encouraging results, there is space for further
improvements. Currently, our system is able to identify only
a limited variety of patterns in the feature values to find the

preconditions and effects. To find more complex patterns,
which are needed to symbolically represent more complex
actions, more sophisticated pattern recognition algorithms
than one-class k-means clustering are needed.

Our system furthermore assumes that preconditions and
effects can be expressed based on a set of predefined fea-
tures. It would be interesting to substantially extend the list
of features available to the robot, such as features that capture
physical aspects like forces and dynamics. As the number of
features increases, we expect to require more teacher demon-
strations. Alternatively, the robot could explore preconditions
and effects in simulation to reject irrelevant features that re-
sulted in learning false positive conditions. For instance, a
robot that is taught in front of a table may regard the color of
the table as an important aspect, although this is obviously
not the case. Such a simulation could also allow the robot to
explore physical constraints without having to manually pro-
vide them. Finally, our approach relies on several thresholds,
which reflect the desired accuracy of performing the actions.
These thresholds are currently set manually. Learning them
should be considered.

Conclusion
We addressed the problem of learning a library of manipula-
tion actions based on demonstrations provided by a teacher.
Our approach requires only few demonstrations of actions
and identifies the preconditions that need to be fulfilled for
each action to be applicable, as well as the effects that are
always fulfilled as a result of executing it. These conditions
are represented by logical predicates, leading to a symbolic
representation in the Planning Domain Definition Language.
Therefore, the robot can use existing state-of-the-art planners
to solve manipulation tasks which are in sum more complex
compared to the taught actions. Furthermore, from the same
demonstrations, the robot learns how to physically execute
the actions by encoding the observed trajectories as dynamic
movement primitives. We implemented our approach and
presented experiments using a real PR2 robot to illustrate the
capabilities and flexibility of our system, including its ability
to react to unexpected changes in the environment.

Acknowledgments
This work has partly been supported by the EC under grant
FP7-ICT-248258-First-MM. We thank Malte Helmert for
providing his implementation of the FD planner, Peter Pastor
for making his DMP implementation available, and Luciano
Spinello for the fruitful discussions about single-class SVMs.

References
Asfour, T.; Gyarfas, F.; Azad, P.; and Dillmann, R. 2006. Im-
itation learning of dual-arm manipulation tasks in humanoid
robots. In Int. Conf. on Humanoid Robots.
Bentivegna, D.; Atkeson, C.; Ude, A.; and Cheng, G. 2004.
Learning to act from observation and practice. Int. Journal
of Humanoid Robotics.
Billard, A.; Calinon, S.; Dillmann, R.; and Schaal, S. 2008.
Robot programming by demonstration. In Siciliano, B., and
Khatib, O., eds., Handbook of Robotics. Springer.

Boiman, O.; Shechtman, E.; and Irani, M. 2008. In defense
of nearest-neighbor based image classification. In IEEE
Conf. on Computer Vision and Pattern Recognition.
Calinon, S., and Billard, A. 2008. A probabilistic program-
ming by demonstration framework handling skill constraints
in joint space and task space. In Int. Conf. on Intelligent
Robots and Systems.
Ekvall, S., and Kragic, D. 2006. Learning task models from
multiple human demonstrations. In Intl. Symposium on Robot
and Human Interactive Communication, 358–363.
Eppner, C.; Sturm, J.; Bennewitz, M.; Stachniss, C.; and
Burgard, W. 2009. Imitation learning with generalized task
descriptions. In Int. Conf. on Robotics & Automation.
Helmert, M. 2006. The fast downward planning system.
Journal on AI Research 26.
Kennedy, K.; Namee, B. M.; and Delany, S. 2009. Learning
without default: A study of one-class classification and the
low-default portfolio problem. In Conf. on Artificial Intelli-
gence and Cognitive Science.
Krüger, N.; Piater, J.; Wörgötter, F.; Geib, C.; Petrick, R.;
Steedman, M.; Ude, A.; Asfour, T.; Kraft, D.; Omrcen, D.;
Hommel, B.; Agostino, A.; Kragic, D.; Eklundh, J.; Krüger,
V.; and Dillmann, R. 2009. Formal definition of object action
complexes and examples at different levels of the process
hierarchy. Technical report.
Mardia, K.; Kent, J.; and Bibby, J. 1979. Multivariate Analy-
sis. Academic press.
Omrcen, D.; Ude, A.; and Kos, A. 2008. Learning prim-
itive actions through object exploration. In Proc. of the
Int. Conf. Humanoid Robots.
Pardowitz, M.; Zöllner, R.; and Dillmann, R. 2006. Incremen-
tal acquisition of task knowledge applying heuristic relevance
estimation. In Int. Conf. on Robotics & Automation.
Pastor, P.; Hoffmann, H.; Asfour, T.; and Schaal, S. 2009.
Learning and generalization of motor skills by learning from
demonstration. In Int. Conf. on Robotics & Automation.
Petrick, R.; Kraft, D.; Mourão, K.; Pugeault, N.; Krüger, N.;
and Steedman, M. 2008. Representation and integration:
Combining robot control, high-level planning, and action
learning. In Int. Cognitive Robotics Workshop.
Schölkopf, B., and Smola, A. 2002. Learning with Kernels.
MIT Press.
Schölkopf, B.; Platt, J.; Shawe-Taylor, J.; Smola, A.; and
Williamson, R. 2000. Estimating the support of a high-
dimensional distribution. Technical report, Microsoft Re-
search, TR87.
Veeraraghavan, H., and Veloso, M. 2008. Teaching sequential
tasks with repetition through demonstration. In Int. Conf. on
Autonomous Agents and Multiagent Systems.
Zhuo, H. H.; Hu, D. H.; Hogg, C.; Yang, Q.; and Munoz-
Avila, H. 2009. Learning HTN method preconditions and
action models from partial observations. In Int. Conf. on
Artificial Intelligence.

