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Lazy Data Association For Image Sequences
Matching Under Substantial Appearance Changes

Olga Vysotska and Cyrill Stachniss

Abstract—Localization is an essential capability for mobile
robots and the ability to localize in changing environments is
key to robust outdoor navigation. Robots operating over extended
periods of time should be able to handle substantial appearance
changes such as those occurring over seasons or under different
weather conditions. In this paper, we investigate the problem
of efficiently coping with seasonal appearance changes in online
localization. We propose a lazy data association approach for
matching streams of incoming images to a reference image
sequence in an online fashion. We present a search heuristic
to quickly find matches between the current image sequence
and a database using a data association graph. Our experiments
conducted under substantial seasonal changes suggest that our
approach can efficiently match image sequences while requiring
a comparably small number of image to image comparisons.

Index Terms—Localization, Place Recognition, Visual-Based
Navigation

I. INTRODUCTION

LOCALIZATION is essential for goal-directed navigation.
The ability to identify that a robot is at a previously

visited place is an important element of localization. Handling
large appearance changes such as those depicted in Figure 1 is
a challenging problem and cannot be neglected in the context
of persistent autonomous navigation. Localization through
image matching or through appearance-based approaches for
handling seasonal changes has been addressed by different
researchers in the past, for example [6], [7], [11], [22], [27].

Several visual place recognition systems exploit features
such as SURF [2] or SIFT [16]. These features encode local
gradients computed at keypoints. Matching approaches relying
on such features can deal with viewpoint changes and they
show a great performance if the appearance of the environment
does not change dramatically. They, however, perform rather
poor under extreme perceptual changes. Recently, a series
of robust visual localization approaches has been proposed
including FAB-MAP2 [7], SeqSLAM [19], SP-ACP [23], as
well as [22], [30]. Some of these methods have been shown
to robustly recognize previously seen locations even under a
wide spectrum of visual changes including dynamic objects,
different illumination, and varying weather conditions.
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Fig. 1: Examples of typical image pairs taken at the same places
within multiple datasets. The image pairs are successively found
by our approach. First row: Freiburg dataset; second row: Alderley
dataset; third row: Nordland dataset. Fourth row: day/night scene
from the VPRiCE’15 Challenge dataset.

It is essential for robot navigation that the location infor-
mation is available in a timely manner, i.e., that the algorithm
provides an online solution to the localization problem. Several
existing techniques operate either in an online fashion but
have issues to deal with strong seasonal changes or they can
handle such changes but may not work online. In our work,
we address the problem of online image sequence matching
tailored to situations with large appearance changes.

The contribution of this paper is an online approach to
image sequence matching that uses a data association heuristic
while searching for matching image sequences in a data
association graph. The heuristic estimates the expected cost of
matching images considering the best matches found so far.
Our directed acyclic data association graph is built incremen-
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Fig. 2: Illustration of the fact that SIFT features do not perform well
under strong seasonal variations. As a result of the seasonal changes,
most SIFT matches illustrated by the lines between the images are
outliers as the lines do not connect corresponding points.

tally whenever new sensor data arrives and its leaves model
the data association hypotheses currently under consideration.
For matching images, we rely on learned features from deep
convolutional neural networks and the image similarity defines
the cost in the data association graph. We furthermore show
how additional location information can be exploited in the
process and evaluate our method on several real world datasets.

II. RELATED WORK

Pose estimation is a frequently studied problem in robotics
and different approaches have been proposed for visual lo-
calization [1], [3], [7], [8], [9]. The ability to localize is an
essential prerequisite for most autonomous navigation systems.
Dealing with substantial variations in the visual input has
been recognized as an obstacle for persistent autonomous
navigation and this problem has been investigated by different
researchers [7], [11], [15].

The majority of visual place recognition systems exploit
features such as SURF [2] or SIFT [16] and several approaches
apply bag-of-words techniques, i.e. they perform matching
based on an appearance statistics of such features. To improve
the robustness of appearance-based place recognition, Stumm
et al. [27] consider the constellations of visual words and
keeping track of their covisibility. Often, approaches using
SIFT or SURF show a great performance if the appearance of
the environment does not change radically. As also reported
in our previous work [22], the matching performance of
SIFT or SURF degrades under strong perceptual changes. An
example, which illustrates this fact, is shown in Figure 2.
The two images are taken from the same place and similar
view points but during different seasons. As can be seen from
the matches illustrated through the yellow lines, most of the
correspondences are outliers. This examples illustrates our
experience, that SIFT and SURF features are not well-suited
for image matching under strong seasonal variations. Across
season matching using SIFT and SURF has been investigated
by Valgren and Lilienthal [29] by combining features and
geometric constraints, which can improve the matching. In
previous approaches, we proposed the use of tessellated HOG
features [22], [30]. In contrast to that, in this paper we apply
deeply learned features proposed by Sermanet et al. [25] and
suggested for place recognition by Chen et al. [5]. We use
them as an alternative to tessellated HOG features as they
provide a better matching performance in our settings. Another

recent work [28] suggests a technique for place recognition,
where features stem from convolutional neural networks. The
authors extract features from the landmark proposals, construct
the similarity matrix by comparing the landmark features using
the cosine distance and also take into account the size of the
bounding boxes for the matched landmarks. The recognition
task is then performed by selecting individual matches based
on the highest similarity score.

In terms of aligning image sequences, several approaches
have been proposed. For example, Matsumoto et al. [17]
use the image sequences and directional relations between
images to perform visual navigation in a corridor environment.
SeqSLAM [19], which also aims at matching image sequences
under strong seasonal changes, computes an image-by-image
matching matrix that stores dissimilarity scores between all
images in a query and database sequence. SeqSLAM computes
a straight-line path through the matching matrix and select the
path with the smallest sum of dissimilarity scores across image
pairs to determine the matching route. Milford et al. [18]
also present a comprehensive study about the SeqSLAM
performance on low resolution images. Related to that, Naseer
et al. [22] focus on offline sequence matching using a network
flow approach. If odometry is available, this approach can also
be combined with a least squares SLAM system to build metric
maps [21].

The approach by Neubert et al. [23] aims at predicting
the change in appearance on top of a vocabulary. For the
vocabulary, the method predicts the change of the visual
word over different seasons but the learning phase requires
an accurate image alignment over seasons. A recent approach
by Johns and Young [14] builds a statistic on the co-occurrence
of features under different conditions. It relies on the ability to
detect stable and discriminative features over different seasons.
Finding such discriminative and stable features under strong
changes is however a challenge. To avoid addressing the
problems of finding features that are robust under extreme
perceptual differences, Churchill and Newman [6] store differ-
ent appearances for each place. These so-called experiences
enable a robot to localize in previously learned experiences
and associate a new data to places. A recent extension of
that paradigm targets vast-scale localization by exploiting a
prioritized recollection of relevant experiences so that the
number of matches can be reduced [15].

Biber and Duckett [4] address the problem of dealing with
changes in the environments by representing maps at different
time scales. Each map is maintained and updated using the
sensor data modeling short-term and long-term memories. This
enables handling variations. In contrast to that, Stachniss and
Burgard [26] model different instances of typical world states
using clustering.

There are furthermore approaches combining laser and
visual information for large-scale localization at city scale.
The approach of Pascoe et al. [24] exploits laser data and
vision information during the mapping phase with a survey
vehicle but can then localize a car only using a camera.

To achieve a visual localization in a long term autonomy
setup, Furgale and Barfoot [10] propose a teach and repeat
system that is based on a stereo setup. The approach exploits
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Fig. 3: Schematic illustration of the graph structure for the search. To
perform an online localization our algorithm compares only image
pairs that correspond to the green nodes and expands the green area
on the fly. Red nodes correspond to matches of similar images along
the path through the data association graph and blue indicates matches
along the path with a low similarity.

local submaps and enables a robot to navigate on long trajecto-
ries but this method does not address large perceptual changes
with respect to the taught path.

In this paper, we introduce a lazy data association scheme
inspired by the work of Hähnel et al. [13] to come up with
an online solution that can be executed on a robot while
navigating. A key goal is to reduce the number of image-
to-image comparisons with respect to existing methods such
as [19], [22], [30]. In contrast to the work by Hähnel et al.,
we use a heuristic that considers the cost of the path taken so
far in order to speed-up the search. Our work is an extension
of a short paper [31] presented at the ICRA 2015 Workshop
on Visual Place Recognition in Changing Environments.

III. LAZY MATCHING FOR ONLINE OPERATION

The main goal of this paper is to propose an online
algorithm that exploits the sequence information to perform
a global localization under strong appearance changes. We
perform localization in the sense that we match a sequence Q
of the images that we receive from sensor with a reference
or database sequence of images called D. For every incoming
image, we want to know if there is a corresponding match
in the database and if so, to which image of the database it
corresponds to. The database itself is organized as regular files.
In memory, we only keep an index to the images and feature
descriptions and load individual images on demand from disk.

A. Data Association Graph

We use a directed acyclic graph G = (X,E) as our main
data structure for modeling the data association problem.
We model the sequential image matching task as finding
a shortest path in the data association graph G. We build
up the data association graph on the fly and therefore only
need to compare images if our search algorithm expands the
corresponding node in G.

The key idea of this data association graph can be explained
as follows. A node in the graph represents a potential match
between two images. We aim at finding the best combination

of matching images by searching a path through this graph,
see Figure 3 for an illustration, where the cost of visiting a
node depends on the similarity of both images.

In more detail, we propose the following graph structure.
a) Nodes: We have two types of nodes in X: the root

or start node xs and matching nodes. A matching node xij
models a match of the image i ∈ Q with the image j ∈ D.
The more similar two images are, the more likely is the fact
that they represent the same place. The similarity of an image
pair is defined as zij ∈ [0, 1], where zij = 1 means that both
images appear identical. The similarity zij is computed by
comparing the images i ∈ Q and j ∈ D only through their
global image descriptor using the cosine distance.

As we are building the graph online, new nodes xij need
to be created as soon as a new image i is recorded. Adding
a node xij to the graph, however, comes at a computational
cost as we need to compare images to compute zij . Thus,
for building up the graph, we seek to avoid instantiating
unnecessary nodes xij , i.e. nodes, which are not part of the
matching sequence.

b) Edges: Similar to the nodes, we use two types of
edges E = {Es, EX} according to the types of nodes the
edges connect. The set of edges Es connects the source
node xs with the matching nodes x0j corresponding to match-
ing the first query image with any database image j ∈ D, i.e.,

Es = {(xs, x0j)}j∈D. (1)

The second set of edges EX connects the matching nodes.
In our approach, we define the set EX of edges in a slightly
different way to [30], [22] as

EX = {(xij , x(i+1)k)}k=j−K,...,j+K , (2)

where K is a fanout parameter that influences the nodes that
are connected between the query images i and i+1. The fanout
basically models that the robot can move at different speeds
through the environment or that the cameras can operate at
different framerates. The larger K is, the larger the branching
factor of the graph and, thus, the value of K impacts the speed
of the search described in the following sections. In our current
implementation, we use a constant fanout parameter of K = 5.
In the remainder of this paper, the nodes x(i+1)k are referred
to as the children ch(xij) of the node xij .

c) Weights/Costs: Each edge e ∈ E has a weight or cost
associated to it. This weight w(e) is related to the similarity
score zij . The weight of an edge e = (xij , xi′j′) ∈ EX is
inverse proportional to the similarity of the node to which this
edges leads to, i.e.

w(e) =
1

zi′j′
, (3)

where zi′j′ is a similarity score computed when comparing
image i′ and j′ using the cosine distance.

B. Computing Image Similarity based on Features from Deep
Convolutional Neural Networks

The computation of the similarity of two images has to
be done often and thus we are in general interested in a
fast computation. Nevertheless, the quality of the similarity
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Fig. 4: Similarity matrix computed using tessellated HOGs as in [22]
(left) and OverFeat features (right). As can be seen in the first row, the
OverFeat features yield more distinct similarity values. This leads to
a smaller number of nodes that are instantiated in the data association
graph (green), as depicted in the second row.

function is of high importance. The more distinct the value
of zij are for images taken from the same places vs. from
different places, the easier the data association problem. As
a result, the more distinct such values are, the better the
performance of our graph search algorithm as less nodes will
need to be expanded.

In our previous works [22], [30], we computed the tes-
sellated HOG descriptor for every image and then compared
them using the cosine distance. The obtained cost difference
between the best match and the worse match was sufficient to
find good solution with an exhaustive search. In the context
of our lazy data association approach with a search heuristic,
we experience problems to find matching sequences reliably
without expanding the majority of the nodes in the graph.
Therefore, we changed the image descriptors in this work to
the pre-trained deep convolutional neural network OverFeat as
proposed by Sermanet et al. [25] due to its better matching
performance. OverFeat is built using a network trained on the
ImageNet dataset consisting of 1.2 million images. We used
the 10th layer as a global image feature as suggested by Chen
et al. [5]. Using OverFeat features instead of HOG directly
improves the performance of our algorithm and supports
the lazy approach. To give an intuition about the matching
similarity, Figure 4 depicts the similarity of comparing all
possible combinations of images from database D and query
Q computed with the tessellated HOG descriptor (left) and
OverFeat (right). Brighter values indicate a higher similarity.
As can be seen from the images, the OverFeat features lead
to more distinct values (higher contrast).

pop expand match 
found

heuristic

match unlikely

possible
 match

level  
reached

yes

no

Fig. 5: Illustration of searching for a match for an input image.

C. Image Sequence Matching through Graph Search

The sequence of matching images between Q and D can be
computed by a path search from the start node xs to any node
xl∗, with ∗ referring to any index in D and l being the most
recent image in Q. Every node that is a part of the shortest
path corresponds to a selected data association, i.e. a match.

The computationally most demanding process for building
and searching in such a data association graph is instantiating
all nodes as a large number of possible matches has to be
computed. For online localization, we are interested in keeping
the computational efforts small and in avoiding the creation
of nodes that do not represent matches. To address this issue,
we propose an approach that limits the number of image
comparisons and results in an efficient algorithm.

Our work is motivated by the ideas of lazy data associations
in the context of SLAM proposed by Hähnel et al. [13]
for constructing pose graphs. Hähnel et al. build up a data
association tree and expand in each round the node with the
highest log likelihood of representing a match between laser
range scans. This is similar to a greedy search in a data
association tree.

In our case, we go a step further and seek to performing an
informed search through the graph, while the graph is built on
the fly. One popular way to perform an informed search is the
A* algorithm using a heuristic, which allows for estimating
the cost from the currently expanded node to the goal node.
For our matching problem, that means we need to predict
how well the images that we will receive in the future will
match our database images—this is in general a difficult task.
Furthermore, A* requires that the heuristic is a predefined
function and does not change during the search. In contrast
to that, we take a different approach and try to predict the
matching cost based on the images that we have received so
far. This means, our heuristic is updated during the search,
which prevents the application of A*. Our search procedure
takes into account the estimated matching cost and works as
follows.

Similar to A*, we use an open-list F of nodes that are
still under consideration. This open-list is realized through a
priority queue. In contrast to A*, the key of our priority queue
for a node xij is the cost g(xij) of reaching xij from the
source xs. Our search and simultaneous graph construction
starts with creating the source node xs and connecting it to
the matching nodes according to Eq. (1). This step requires to
instantiate |D| nodes if no further information about the first
possible match is provided.

For a new incoming image referred to as l, we use the
following procedure to update the graph as well as the match-
ing sequence (see Figure 5 for a brief illustration): Whenever
a new image is obtained, we pop a node from F . We use
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Fig. 6: Illustration for the graph expanding procedure. Orange nodes
are nodes in the F . The red square indicates that the element xij
will be the next one in F . The dashed gray line represent nodes and
edges not computed yet.

our heuristic, which will be described in the remainder of this
section, to estimate if the popped node xij is worth expanding
or if it is unlikely to be part of the matching sequences. If the
node is unlikely to be part of the matching sequences, we
continue with the next node in F . Otherwise, we expand the
node xij by computing the matching costs for its children
ch(xij) and connecting the node xij with ch(xij) using the
edges define in EX , see Eq. (2). If a node in ch(xij) lies on
the lth level of the graph, it represents the so far best match
for the most recent image and the search terminates for this
input image. Otherwise, we proceed expanding nodes from F .

The above described method relies on a heuristic to estimate
the sum of matching costs for reaching the lth level (the
most recent query image). The key problem here is that
defining an effective and admissible heuristic is hard due to the
small amount of background information that can be exploited
to predict future image similarities. Therefore, we take an
alternative approach to come up with a heuristic that provides a
good estimate of the cost but is not guaranteed to be admissible
in the sense of A∗ search. We take a statistical approach and
approximate an expected lower bound for the average cost
of the unexpanded and thus unknown nodes. We do so by
using the average cost of the best path found so far as a
prediction of the cost of individual matches along a new path.
Furthermore, we exploit the fact that we know the number of
images obtained so far and we know that the shortest path
will have l + 1 nodes (start node plus one matching node for
each image). This allows us to formulate the expected cost
f(xij) for a node xij to a node on the lth level, i.e. xl∗, as
the computed cost from xs to xij expressed through g(xij)
plus the estimate cost as:

f(xij) = g(xij) + α(l − i)µcost(x̂)︸ ︷︷ ︸
heuristic

, (4)

where α ∈ [0, 1] is a factor to trade off the quality of the
solution and the number of nodes that needs to be expanded.
For α = 0, we obtain a greedy search behavior and for α = 1,
we may not expand enough nodes to find a good solution. The
term (l− i) is the number of images that have to be matched
to end the sequence and µcost(x̂) is the average cost of the

... ...... ...

Fig. 7: Keeping connectivity though additional edges when using
location priors. Green: nodes that are expended and added to the
graph; gray: potential neighboring nodes according to the prior, but
not encountered in the graph search and thus not instantiated.

best path found so far, see also Figure 6.
In sum, the data association graph constructed in the pro-

posed way using OverFeat features allows us to design a
useful, but not guaranteed to be admissible heuristic for the
search for data associations. This in turn means that we are
not guaranteed to find the optimal solution but enables a fast
search for image matching across seasons that can be executed
online.

D. Exploiting Location Priors for Online Matching

In case a rough location prior, for example from a noisy
GPS, is available, we can further improve the matching
procedure and can also better deal with loops in the database
as well as query sequences, i.e. place revisits.

The graph construction described in Section III-A can
naturally be extended to account for location prior information.
The overall procedure of constructing the graph stays the same
but an additional location prior allows us to identify for every
query image i the set of possible neighboring images N(i) as

N(i) = {j | j ∈ D ∧ dist(i, j) < dmax}, (5)

where dist(i, j) is the distance between the location at which
the images with indices i and j have been taken according the
location prior. All elements not in N(i) will be discarded based
on the prior information and thus several matching hypotheses
do not need to be computed.

As reported in [30], incorporating such location prior in-
formation may lead to disconnected graph components. For
an incremental search, it is however easy to connect different
components by extending the definition of the children ch(xij)
of a node by

ch(xij)← ch(xij) ∪ C1 ∪ . . . ∪ Cn, (6)

see Figure 7 for an intuitive definition of the components
C1, . . . , Cn. Thus, we ensure that if the path stays in the same
component, the procedure of building the graph is not changed.
If, however, the path may “jump” to another component, we
account for this possibility given the prior.

IV. EXPERIMENTAL EVALUATION

Our evaluation is designed to illustrate the performance of
our approach and to support the three main claims made in
this paper. These three claims are: (i) our approach has the
ability to run in an incremental fashion so that only few nodes
are expanded so that online localization is possible, (ii) our
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Fig. 8: Left: visualization of the graph structure for the dataset with
dramatic seasonal changes (Nordland sequence from VPRiCE). The
algorithm compares the images only for the nodes marked with
green. Other nodes are computed for visualization only. Right: Plot
of the dependency between the expansion rate α and the number
of matching cost computations, expressed in percentage from total
number of nodes.

Fig. 9: Full matching matrix (left) and the nodes expanded by our
algorithm (green nodes in the right image). The similarity matrix is
computed for visualization only. The squares highlights an area in
which most images are hard to distinguish, which leads to a larger
node expansion.

heuristic is well-suited to find a competitive solution in most
real world situations and (iii) our algorithm is able to exploit
additional location prior information and can in this case also
handle loops in robot’s trajectories.

Throughout our evaluation, we rely on multiple publicly
available datasets, see Figure 1. We use the summer-winter
dataset from [22], [30], referred to as Freiburg and the Nord-
land dataset, which is a four season train ride through Norway.
We also use the Alderley dataset [19] recorded during a sunny
day and a rainy night. Finally, we used the datasets that have
been selected for the VPRiCE Challenge 2015. The challenge
consists of 4022 query and 3756 database images organized
as a single sequence although it resembles multiple different
datasets stitched together.

Besides setting the performance of our online method in
relation to full offline matching, we compare it to OpenSeq-
SLAM as well as to a baseline approach that uses approximate
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Fig. 10: Precision-recall plots for the datasets Nordland (left) and
Freiburg (right).
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Fig. 11: Performance evaluation on the Alderley dataset.

Euclidean nearest neighbor search to find the most similar
image according to the OverFeat features using the FLANN
library. This approach is called FLANN in the remainder of
this work and is, as we will see later on, not well-suited to
solve the across season matching problem.

A. Matching Performance

The first experiment is designed to illustrate the capabilities
of our approach. Figure 8 depicts the full matching matrix
from a subset of the VPRiCE dataset with strong seasonal
changes. Our algorithm compares 29, 317 image pairs out of
5, 693, 135 possible matching that approaches such as [22]
would expand. This yields a reduction of the computation
cost of 99.5%, while obtaining a comparable matching per-
formance. We obtain reductions of more than 95% for most
datasets. In general, the larger the dataset the bigger the
savings. Also the distinctiveness of the similarity score plays
a role for our algorithm. As it can be seen in Figure 9, the
block of the similarity matrix in the upper left corner shows no
distinct matching pattern. As a result, our approach expands
a comparably large number of nodes, indicated by the green
elements in the right image. Note that our algorithm does not
compute the full similarity matrix as it is shown here, we
depict it for visualization purposes only.

The second set of experiments is designed to show how
the proposed heuristic influences the matching performance
based on the Freiburg, Nordland, and Alderley datasets. We
compare the matches of our online method with those of
our previous offline approach [30] using the full matching
matrix but replacing the previously used HOG features by
OverFeat. The results in Figure 10 and Figure 11 illustrate
that our heuristic leads to comparable matching results while
the number of image comparisons that need to be performed
drops dramatically with increasing expansion parameter α,
see Figure 12. As all precision-recall plots illustrate, we
outperform OpenSeqSLAM as well as the FLANN baseline.

The performance of our algorithm has also been evalu-
ated within the place recognition challenge VPRiCE 2015
conducted at ICRA 2015 and CVPR 2015 workshops. The
evaluation has been performed by the challenge organizers.
Our online algorithm achieved 3rd place with precision 0.680
and recall 0.755 in the test settings. The approach that scored
first [20] is an offline method and the second place [12] focuses
on the design of new features for image comparisons and thus
could even be combined with our method as they are rather
orthogonal.
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Fig. 12: In overall selecting the bigger expansion parameter α leads
to a decrease in node expansion, while preserving the accuracy of
the solution. The middle plot also shows that constraining α close
to 1 may prevent finding the correct path. This leads to degradation
in accuracy (bottom) and may lead to increase in node expansion,
depending on the underlying data (middle).

B. Node Expansion

The third experiment is designed to evaluate the expansion
of nodes in the data association graph in more detail. The
evaluation illustrates that we can achieve online performance
as only a comparably small number of nodes in the data associ-
ation graph get expanded in every step. The two major factors
that influence how the graph expands are the distinctiveness
of matching costs and the expansion parameter α. We varied
the expansion parameter of our heuristic in Eq. (4) between 0
and 1. Zero basically leads to a greedy search, while α = 1
approximates the expected cost by the average cost of the best
path. Figure 12 (middle) shows the dependency between the
graph size and the applied expansion rate for the Freiburg and
Nordland dataset. Roughly speaking, the closer the expansion
parameter α is to 1 the smaller the resulting graph will be and
vice versa. On the other hand, constraining α to the values
close to 1, is likely to prevent the algorithm from finding the
optimal path, see Figure 12 (top, right) for an example. In
this figure, the matching nodes, which are computed using
our approach, are colored in green. All other are depicted for
illustration purposes only and do not need to be computed
in practice. In these cases, the reductions in the number of
expanded nodes are {65%, 95.7%, 95%} (from left to right).
The figure also shows the F1 score illustrating that too large
values for α can lead to a decay in matching performance. In
all our experiments, we select α = 0.6 as a good trade off
between matching performance and computational savings.
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Fig. 13: Exploiting location priors enables handling the loops in
image sequences. Right: Example of the similarity matrix constrained
with 100m GPS prior and overlaid graph search results. Top left:
comparison using precision-recall plots. Bottom left: node reductions
relative to the uncertainty of the location prior.

C. Exploitation of Additional Location Priors

The last experiment is designed to show that in presence of
additional but potentially noisy location priors, our algorithm
is able to handle loops in the query and database trajectories
as well as deviations from the database, i.e., visiting unknown
areas. Figure 13 (right) depicts a similarity matrix between a
query and database sequence for the scenario in which the
location of the robot is known up to 100m, for example
obtained from a GPS receiver operating under suboptimal
conditions. The green area corresponds to the nodes that are
instantiated in the graph construction and search, while black
areas correspond to the nodes excluded due to the location
prior. Also in this settings, our algorithm is able to avoid
instantiating unnecessary nodes while correctly finding the
path.

Exploiting such location priors furthermore allows us to
handle loops, see for example Figure 13 (top). There is
almost no decrease in performance in comparison to the offline
method also using OverFeat. Additionally, we outperform
SeqSLAM and FLANN. Figure 13 (bottom) shows that the
gain in node reduction is smaller the better the pose is known
from the prior, which is an expected result.

D. OverFeat vs. HOG Features

We also analyzed the performance of the matching ap-
proaches using HOG features, as used in [22], [30] and the
pre-trained OverFeat features by Sermanet et al. [25].

We found that the OverFeat features outperform the HOG
features for place recognition under strong appearance changes
as they provide more distinctive matching scores, see also
Figure 4. For the HOG features, the ratio between the best
match and the worse match using the cosine distance is 1.46
compared to 4.28 for OverFeat. Thus, using HOGs would be
less effective for the search method presented in this paper as
a larger number of nodes of the data association graph would
be expanded (see green area in the last row of Figure 4). In
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this sense, we confirm the results by Chen et al. [5] that the
10th layer is well-suited for place recognition tasks.

E. Timing

Our approach can run online with around 1 fps on a standard
notebook. Breaking down the timings of the individual com-
ponents shows that computing the OverFeat descriptor takes
the largest amount of time with approx. 500 ms. Expanding a
single node, i.e., comparing two descriptors, takes 8 ms. The
incremental update of the shortest path takes around 40 ms on
average.

V. CONCLUSION

We proposed an incremental approach to visual image
sequence matching under substantial appearance changes for
online operation. The key idea is to apply a lazy data as-
sociation approach and to define a heuristic for the search
in the data association graph that estimates the similarity
of images. This enables us to achieve online performance
for image sequence matching under substantial appearance
changes. We furthermore illustrated that noisy location priors
can be exploited during online search. We implemented and
tested our approach using real world image sequences acquired
in summer and in winter as well as under different weather
conditions. Our comparisons to other methods as well as the
results from the VPRiCE 2015 place recognition challenge
suggest that our approach provides competitive results and
avoids expanding large portions of the data association graph
or building a large matching matrix.
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