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Abstract— The ability to localize in changing environments
is essential for robust long-term navigation. Robots operating
over extended periods of time must be able to handle substantial
appearance changes. In this paper, we investigate the problem
of efficiently coping with seasonal changes in online localization.
We propose an online lazy data association approach for match-
ing streams of incoming images to a reference image sequence.
We propose a search heuristic to quickly find matches between
the current image sequence and the database. We present
an experimental evaluation using real world data containing
substantial seasonal changes and show that our approach can
efficiently match sequences by requiring comparably small
number of image comparisons.

I. INTRODUCTION

The ability to identify a previously visited place is an
important element of robot localization. Handling large ap-
pearance changes such as those depicted in Fig. 1 is a
challenging problem. Dealing with substantial variations in
the visual input is key for persistent autonomous navigation
and this task has been addressed by different researchers [4],
[5]. The majority of visual place recognition systems ex-
ploit features such as SURF or SIFT. Such feature-based
approaches can deal with rotations and scale changes and
show a great performance if the environment appearance
does not change dramatically. They, however, perform rather
poor under extreme perceptual changes.

Several approaches for aligning image sequences have
been proposed in recent years. SeqSLAM [8], for example,
computes a matching matrix that stores dissimilarity scores
between all images in a query and database sequence. It com-
putes a straight-line path through the full matching matrix
and selects the path with the smallest sum of dissimilarity
scores to determine the matching route. Related to that,
Naseer et al. [9] focus on offline sequence matching using
a network flow approach. A further interesting approach has
recently been proposed by Neubert et al. [10]. Their method
aims at predicting the change in appearance, building on top
of a vocabulary. For this vocabulary, they predict the change
of the visual word over different seasons.

A recent approach by Johns and Young [7] builds a statistic
on the co-occurrence of features under different conditions.
It relies on the ability to detect stable and discriminative
features over different seasons. Finding such discriminative
and stable features under the strong changes is however
a challenge on its own. To avoid finding features that
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Fig. 1: Example images of the datasets used in our experiments.
Upper: Freiburg dataset (seasonal changes); Middle: Nordland
dataset (seasonal changes); Bottom: dataset for VPRiCE’15 chal-
lenge (daily changes).

are robust under extreme perceptual differences, Churchill
and Newman [2], [3] store different appearances for each
place. These so-called experiences enable them to localize
in previous sequences and associate the new data to places.

We propose an online image sequence matching approach
that builds upon our recent work on offline matching [9], [12]
and the lazy data association approach of Hähnel et al. [6].
We apply deeply learned features as proposed by Chen et
al. [1] as they provide a superior matching performance than
for example HOG features in our settings. We propose a
heuristic that estimates the expected cost of matching images
based on a statistic of the best matches found so far. Our
approach can handle multiple parallel hypotheses of match-
ing image sequences. To achieve that, we build upon the
ideas of our previous work but instead of building a matching
matrix, we perform the search in the data association graph
in an online fashion. The graph is built incrementally and its
leaf models the data association hypotheses that are currently
under consideration.



II. LAZY MATCHING FOR ONLINE MATCHING

This paper proposes an online algorithm that uses image
sequences to perform global localization under strong ap-
pearance changes. We perform localization in the sense that
we match a sequence Q of the images that we receive from
the robots sensors with a reference or database sequence of
images called D. For every incoming image, we want to
know if there is a corresponding match in the database and
if so, to which image it corresponds to.

A. Data Association Graph

We build upon our previous work [9], [12] and use a
directed acyclic graph G = (X,E) as our main data structure
for modeling the data association problem. We can model
the sequential image matching task as finding a shortest
path in this data association graph, see [9]. In our work,
we build up the graph on the fly and only need to perform
an image comparison if our search algorithm expands the
corresponding node of the graph. The key idea of the data
association graph can be explained as follows. Each node in
the graph represents a potential match between two images.
We aim at finding the best combination of matching images
by searching a path through this graph where the cost of
visiting a node depends on the similarity of both images.
The graph consists of the following elements.

a) Nodes: We have two types of nodes in X: the root
or start node xs and matching nodes. A matching node xij
models a match of the image i ∈ Q is with the image
j ∈ D. The more similar two images are, the more likely
is the fact that they may represent the same place. The
similarity of an image is defined as cij ∈ [0, 1] where 1
means both images appear identical. The similarity cij is
computed by comparing the images i ∈ Q and j ∈ D. As
we are building up the graph online, new nodes xij need to
be created as soon as a new image i is recorded. Adding a
node xij to the graph, however, comes at a computational
cost as we need to compare the images and compute cij .
Thus, for building up the graph, we should avoid instantiating
unnecessary nodes xij .

b) Edges: Similar to the nodes, we use two types of
edges E = {Es, EX} according to the types of nodes the
edges connect. Set of edges Es connects the source node xs

with the matching nodes xij corresponding to matching the
query first image with any database image j ∈ D, i.e.,

Es = {(xs, x0j)}j∈D. (1)

The second set of edges EX , which was also used in a
similar form in [12], [9], connects the matching nodes. In this
approach, we define the set EX of edges slightly different
to the one defined before as

EX = {(xij , x(i+1)k)}k=j−K,...,j+K , (2)

where K is a “fanout” parameter that influences the nodes
that are connected between the query images i and i + 1.
The fanout basically models that the cameras can move at
different speeds through the environment or that the cameras

can operate at different framerates. The nodes x(i+1)k are
furthermore specified as ch(xij), i.e. are the children of the
node xij .

c) Weights: Each edge in E has a weight. This weight
is related to the cost cij defined above. The weight of an edge
e = (xij , xi′j′) ∈ EX is inverse proportional to the similarity
of the node to which this edges leads to, i.e. w(e) = 1

ci′j′
,

where ci′j′ is a cost of matching image i′ and j′.

B. Computing Image Similarity with Features from Deep
Convolutional Neural Networks

As we have pointed out before computation of the match-
ing cost cij between two images has to be performed
often and thus we are interested in a fast computation.
Nevertheless, the quality of the similarity function is of
high importance. The larger cij for the images taken from
the same place and the smaller cij for images taken from
different place, the better. The more distinct such values are,
the better the performance of our graph search algorithm as
less nodes will need to be expanded as well.

In our previous works [9], [12], we computed the global
HOG descriptor. HOG-based image comparisons were suf-
ficient to find good solution with an exhaustive search. In
the context of the lazy data association approach with a
non-admissible heuristic, we experience problems to find
matching sequences reliable without expanding the whole
graph. Therefore, we changed the image descriptors in this
work to the deeply learned features from the pre-trained
image recognizer and feature extractor OverFeat as proposed
by Sermanet et. al [11]. OverFeat is built using a deep con-
volutional neural network trained on the ImageNet dataset.
We used the results of 10th layer as it was reported by
Chen et. al [1] to give the best results in their work on
place recognition tasks. For each image the descriptor of
size 512 × 18 × 24 was extracted. Using Overfeat features
instead of HOG directly improves the performance of our
algorithm and makes the lazy approach possible.

C. Image Sequence Matching by Graph Search

The sequence of matching images between Q and D can
be computed by a shortest path search from the start node xs

to any node xl∗, with ∗ referring to any index in D, where l
is the most recent image in Q. Every node that is a part of
the shortest path corresponds to a selected data association.

The computationally most demanding process for building
up and searching in such a data association graph is instan-
tiating nodes as a large number of possible matches may be
created. For online localization, we are interested in keeping
the computational efforts small and avoiding creating too
many nodes. To address this issue, we propose the algorithm
that keeps the number of image comparisons that need to be
performed small and thus results in an efficient algorithm.

Our work is motivated by the ideas of lazy data asso-
ciations in the context of graph-based SLAM proposed by
Hähnel et al. [6] for constructing a graph. Hähnel et al.
build up a data association tree and expand in each round
the node with the highest log likelihood of representing a
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Fig. 2: Illustration of searching for a match for an input image.

match between laser range scans. This basically is similar to
a greedy search in a data association tree.

In our case, we go a step further and seek to performing an
informed search through the graph, while the graph is built
up on demand. One popular way to perform an informed
search is the A∗ algorithm in combination with a heuristic,
which allows us to estimate to cost from the current node
to the goal node. For our matching problem, that means we
need to predict how well the images that we will receive in
the future will match our database images —this is in general
difficult task. Furthermore, A∗ requires that the heuristic is a
predefined function and does not change during the search.
We, however, take a different approach and try to predict the
matching cost based on the images that we have received so
far. This means, our heuristic is updated during the search,
which, unfortunately, prevents the use of standard A∗. Our
search procedure taking into account the estimated matching
cost works as follows.

Similar to A∗, we use an open-list F of nodes that are
still under consideration. This open-list is realized through a
priority queue. In contrast to A∗, the key of the priority queue
for a node xij is the cost g(xij) of reaching xij from the
source xs. Our search and simultaneous graph construction
starts with creating the source node xs and connecting it to
the matching nodes according to Eq. (1). This step requires
to instantiate |D| nodes if no further information about the
first possible match is provided.

For every incoming image ql, we use the following pro-
cedure to update the graph as well as the matching sequence
(see Fig. 2 for a brief illustration): Whenever a new image
ql is obtained, we pop a node from F . We then use our
heuristic, which will be described in the remainder of this
section, to estimate if the node xij is worth expanding or is
unlikely to be part of the matching sequences given the cost
estimate. If the node is unlikely to be part of the matching
sequences, we continue with the next node in F . Otherwise,
we expand the node xij by computing the matching costs
for its children ch(xij) and connecting the node xij with
ch(xij) using the edges define by EX . If a node in ch(xij)
lies on the l depth level of the graph, then it represents the so
far best match for ql and the search terminates for this input
image. Otherwise we proceed expanding nodes from F .

The above described method relies on a heuristic to
estimate the sum of matching costs for reaching the lth level
(given that the last obtained image is ql). The key problem
here is that defining an effective and admissible heuristic
is hard due to the small amount of background information
that can be exploited to predict future image matching cost.
Therefore, we take an alternative approach to come up with
a heuristic that provides a good estimate of the cost. We take
a statistical approach and approximate an expected lower
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Fig. 3: Illustration for the graph expanding procedure. Blue nodes
are nodes in the F . The red square indicates that the element xij
will be the next one in F . The dashed grey line represent nodes
and edges not computed yet.

bound for the average cost of the unexpanded and thus
unknown nodes. We do so by using the average cost of the
best path found so far as a prediction of the lower bound of
the cost. Furthermore, we exploit that we know the number
of images obtained so far, i.e., we know that the shortest path
will have l+1 nodes (start node plus one matching node for
each image). This allows us to formulate the expected cost
f(xl∗) for a node xl∗ as the computed cost from xs to xij
expressed through g(xij) plus the estimate cost as:

f(xl∗) = g(xij) + α(l − i)µcost(x̂)︸ ︷︷ ︸
heuristic

(3)

where α ∈ (0, 1] is a factor to trade off the quality of the
solution and the number of nodes that needs to be expanded.
For α → 0, we obtain a greedy search behavior and for
α = 1 we may not expand enough nodes to find a good
solution. The term (l−i) is the number of images that should
be matched to end the sequence and µcost(x̂) is the average
cost of the best path found so far, see also Fig. 3.

III. EXPERIMENTS

The evaluation is designed to illustrate the performance
of our approach and to support the two main claims made
in this paper. These two claims are: (i) our approach has
the ability to run in an incremental fashion so that only few
nodes are expanded and that online localization is possible,
(ii) our heuristic is well suited to find a competitive solution
in most real world situation.

Throughout our evaluation, we rely on multiple publicly
available datasets, see Fig. 1. First, we use the summer-
winter dataset used in [9], [12], later referred to as Freiburg.
Second, the Nordland dataset, which is a four season train
ride dataset from Norway. Finally, we used the datasets that
have been selected for the VPRiCE Challenge 2015. The
latter one consists of 4022 query and 3756 database images
organized as a single sequence but being stitched together
from multiple different datasets.

The first experiment is designed to show that we can
achieve online performance as only a comparably small
number of nodes gets expanded. For this experiment, we
varied the scaling parameter α of our heuristic in Eq. (3)
between 0 and 1. Zero basically leads to a greedy search,
while α = 1 approximates the expected cost by the average
cost of the best path.
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Fig. 4: Left: visualization of the graph structure for the dataset with
dramatic seasonal changes (Nordland). The algorithm computes the
matching costs only for the nodes marked with green. Other nodes
are computed for visualization only. Right: Plot of the dependency
between the expansion rate α and the number of matching cost
computations, expressed in percentage from total number of nodes.

Fig. 5: Full matching matrix (left) and the nodes expanded by our
algorithm (green nodes in the right image). The cost matrix is
computed for visualization only. The squares highlights an area with
hard to identify matches, which leads to a larger node expansion.
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Fig. 6: Left: Comparison between our algorithm (online) and [9]
(offline). Right: Dependence between the expansion parameter α
and number of feature comparisons relative to the total number of
comparisons |Q| × |D|.

Fig. 4 depicts subset of the VPRiCE dataset with strong
seasonal changes. In sum, our algorithm computes matches
for 29, 317 image pairs out of 5, 693, 135 possible matching,
that the standard approaches such as [9] would expand. This
yields a reduction of computation cost of 99.5%. Similar
reductions can be noticed for other datasets, see right image
of Fig. 4, where the larger the dataset the bigger the savings.
Also the distinctiveness of the matching costs plays a role
for our algorithm. As it can be seen in Fig. 5, the block
of the matching matrix in the upper left corner shows no
distinct matching pattern. As result, our approach expands a
comparably large number of nodes, indicated by the green
elements in the right image. Note that our algorithm does
not need the full matching matrix, we depict it here for
visualization only.

Computing the image descriptor takes the largest amount
of time with approx. 500 ms. Expanding a single node, i.e.,
comparing two descriptors, takes 8 ms. Incremental update of
the shortest path takes around 40 ms on average. As a result
of that, our approach can run online with around 1 fps.

The second set of experiments is designed to show that
the proposed heuristic does not degrade the matching perfor-
mance. We confirm this statement by comparing our results
with our previous approach using the full matching matrix
using the Freiburg dataset and the Nordland dataset as ground
truth information is available. The results are depicted in
Fig. 6. We used α = 0.8 and the parameter varied to
obtain the precision recall plots was the non-matching cost
w̆, see [9] for details. As can be seen, our heuristic leads
to comparable results for both datasets. Furthermore, the
number of image comparisons that needed to be performed
drops dramatically with increasing the expansion rate. Thus,
we can reduce the number of matching operations while
maintaining a high matching performance.

IV. CONCLUSION

We proposed an incremental approach to image sequence
matching under substantial appearance changes for online
operation. The key idea is to apply a lazy data association
approach and define a heuristic for the search in the data
association graph that estimates the path cost. This allows
us to achieve online performance for image matching under
substantial appearance changes. We implemented and tested
our approach using real world data. The experiments suggest
that our approach provides comparable results while it can
run online and avoids expanding large portions of the data
association graph.

REFERENCES

[1] Z. Chen, O. Lam, A. Jacobson, and M.Milford. Convolutional neural
network-based place recognition. arXiv:1411.1509, 2014.

[2] W. Churchill and P. Newman. Practice makes perfect? managing and
leveraging visual experiences for lifelong navigation. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

[3] W. Churchill and P. Newman. Experience-based Navigation for Long-
term Localisation. Int. Journal of Robotics Research, 2013.

[4] M. Cummins and P. Newman. Highly scalable appearance-only SLAM
- FAB-MAP 2.0. In Proc. of Robotics: Science and Systems, 2009.

[5] A.J. Glover, W.P. Maddern, M. Milford, and G.F. Wyeth. FAB-MAP
+ RatSLAM: Appearance-based slam for multiple times of day. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
pages 3507–3512, 2010.

[6] D. Hähnel, W. Burgard, B. Wegbreit, and S. Thrun. Towards lazy
data association in slam. In Proc. of the Int. Symposium of Robotics
Research (ISRR), pages 421–431, Siena, Italy, 2003.

[7] E. Johns and G.-Z. Yang. Feature co-occurrence maps: Appearance-
based localisation throughout the day. In Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA), 2013.

[8] M. Milford and G.F. Wyeth. Seqslam: Visual route-based navigation
for sunny summer days and stormy winter nights. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

[9] T. Naseer, L. Spinello, W. Burgard, and C. Stachniss. Robust visual
robot localization across seasons using network flows. In Proc. of the
AAAI Conference on Artificial Intelligence, 2014.

[10] P. Neubert, N. Sunderhauf, and P. Protzel. Appearance change
prediction for long-term navigation across seasons. In Proc. of the
European Conference on Mobile Robotics (ECMR), 2013.

[11] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun. Overfeat: Integrated recognition, localization and detection using
convolutional networks. In Int. Conf. on Learning Representations
(ICLR), 2014.

[12] O. Vysotska, T. Naseer, L. Spinello, W. Burgard, and C. Stachniss.
Efficient and effective matching of image sequences under substantial
appearance changes exploiting gps priors. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2015.


