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Abstract— Robotic lawn-mowers are required to stay within
a predefined working area, otherwise they may drive into
a pond or on the street. This turns navigation and path
planning into safety critical components. If we consider using
SLAM techniques in that context, we must be able to provide
safety guarantees in the presence of sensor/actuator noise and
featureless areas in the environment. In this paper, we tackle the
problem of planning a path that maximizes robot safety while
navigating inside the working area and under the constraints of
limited computing resources and cheap sensors. Our approach
uses a map of the environment to estimate localizability at all
locations, and it uses these estimates to search for a path from
start to goal in belief space using an extended heuristic search
algorithm. We implemented our approach using C++ and ROS
and thoroughly tested it on simulation data recorded on eight
different gardens, as well as on a real robot. The experiments
presented in this paper show that our approach leads to short
computation times and short paths while maximizing robot
safety under certain assumptions.

I. INTRODUCTION

Navigation is a critical component for robotic lawn-
mowers as they are meant to function without supervision for
long periods of time on a wide variety of gardens while never
posing a threat to humans or destroying themselves. The
safety-relevant worst-case scenario that should be avoided
at all costs is leaving the working area (i.e., the customer’s
lawn), as erratic behaviour outside this protected space might
lead to harm or injury.

Navigation in lawn border areas on most current robotic
lawn-mowers relies on a physical perimeter wire laid along
the borders and obstacles. The wire can be sensed with
precision and robustness from a short range, which means
the robot will sense it before leaving the garden. The main
drawback of the perimeter wire is the inconvenience to
the customer: it is tedious to set up while respecting all
instructions, and eventual mistakes are difficult to correct.
It is, therefore, the “Holy Grail” of lawn-mower navigation
to make the product more customer friendly by getting rid of
that perimeter wire while respecting the hard constraints set
on service robotics: product safety and price competitiveness.
One approach towards that goal is to equip the robot with a
cheap 2D laser scanner and then navigate using Simultaneous
Localization and Mapping (SLAM) techniques.
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Fig. 1: Motivating scenario: A robotic lawn-mower needs to plan
paths maximizing the probability of the robot staying localized
while navigating. Top: A simulated lawn-mower in a reference
garden. Bottom: a projection of obstacles and taught-in working
area (red) on a gridmap.

The requirement of not leaving the working area uninten-
tionally needs to be handled at the path planning level, as
featureless areas should be handled specifically or in extreme
cases avoided altogether. In this paper, we concentrate on the
problem of path planning under uncertainty from point A to
point B, particularly focusing on maximizing the probability
that the lawn-mower does not collide with obstacles or
taught-in borders by planning paths considering the evolution
of uncertainty. Besides coverage, maneuvering from A to B
is important for robotic lawn-mowers as they often need to
plot safe paths to the charging station or unmowed areas.
The robot we are considering is a modified Bosch Indego
lawn-mower equipped with a 2D laser scanner deployed in a
garden as sketched in Fig. 1 (top). Certain obstacles such as
low bushes cannot be reliably detected by the lawn-mower,
so the customer has to teach the borders of every obstacle
and limits of the garden manually. This results in a map
of visible landmarks and invisible borders seen in Fig. 1
(bottom). While the application scenario is very specific,
it should be noted that none of the methods or results are
restricted to lawn-mowers.

Planning under uncertainty or in belief space differs funda-
mentally from planning without uncertainty where the state



of the robot is always assumed to be known precisely. In
uncertainty-aware planning, the robot cannot directly observe
its state but can only infer it from past observations and ac-
tions. This leads to the necessity of maintaining a probability
distribution over possible states of the robot called the belief
and computing a control policy to select the best actions.
This problem can be formalized as a partially observable
Markov decision process (POMDP), which in the general
case quickly becomes computationally intractable for real
world problems.

The main contribution of this paper is the development of a
safe path planning algorithm in belief space for laser scanner
equipped mobile robots with a special focus on robotic lawn-
mowers. We simulate the localizability (or expected to be
gained information) of the laser scanner at all locations. We
introduce a heuristic search algorithm that uses the localiz-
ability map and other assumptions (e.g., speed, discretization
of possible positions, dominance relations between different
beliefs, etc.) to search in belief space and compute paths
maximizing the probability that the robot stays localized
while navigating. The algorithm to search in belief space
can be instantiated with different evaluation functions /
dominance relations, letting us investigate how they influence
the search on realistic test sets.

Summarizing, we make the following key claims:
(i) Our approach computes similar solutions to existing

techniques that incorporate the uncertainty in the path plan-
ning process in a similar way, but does so in a smaller amount
of time.

(ii) Our approach investigates the effect of different eval-
uation functions / dominance relations on search algorithms
in belief space on realistic test sets.

(iii) Our approach can be executed on a real robot.
These claims are backed up by the paper and especially

in our experimental evaluation.

II. RELATED WORK
Research for motion planning under uncertainty is often

concerned with making efficient assumptions to and dis-
cretizations of the belief space in order to render the resulting
POMDP solvable for problem instances of the required size.
Therefore, state-of-the-art approaches can be categorized by
the considered uncertainty, e.g., uncertainty from movement
(noise from actuators), uncertainty from localization (noise
from sensors), unknown future motion of dynamic obstacles
and uncertainty in the map.

We will mainly focus on approaches taking into account
uncertainty from localization and movement, as these come
closest to the problem we are treating. Those have in com-
mon that the belief dynamics of the POMDP are computed
using a Bayesian Filter. The approach by Prentice et al. [15]
plans in belief space by extending Probabilistic Roadmaps.
The approach by Van den Berg et al. [18] uses Rapidly
exploring Random Trees (RRT) to plan a large amount
of candidate paths that are then tested using a simulated
Linear-Quadratic-Gaussian controller. The approaches of Bry
et al. [4] and Lenz et al. [13] aim at planning the path
of a robot using Rapidly Exploring Random Belief Trees.

These approaches differ from ours through the chosen motion
and sensor models: The authors assume to have easily
linearizable line-of-sight or beacon localization sensors while
our approach focuses on laser scanners. They also use higher-
dimensional state spaces better suited to model UAVs or car-
like robots but slowing computation because of the curse
of dimensionality. Lambert et al. [12] and the subsequent
RRT based extension by Pepy et al. [14] present a Bayesian
framework for planning in an extended pose × covariance
space that takes sensing and motion uncertainty into account.
They use the sensor model described in Lambert et al. [11]
which simulates the reaction of sensors to the environment.
Censi et al. [9] use the same representation but differ in
using an information space approach for the description of
the robot belief. They also introduce other search algorithms
such as a backward search that provides reusable plans. We
will compare the approach proposed in this paper to the
forward-search algorithm by Censi et al., as our assumptions
are similar and the authors have provided the most compre-
hensive experiments for their results. Bopardikar et al. [3]
further discretize the belief space from Lambert et al. [12] by
using a bound on the maximum eigenvalue of the covariance
and use it to solve multi-objective optimization problems.
The approach by Agha-Mohammadi et al. [1] breaks the
curse of history inherent to POMDPs by using local feedback
controllers enabling fast belief space replanning. The strong
assumptions (observability and controllability of the system)
restrict the method to sensor models not applicable to laser
scanners. The approach of Carrillo et al. [5] specifically
emphasizes the problem of path planning using active SLAM
concepts but limits possible paths to those taken during the
mapping process.

When one considers non-linear sensor models like we
require in the case of laser scanners, studying how different
external sensors influence the achievable accuracy for robot
localization becomes crucial. Censi [7], [8] and Bengtsson
et al. [2] study how much localization-related information
scan-matching algorithms are expected to provide in different
environments and how it affects the localizability of the
robot. Incorporating this research into our own approach is
important as it gives precious information about where the
robot might risk collisions and how to avoid them.

III. PROBLEM DESCRIPTION
We address the problem of path planning in belief space

which involves finding short paths that avoid obstacles,
while maximizing the probability of staying localized during
navigation along the path. We consider the uncertainties from
motion and from sensing, while assuming the map issued
by a SLAM algorithm to be largely free of gross errors
and the world to be static. The map-building process can
be considered to be error free because the initialization of
the product i.e., map-building and teach-in of borders, is
supervised by the customer.

While our test datasets recorded on real gardens are non-
planar, we project obstacles and a circular hull of the robot
footprint to the ground-plane, which leads us to a two-
dimensional configuration space similar to [12]. For a mobile



robot moving in a static world, the belief space is defined
as the set of all possible probability distributions over the
configurations of the robot. We make the assumptions of
Gaussianity and possible linearization of robot dynamics,
which means that the robot belief is described by a bivariate
Gaussian distribution with mean µ and covariance Σ. At
planning time, we forward-simulate the evolution of the robot
belief as it advances and gains information on its state from
sensors and loses it through odometric drift recursively using
an Extended Kalman Filter (EKF), as described in Thrun et
al. [17]. We can consider the belief space to be a poses ×
covariances space. This space is infinite as every path leads
to a different belief. To make the computations lighter, we
further discretize the belief space by only considering beliefs
centered at regular intervals of a grid and by discounting the
orientation of the robot.

IV. OUR APPROACH
To solve our belief space motion planning problem in the

lawn-mower setting, we propose a two-step method using the
belief dynamics and assumptions described in Sec. III. The
first step is the creation of a localization performance model
for a 2D laser scanner sensor, which we describe in Sec. IV-
A. The second step of our approach involves searching for
a path in belief space by using a modified heuristic search
algorithm, see Sec. IV-B.

A. Localizability Map

When a robot estimates its position against a given map
by scan-matching, it registrates the currently acquired point
cloud given by the sensor against the map and calcu-
lates a transformation returning the most probable location.
Formally, the scan-matching optimizes p(xt|xt−1, ut, zt,m)
where xt is the distribution of possible robot poses at time
t, zt are the sensor measurements, m is the map and ut is
the odometry/command given to the robot.

To estimate the effectiveness of scan-matching based lo-
calization on any point of the map, we propose to simulate
a laser scanner with the help of a ground truth point cloud
recorded using a Leica 3D point scanner and measure the
convergence radius of a Normal Distributions Transform
(NDT)-based registration algorithm using the approach by
Bengtsson et al. [2]. To summarize the approach for a given
position, we first simulate a laser scan using a ground truth
point cloud and a model of the laser scanner. We then repeat-
edly translate/rotate the scan by a certain distance within a
tested convergence radius. Finally, we register the translated
simulated laser scans with a SLAM-map of the environment
in order to compute the covariance of converged-to locations.
If the resulting covariance is small, this means that the
sensed part of the environment possesses a lot of useful
features (e.g. the presence of a corner) and the algorithm
was able to recover the actual location of the laser scan. If
the convergence radius is big, this means that the sensed part
of the environment does not include many useful features.
We do this on every point of the map with a given resolution
and consider the result to be an accurate estimate of an EKF
update-step. An extract from the localizability map computed

for the motivation scenario can be seen in Fig. 2 (top), while
a semantic view is shown in Fig. 2 (bottom). We have chosen
a maximum scanning range of 4 m to mimic a low-cost
range sensors that can be used on a lawn-mower. We assume
the noise in the range measurement to be Gaussian with a
variance of 3 cm, and test for a convergence diameter of 1 m.
Currently, we consider 1850 readings per scan. Fig. 2 (top)
shows how the localizability near corners is good in both
x and y dimensions, while the detection of only one wall
leads to good localizabilty in only one dimension. Bushes
(large black masses on the gridmap) are challenging for
localization, as unevenness of the ground leads to different
parts of the bush being scanned which in turn causes greater
uncertainty.

Fig. 2: Localizability map: Top: An extract of a localizability map
for the motivational problem. Each blue ellipse corresponds to
99.5% ellipses of expected EKF update steps. Ellipse axes of 1 m
are found in dimensions where no information is present. Bottom:
semantic view of a localizability map for a larger area. Yellow
values indicate good localizability (sum of eigenvalues ≤ 10 cm)
and dark purple tones indicate bad localizability (sum of eigenvalues
≥ 200 cm). The grey areas are either featureless or outside the
working area.

B. Heuristic Search Algorithm
The previous sections provide a method for simulating

the evolution of path uncertainty in belief space: we can
transition from one belief to the next using an EKF with
an odometric drift prediction-step and an expected sensor
update-step from the localizability map.

To complete the path-planning approach, we use a generic
search algorithm extended to work in belief space to find a



path to the goal that optimizes different aspects, depending
on the chosen evaluation function. We adapt the notation and
description of the search algorithm from Censi et al. [9].

Algorithm 1 SEARCH ALGORITHM IN BELIEF SPACE

1: VISITED: the set of visited nodes
2: OPEN: the set of opened nodes, ordered by J-relation
3: Put nstart in OPEN
4: while OPEN is not empty do
5: Pop first (according to J) node n from OPEN
6: for all s in SUCCESSORS(n) do
7: Return s if IS GOAL(s)
8: if s is D-dominated in VISITED then
9: Ignore s

10: else
11: Put s in VISITED
12: Put s in OPEN
13: Report failure

A node n is a tuple 〈x,Σ, d〉 that encodes the expected
evolution of the belief on a path from the starting position
to the mean of the node, x. The intuitive meaning is:
“There exists a path from the start to x with length d
and covariance Σ”. The function SUCCESSORS(n) generates
successor nodes to all neighbours (adjacent grid cells) using
the belief dynamics equation of the EKF and rejects those
that lead to collisions.

The generic search algorithm described in Alg. 1
aims at computing the path encoded in node nreturn =
〈goal,Σreturn, dreturn〉 ranked as the first element according to
the J-relation, the evaluation function. It does so by greedily
expanding the node dominating the others according to J
in OPEN and verifying whether it can discard any new
incoming nodes using the dominance D-relation. This leads
to provably optimal solutions if J is admissible, such as the
sum of the euclidean distance to the goal and d when the
problem is set in the configuration space.

The main part of our work focuses on investigating the
influence of different evaluation functions and dominances
on solution quality and computation time. The following
subsections present the evaluation functions and dominance
relations we use to compare two nodes: n1 = 〈x1,Σ1, d1〉
and n2 = 〈x2,Σ2, d2〉.

1) Dominance Relation: A dominance relation defined in
Eq. (1) is an ordering over nodes used to decide whether
one node will always lead to a better solution than another.
We use it to prune parts of the search space that cannot lead
to good solutions, such as longer paths with worse robot
localization going to the same position.

(n1 D n2)⇔ (x1 = x2 ∧ Σ1 ≤ Σ2 ∧ d1 ≤ d2) (1)

Comparing the state x and distance d is fairly straightfor-
ward, but the covariance Σ is more difficult because of its
multi-dimensionality. The importance of using a dominance
relation is shown in Fig. 3 (left). By ignoring nodes that en-
code paths with worse localization than the blue one, e.g. the

dashed green path, we prune large parts of the search space
while not losing any solution quality. Some authors such as
Censi et al. in [9] reject nodes using a FULL SUBSUMPTION
test: Σ1 ≤ Σ2 iff Σ1 − Σ2 is negative semidefinite. Other
authors such as Bry et al. [4] compare the TRACE. This leads
to faster computations as it is a total ordering (it can always
be decided whether Σ1 ≤ Σ2) but comes at the cost of
losing completeness as illustrated in Fig. 3 (right). To our
knowledge, this is the first attempt to compare these two
dominance relations on extensive test sets.

1 2

3 4

Fig. 3: Dominance relations. (Left) demonstrates how a dominance
relation in belief space must consider the covariance. In order to find
a solution and pass the red obstacle, the safer but longer beige path
must be considered. The dashed green path has a worse localization
than the blue one and can safely be pruned from the search. (Right)
illustrates how the partial ordering over covariances induced by
FULL SUBSUMPTION leads two minima (4 and 2) to be kept in the
search. TRACE induces a total ordering that only keeps one (4).

2) Evaluation Function: An evaluation function is a func-
tion f as seen in Eq. (2) used to rank the nodes in OPEN that
defines a total ordering over nodes. Evaluation functions can
use different criteria to rank nodes and in the present context
usually do it by covered distance, accumulated uncertainty,
or a weighted combination of both.

(n1 J n2)⇔ f(n1) ≤ f(n2) (2)

Approaches such as Censi et al. in [9] rank the nodes
by DISTANCE: here, the distance traveled d is added to
a heuristic value h predicting the distance to the goal:
f(n) = d(n) + h(n, goal). Comparable approaches in belief
space set h(n, goal) = EUCLIDEAN(n, goal). We propose
to use Dijkstra’s algorithm over the lower dimensional 2D
configuration space to compute the shortest path to the
goal not considering uncertainty, which we will refer to
as DIJKSTRA(n, goal). Both heuristics are admissible and
consistent, albeit only for the distance, meaning that the
computed paths will be optimal distance-wise. Using the
result of lower-dimensional planners as a heuristic for use
in high-dimensional motion planners is a widely-followed
approach, e.g. Stachniss et al. [16], but this work is the first
to use it for planning in belief space to the knowledge of the
authors.

Another approach Carrillo et al. [5] ranks the nodes by
the accumulated uncertainty over the path. The authors use
metrics developed for statistical testing that are used in
robotics for active SLAM that are solely computed over
the covariance. The metric we have chosen to quantify the
uncertainty of a belief is a variant of D-OPT given by Eq. (3),



with λ1,2(Σ) the eigenvalues of Σ considering the x, y-
space. Carrillo et al. [6] discuss D-OPT and other metrics in-
depth and come to the conclusion that this version of D-OPT
presents the best qualities for dead-reckoning mobile-robot
scenarios. We define our UNCERTAINTY evaluation function
as f =

∑n
i D-OPT(Σi), or the sum of all D-OPT(Σ) over

the path culminating at n, which we will also denote as D-
OPT(n).

D-OPT(Σ) =
1

2
(exp(log λ1(Σ) + log λ2(Σ))) (3)

Finally, weighted evaluation functions take both the path
length and the accumulated uncertainty over the path into
account. Costante et al. [10] combine an UNCERTAINTY
metric u(n) and a DISTANCE metric v(n) using a parameter
α weighing the advantages of a shorter path with the disad-
vantage of bigger covariances, f(n) = αu(n)+(1−α) v(n).

We avoid the problem of setting α explicitly by com-
paring the current node to an ideal solution. The ideal
path length Lideal = DIJKSTRA(start,goal) is the short-
est collision-free path to the goal. The ideal localizabil-
ity Cideal is a small covariance cideal over the whole
ideal path length Cideal = Lideal × D-OPT(cideal). We
thus define the WEIGHTED evaluation function as f =
DISTANCE SCORE(n) + UNCERTAINTY SCORE(n) with DIS-
TANCE SCORE and UNCERTAINTY SCORE defined in Eq. (4).
This multi-optimizing evaluation penalizes nodes that are
further from the ideal path and privileges nodes that are on
a short path with low covariance.

DISTANCE SCORE = DIJKSTRA(n, goal) + d(n)− Lideal

UNCERTAINTY SCORE = D-OPT(cideal)× DIJKSTRA(n, goal)
+ D-OPT(n)− Cideal (4)

An overview of the different evaluation functions and
dominances we use can be seen in Tab. I, the weighted
algorithms use cideal = 20 cm.

Abbreviation Dominance D Evaluation Function J
FSE FULL SUBSUMPTION EUCLIDEAN + d
FSD FULL SUBSUMPTION DIJKSTRA + d

FSDOPT FULL SUBSUMPTION D-OPT
FSW FULL SUBSUMPTION WEIGHTED
TE TRACE EUCLIDEAN + d
TD TRACE DIJKSTRA + d

TDOPT TRACE D-OPT
TW TRACE WEIGHTED

TABLE I: Overview of tested orderings.

V. EXPERIMENTAL EVALUATION

The goal of this work is to provide a fast and effi-
cient algorithm for path planning under uncertainty. Our
experiments are designed to show the capabilities of our
method and to support the three claims we made in the
introduction. Our approach (i) computes similar solutions
to existing techniques that incorporate the uncertainty in
the path planning process in a similar way but does so
in a smaller amount of time, (ii) investigates the effect of

different evaluation functions / dominance relations on search
algorithms in belief space on realistic test sets and (iii) can
be executed on a real robot. All computations are performed
using a prototypical implementation of the algorithms in C++
running ROS on a Core i7 CPU @2.8 GHz.

A. Comparison with the State of the Art

The first set of experiments is designed to support claim
(i) and shows how our approach leads to smaller com-
putation times in the same scenario as Censi et al. [9].
The comparison to their approach is particularly relevant as
they published precise results on a specific problem set and
are using similar assumptions (e.g., two dimensional state,
Gaussian assumption, comparable motion model, etc. ). The
problem set they provide is depicted in Fig. 4 and has a
very specific structure that favours orderings quickly seeking
information. The robot starts with a large state uncertainty
and is equipped with a simplified four-sampled North, South,
West, East (N,S,W,E) range-finder, meaning the path must go
through the enclave on the bottom left (area 1) in order to
go through the needle-hole that is further to the right (area
2). The performance measures we use to quantify the results
are:
• NC (Nodes Created) measures how many nodes were

created during the search and estimates complexity.
• MM (Maximum in Memory) measures the most nodes

present in memory at any given time and showcases
memory use.

• CT (Computation Time s) measures runtime and in-
cludes the computation of heuristic costs.

• PL (Path Length m) denotes the length of the path.
• PU (Path Uncertainty) = 1

PL

∑
i∈path TRACE(Σi) is the

average trace of the covariance over the path.
This experiment shows how our baseline algorithm FSE

(see Tab. I), using the same orderings as the forward search
algorithm from Censi et al., is comparable to theirs in speed
and memory load while providing a similar shape of the
resulting paths, thus we can use it for fair comparisons
for our other experiments and algorithms. The results can
be seen in Tab. II while an illustration can be found in
Fig. 4. The experiments indicate that the TRACE dominance
reduces the computational load by approximately 30% while
returning the same path, showing that pruning the belief
space more aggressively leads to shorter computation times
and solutions of similar quality. Every other dominance
relation produces the expected results: D-OPT leads to safer,
longer paths and the weighted solution balances both aspects.
The shorter computation time of D-OPT is due to the bias
of this experiment favouring quick information seeking. As
a conclusion, the evaluation results show how choosing
the evaluation function/dominance leads to significantly less
expanded nodes while returning the same solution as the
approach by Censi et al. [9].

B. Analysis of Evaluation Functions/Dominance Relations

The second set of experiments is designed to support claim
(ii) and investigates the performance of our approach in



Algorithm NC MM CT PL PU
Censi08 5474 - 0.51 ≈ 37.0 -

FSE 5134 461 0.39 33.0 4.2
FSD 3742 592 0.34 33.0 4.2

FSDOPT 3666 281 0.28 46.1 2.8
FSW 9819 990 0.63 42.7 3.2
TE 3170 283 0.28 33.0 4.2
TD 2468 397 0.22 33.0 4.2

TDOPT 1984 101 0.18 46.1 2.8
TW 9146 566 0.42 42.7 3.2

TABLE II: Results of Experiment 1. NC (Nodes Created), MM
(Maximum in Memory), CT (Computation Time s), PL (Path
Length m), PU (Path Uncertainty).

Fig. 4: Results of experiment 1: The algorithms must plot a path
leading from the bottom to the top. The sensor is a simplified four-
sampled N,S,W,E range-finder, leading to necessary relocalization
detours. The path by FSE, closely resembling the forward search
algorithm by Censi08, is red. The FSDOPT and FSW paths are
green and blue. Ellipses are inflated for readability.

realistic settings while analyzing the influence of evaluation
functions and dominance relations on search algorithms in
belief space. The test data is taken from a set of reference
gardens which are chosen by the Robert Bosch GmbH in
order to test robotic lawn-mowers, they display a large spec-
trum of difficult challenges for mobile robots (e.g., slopes,
large glass panes, big gardens, uneven ground, etc.). Tab. III
aggregates the results of 403 computed paths per algorithm
on eight reference gardens, while example trajectories over
the longest possible paths are shown in Fig. 5.

There are several conclusions that can be made from this
experiment: firstly, the TRACE dominance relation leads to a
consistently better runtime and lesser complexity (by a factor
of around 50%). The path lengths and obtained certainties are
nevertheless very similar, showing that pruning large parts of
the search space using a less strict dominance relation leads
to faster solutions of similar quality.

Furthermore, the distance based evaluation functions in
general reach the solution in less expanded nodes. This is
due to the greedy expansion of the search space leading to
the goal quickly. This is opposed to the other evaluation
functions that either optimize over the covariance (having

no bias towards the goal region) or are faced with a multi-
objective optimization problem leading to a more balanced
exploration of the search space and a more pronounced
effect of POMDP dimensionality/history curses. Neverthe-
less, TDOPT computes comparably short paths i.e. barely
6 m longer than the optimum in the mean, or 30%. It also
has better localizability than the distance based evaluation
functions. The WEIGHTED heuristic combines shortness with
good localization, although the search is much longer.

Distance based evaluation functions privilege going
through the information poor center, only optimizing the
path length, see Fig. 5. On the other hand, TDOPT and TW
stick to the edges of the garden where localizability is better.
In this particular example, TDOPT exceptionally leads to
shorter computation time and lesser complexity because there
is a ”corridor” of continuously good localizability going
from start to goal. For completeness, we have also tested
some non-admissible evaluation functions such as a variant
of TD where f(n) = 1.5×DIJKSTRA(n, goal)+d(n), where
DIJKSTRA is used to define the heuristic. This leads to 50%
shorter computation times than TD in the mean, while only
making the paths slightly longer in all our experiments.

Algorithm NC MM CT PL PU
FSE 5557±(27121) 867.6±(2599.1) 0.2±(1.3) 17.9±(9.1) 0.8±(1.0)
FSD 3874±(17530) 839.1±(2425.8) 0.2±(0.8) 17.9±(9.1) 0.8±(1.1)

FSDOPT 7247±(8956) 632.7±(604.3) 0.2±(0.3) 24.2±(16.6) 0.2±(0.1)
FSW 53565±(181230) 5579±(13929) 2.0±(7.2) 22.0±(14.2) 0.2±(0.2)
TE 2446±(6102) 494.7±(741.9) 0.1±(0.2) 17.9±(9.1) 0.8±(1.0)
TD 1917±(4344) 507.1±(789.2) 0.1±(0.2) 17.9±(9.1) 0.8±(1.0)

TDOPT 4529±(4730) 288.1±(184.4) 0.2±(0.2) 24.3±(16.5) 0.2±(0.1)
TW 37223±(118612) 2643.1±(5440) 1.3±(4.0) 22.0±(14.3) 0.2±(0.2)

TABLE III: Results of Experiment 2: resolution of the grid is
0.25 m.

C. Real World Evaluation

The third set of experiments is designed to support claim
(iii) and tests our approach on a real robot. We have done
our experiments on a garden in Renningen, Germany using
a Clearpath Robotics Jackal robot depicted in Fig. 6 (top).
The robot has been modified by adding a Velodyne VLP-16,
although the experiments only use one ray of the scanner
truncated to 4 m. The robot makes a plan using the TW
algorithm, see Fig. 6 (bottom). The path goes from the bot-
tom left to the top right, while computations took 5 s on the
Jackal Celeron J1800. This algorithm privileges information
seeking, so it leads the robot through the information rich
top left corner area while staying close to the walls. The
motion commands are computed using a Dynamic Window
Approach that smooths the rough edges of the path. The
green line represents the mean of the robot belief as it travels
down the path, while the blue line is the ground truth data
with a precision of 5 cm). This experiment shows how the
algorithm is able to run on a real robot and produces paths
maximizing localizability that can be followed by a robot
having very constrained sensors.

VI. CONCLUSION

In this paper, we presented a novel approach for motion
planning under uncertainty resulting from movement and



Fig. 5: Experiment 2 on the largest garden showing the divergence
between possible paths clearly. The algorithms plan a path from the
yellow (top left) to the cyan (bottom right) square. The red (TD)
path CT: 1.3, NC: 29722, MM: 5749, PL: 51.6, PU: 1.1. The green
(TDOPT) one CT: 0.7, NC: 14859, MM: 678, PL: 83.5, PU: 0.2.
The blue (TW) one CT: 4.9, NC: 154804, MM: 10032, PL: 69.5,
PU: 0.2. Note how the green path is always safer but longer, while
the red one is the shortest.

sensing. Our approach operates in belief space and works in
two steps. The first step is the computation of a localizability
map used to simulate the update step of a Bayesian filter
computing the robot’s current belief. The second step uses
a best-first search algorithm instantiated with different eval-
uation functions / dominance relations and the localizability
map to find a path from start to goal. We implemented and
evaluated our approach on different datasets and provided
comparisons to other existing techniques and supported all
claims made in this paper. The experiments suggest that
our approach can be used to plan paths that maximize
localization information in real-time on small robots such
as robotic lawn-mowers.
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